JPH06264170A - Aluminum alloy having high strength and wear resistance - Google Patents

Aluminum alloy having high strength and wear resistance

Info

Publication number
JPH06264170A
JPH06264170A JP5329691A JP5329691A JPH06264170A JP H06264170 A JPH06264170 A JP H06264170A JP 5329691 A JP5329691 A JP 5329691A JP 5329691 A JP5329691 A JP 5329691A JP H06264170 A JPH06264170 A JP H06264170A
Authority
JP
Japan
Prior art keywords
alloy
weight
silicon
strength
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5329691A
Other languages
Japanese (ja)
Inventor
Yusuke Nagasaka
裕介 長坂
Riyouji Kameda
諒二 亀田
Sogo Hase
宗吾 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5329691A priority Critical patent/JPH06264170A/en
Publication of JPH06264170A publication Critical patent/JPH06264170A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an aluminum alloy having high strength and wear resistance by specifying the density and tensile strength of an alloy and the maximum grain size of Si, respectively, in a sintered Al alloy prepared by blending specific percentages of Si, Cu, Mg, Ni, Fe, and Mn with Al. CONSTITUTION:A powder of an alloy having a composition consisting of, by weight, 8-30% Si, 0.1-10% of at least one or more elements among Cu, Mg, Ni, Fe, and Mn (where Ni+Fe+Mn<1.6%), and the balance Al is sintered, by which a sintered Al alloy is prepared. At this time, sintering is carried out by means of solid phase sintering and also plastic deformation is applied by means of extrusion or forging to make the compact dense, by which, in this alloy, a density of 95% based on true density is provided and tensile strength is regulated to >=30kg/mm<2> and, further, the maximum grain size of Si is regulated to <=10mum. By this method, the alloy having superior mechanical strength and excellent in wear resistance of the material itself, damage resistance of a mating material of sliding, wear resistance of dies used at the time of manufacture as well as in machinability can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、材料自体の耐摩耗性な
らびに摺動相手材の耐摩耗性および製造時に使用する型
の耐損耗性あるいは材料の被削加工性などに卓越したア
ルミニウム−シリコン焼結合金材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum-silicon excellent in wear resistance of a material itself, wear resistance of a sliding mating material, wear resistance of a mold used in manufacturing, and machinability of a material. It relates to a sintered alloy material.

【0002】[0002]

【従来の技術】近年、摺動部品の軽量化、熱伝導性、耐
蝕性、非磁性、コストなどの理由により、各種アルミニ
ウム合金中、耐摩耗性にすぐれた鋳造アルミニウム−シ
リコン系合金が用いられている。シリコン含有量の少な
い亜共晶あるいは共晶アルミニウム−シリコン合金で
は、アルミニウムの初晶及び共晶状のαを析出し、シリ
コンの分散状態が劣るため耐摩耗性が十分でなく、苛酷
な摺動条件下の部品には利用しえない欠点を有する。他
方シリコン含有量の多い過共晶アルミニウム−シリコン
合金は、高い硬度を有するシリコンを初晶として析出
し、優れた耐摩耗性を有する。摩擦摺動相手材を著しく
損耗せしめること、および摺動条件によってはマトリッ
クスより脱落した粗大なシリコン粒子が、砥粒研摩作用
によって材料自体の摩耗も増大せしめること、ならびに
被削加工性に乏しく精密な加工が困難であることなどの
欠点を有している。このため初晶シリコン結晶粒子を微
細化せしめる種々の試みがなされているが、鋳造合金で
はまだ満足すべき材料を得るに至っていない。
2. Description of the Related Art In recent years, cast aluminum-silicon alloys having excellent wear resistance have been used among various aluminum alloys for reasons such as weight reduction of sliding parts, thermal conductivity, corrosion resistance, non-magnetism and cost. ing. In hypoeutectic or eutectic aluminum-silicon alloys with low silicon content, the primary and eutectic α of aluminum are precipitated, and the poor dispersion state of silicon results in insufficient wear resistance and severe sliding. It has drawbacks that are not available for parts under conditions. On the other hand, a hypereutectic aluminum-silicon alloy having a high silicon content deposits silicon having a high hardness as a primary crystal and has excellent wear resistance. Friction and sliding wear on the mating material significantly, and depending on the sliding conditions, the coarse silicon particles that have fallen from the matrix increase the wear of the material itself due to the abrasive action of the abrasive grain, and the machinability is poor and precise. It has drawbacks such as difficulty in processing. For this reason, various attempts have been made to reduce the size of primary crystal silicon crystal particles, but a satisfactory material has not yet been obtained in a cast alloy.

【0003】一方、粉末冶金法は各種の分散粒子を微細
均一分散せしめるのに有効な手段として周知であるが、
本発明材料は通常の粉末冶金法により製造することは困
難である。すなわち、アルミニウム、シリコンとも非常
に酸化されやすく、その粉末の表面は強固な酸化被膜で
覆われており、焼結性を著しく阻害するため、アルミニ
ウム−シリコン合金を焼結させるためには酸化被膜の破
壊を生じる。少なくとも一部液相の生成を伴う焼結温度
を選択する必要があり、このような液相生成温度条件下
では、アルミニウム−シリコンの混合粉末あるいは合金
粉末とをとわずシリコン粒子が焼結中に成長粗大化する
傾向を有している。この傾向は微細なシリコン粒子を含
有するものほど顕著であり、本発明範囲の材料をつくる
ことは困難である。
On the other hand, powder metallurgy is well known as an effective means for finely and uniformly dispersing various dispersed particles.
It is difficult to manufacture the material of the present invention by a usual powder metallurgy method. That is, both aluminum and silicon are very easily oxidized, and the surface of the powder is covered with a strong oxide film, which markedly impairs the sinterability, so that the oxide film of the aluminum-silicon alloy is required to be sintered. Cause destruction. It is necessary to select at least a sintering temperature that accompanies the formation of a liquid phase, and under such liquid phase formation temperature conditions, silicon particles are being sintered regardless of the aluminum-silicon mixed powder or alloy powder. It tends to grow and grow. This tendency is more remarkable in those containing finer silicon particles, and it is difficult to prepare a material within the scope of the present invention.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前述のよう
な欠点を改善し、材料自体の耐摩耗性、摺動相手材の耐
摩耗性および製造時に使用する型の耐損耗性あるいは被
削加工性などに卓越した特徴を有するアルミニウム−シ
リコン焼結合金を提供せんとするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks, wear resistance of the material itself, wear resistance of the sliding mating material, and wear resistance of the mold used during manufacturing or abrasion. It is intended to provide an aluminum-silicon sintered alloy having excellent characteristics such as workability.

【0005】[0005]

【課題を解決するための手段】本発明のアルミニウム合
金の基本的な特徴は、 シリコン 8〜30重量% 銅、マグネシウム、ニッケル、鉄、マンガン のうちの少なくとも1種以上 0.1〜10重量% (たゞしNi+Fe+Mn<1.6重量%) アルミニウム 残 部 よりなる合金粉末を焼結してなるアルミニウム焼結合金
において、該合金において、焼結を固相で行ない、かつ
押出又は鍛造により塑性変形を加えて緻密化することに
より該合金が真密度に対して95%以上の密度を有し、
かつ引張強度が30kg/mm2 以上であり、シリコンの最
大粒子径が10μm以下であることを特徴とする高強度
耐摩耗性アルミニウム合金にある。
The basic characteristics of the aluminum alloy of the present invention are: silicon 8 to 30% by weight, at least one or more of copper, magnesium, nickel, iron and manganese 0.1 to 10% by weight. (Although Ni + Fe + Mn <1.6% by weight) Aluminum Sintered alloy made by sintering alloy powder consisting of the balance, in which the alloy is sintered in the solid phase and plastically deformed by extrusion or forging. By densifying the alloy, the alloy has a density of 95% or more with respect to the true density,
In addition, the high-strength wear-resistant aluminum alloy is characterized by having a tensile strength of 30 kg / mm 2 or more and a maximum particle size of silicon of 10 μm or less.

【0006】本発明の合金は一般に次のようにして製造
される。最大粒子径10μ以下のシリコンを重量%(以
下同じ)で8〜30%含有するアルミニウムとシリコン
を主成分として通常含有する銅、マグネシウム、ニッケ
ル、マンガンおよび鉄、などの諸成分の一部または全部
を含有し、好ましくは、−30メッシュ+350メッシ
ュ(44〜580μm、平均100〜200μm)のア
トマイズ合金粉末をプレス成形した圧粉成形体、または
該圧粉成形体を前記合金粉末の固相焼結温度領域内、す
なわち、300℃以上液相生成温度以下において非酸化
性雰囲気中で焼結してなる焼結体を前記固相焼結温度領
域内で押出し鍛造などの塑性変形を伴う外部応力を加え
て緻密化することによって得られる。本発明ではこのよ
うに比較的吸着ガスの少ない粗い粉末を用い、しかも特
定密度(後述するように真密度の65〜85%)の圧粉
成形体を経て緻密化するのでブリスターや微小空隙の発
生が抑えられる。本材料はこのまゝでもすぐれた耐摩耗
性を有するものであるが、更に本材料に潤滑性を有する
黒鉛5〜30重量%、WS2 あるいはMoS2 等の硫化
物を一種以上合計で5〜30重量%CaF2 あるいはB
aF2 等の弗化物を一種以上合計で5〜30重量%を夫
々単独で含有せしめたもの、あるいは黒鉛、硫化物、弗
化物の二種以上含有し、その合計量が5〜30重量%以
下含有せしめ潤滑性を賦与することにより潤滑油膜の形
成が不十分な摺動条件あるいは潤滑油が使用できないよ
うな、いわゆる乾式摺動条件下で優れた摺動性能を有
し、被削加工性も改善せしめる。
The alloy of the present invention is generally manufactured as follows. A part or all of various components such as aluminum containing 8 to 30% by weight (the same applies below) of silicon having a maximum particle diameter of 10 μ or less and copper, magnesium, nickel, manganese and iron usually containing silicon as a main component. And preferably, -30 mesh + 350 mesh (44-580 µm, average 100-200 µm) atomized alloy powder is press-molded, or the powder compact is solid-phase sintered with the alloy powder. In the temperature range, that is, in the solid-phase sintering temperature range, an external stress accompanied by plastic deformation such as extrusion forging of a sintered body obtained by sintering in a non-oxidizing atmosphere at 300 ° C. or higher and a liquid phase generation temperature or lower is applied. In addition, it is obtained by densification. In the present invention, since a coarse powder having a relatively small amount of adsorbed gas is used and the powder is compacted through a green compact having a specific density (65 to 85% of the true density as described later), blister and minute voids are generated. Can be suppressed. This material has excellent wear resistance up to this point, but it has 5 to 30% by weight of graphite, which has lubricity, and one or more sulfides such as WS 2 or MoS 2 in total of 5 to 5% by weight. 30 wt% CaF 2 or B
One containing one or more fluorides such as aF 2 alone in a total of 5 to 30% by weight, or containing two or more species of graphite, sulfide and fluoride, and the total amount is 5 to 30% by weight or less It has excellent sliding performance under the so-called dry sliding condition where the lubricating oil film is not sufficiently formed or the lubricating oil cannot be used due to the added lubricity. Improve.

【0007】以下、本発明の組成範囲等の選定理由を述
べる。シリコンが8%以下では、耐摩耗性改善効果が少
なく30%以上含有せしめても摺動性能向上効果はほと
んど増加せず、かえって強度が低下することおよびアト
マイズ粉末を得るのに溶湯温度を高くする必要が生ずる
等の理由により好ましい範囲を8〜30%とした。
The reasons for selecting the composition range of the present invention will be described below. When the content of silicon is 8% or less, the effect of improving wear resistance is small, and the effect of improving sliding performance is hardly increased even if it is contained in an amount of 30% or more. On the contrary, the strength is lowered and the molten metal temperature is increased to obtain atomized powder. The preferable range is set to 8 to 30% for reasons such as necessity.

【0008】本発明合金の金属組織はアルミニウムを主
成分とするマトリックス中に硬い硬度を有するシリコン
が微細でかつ均一に分散していることに特徴がある。こ
のことが本発明合金の優れた特性を発揮する主因をなし
ているものであってシリコンの最大粒子径が少なくとも
10μ以下、好ましくは5μ以下であることが必要であ
る(図1〜2参照)。
The metal structure of the alloy of the present invention is characterized in that silicon having a hard hardness is finely and uniformly dispersed in a matrix containing aluminum as a main component. This is the main reason for the excellent properties of the alloy of the present invention to be exhibited, and it is necessary that the maximum particle size of silicon is at least 10 μ or less, preferably 5 μ or less (see FIGS. 1 and 2). .

【0009】本発明合金の微細組織を得るためには、シ
リコンの最大粒子径が10μ以下好ましくは5μ以下の
シリコンを所定量含有するアルミニウムとシリコンを主
成分とするアトマイズ合金粉末を原料粉末として、その
後の焼結工程あるいは緻密化工程における加熱温度を液
相の生成が伴わない固相焼結温度領域内に保持すること
が必要である。
In order to obtain the fine structure of the alloy of the present invention, the atomized alloy powder containing aluminum and silicon as the main components, which contains a predetermined amount of silicon having a maximum particle size of 10 μm or less, preferably 5 μm or less, is used as a raw material powder. It is necessary to maintain the heating temperature in the subsequent sintering step or densification step within the solid-phase sintering temperature range in which liquid phase is not generated.

【0010】アトマイズ合金粉末中のシリコン粒子径は
合金組成、溶湯温度、粉末粒度など各種要因に影響を受
けるが、アトマイズ粉の冷却凝固速度に主として依在し
ており、本発明所期のシリコン粒子径を有するアトマイ
ズ粉末を得るには、冷却凝固速度が少なくとも10℃/
sec以上、好ましくは50℃/sec以上であること
が必要である。この条件は通常のアトマイズ法で、比較
的容易に選択しうるものである。微細なシリコン粒子を
含有するアトマイズ合金粉末の粒度は−30メッシュ+
350メッシュの粒度範囲のものが最適である。粉末粒
度が30メッシュ以上では含有するシリコン粒の粗大化
の傾向が認められることおよびプレス成型した圧粉成形
体の強度が低下することなどの理由により好ましくな
い。アトマイズ合金粉末の表面に必然的に存在する酸化
物は本発明合金の場合、合金内に細かく分散して高温強
度、ならびに耐摩耗性を向上せしめる効果を有するが、
粉末粒度が350メッシュ以下の微粉末では酸化物の含
有量が飛躍的に増大し、プレス成形型や緻密化工程に用
いる型やダイを損耗せしめること、ならびに塑性変形態
が悪く緻密化を阻害することなど製造上の問題、あるい
はアルミナやシリカは非常に硬質な酸化物で、摩擦摺動
相手材の損耗を増大せしめることや被削加工性を阻害す
るなどの性能上の問題がある。また酸化物含有量の比較
的少ない350メッシュ以下の微粉末の製造は可能であ
るが、気中の取扱いは発火の危険性を伴いあまり実用的
でないので好ましい範囲は−30+350メッシュであ
る。圧粉成形体の焼結工程、あるいは緻密化工程におけ
る加熱温度は、300℃以上好ましくは再結晶温度以上
で、液相生成温度以下での温度で焼結あるいは緻密化処
理を行うことが必要である。300℃以下の加熱温度で
は緻密化に必要な加工性が得られず、液相の生成を伴う
ような加熱温度ではシリコン粒子の成長阻大化のため所
期の目的を達し得ない。本発明における焼結工程は、緻
密化工程前に中間的な加工を要する場合、あるいは最終
製品形状が複雑で素材強度が必要な場合などに実施し、
通常は圧粉成形体のまゝ緻密化工程を実施しうるもので
ある。緻密化工程は、酸化の抑制とガス抜けを良好とす
るため真密度の65〜85%の密度とした多孔質な圧粉
成形体あるいは該圧粉成形体を固相焼結してなる多孔質
焼結体を押出し、鍛造などの塑性変形を伴う外部応力を
加えて少なくとも理論密度比95%以上の密度まで緻密
化することが必要である。当然のことではあるが、外部
応力と、理論密度比および強度の間には密接な関連があ
る。例えば、押出しの場合、押出し比と強度の間には、
図4に示すような関係がある。実施例1のAに示す成分
の焼結アルミニウム合金を焼結後、各種の押出比で押し
出し引張強度さとの関係を示したものである。緻密化が
95%以下では、残存空孔率が多いことならびに粒子間
の酸化被膜の破断が不十分なため粒子間の結合性が弱い
ため、所期の目的を達し得ない。本発明合金は引張強度
が30kg/mm2 以上という高強度を有する。
The silicon particle size in the atomized alloy powder is affected by various factors such as alloy composition, melt temperature, and powder particle size, but is mainly dependent on the cooling and solidification rate of the atomized powder. In order to obtain atomized powder having a diameter, the cooling solidification rate is at least 10 ° C /
It is necessary to be at least sec, preferably at least 50 ° C./sec. This condition is a usual atomizing method and can be selected relatively easily. The atomized alloy powder containing fine silicon particles has a particle size of -30 mesh +
The one having a particle size range of 350 mesh is most suitable. If the powder particle size is 30 mesh or more, it is not preferable because the silicon particles contained therein tend to be coarsened and the strength of the press-molded compact is reduced. Oxides that are necessarily present on the surface of the atomized alloy powder, in the case of the alloy of the present invention, have the effect of finely dispersing in the alloy at high temperature strength, as well as improving wear resistance,
In the case of fine powder having a particle size of 350 mesh or less, the content of oxides increases dramatically, causing wear of the press mold and the mold and die used in the densification step, and poor plastic deformation morphology, which inhibits densification. However, alumina and silica are very hard oxides and have performance problems such as increasing wear of the friction sliding material and impeding machinability. Further, it is possible to produce fine powder having a relatively small oxide content of 350 mesh or less, but handling in the air is not practical due to the risk of ignition, so the preferred range is -30 + 350 mesh. It is necessary to perform sintering or densification treatment at a heating temperature in the sintering step or the densification step of the powder compact, which is 300 ° C. or higher, preferably the recrystallization temperature or higher, and the liquid phase formation temperature or lower. is there. At a heating temperature of 300 ° C. or less, the workability required for densification cannot be obtained, and at a heating temperature accompanied by the formation of a liquid phase, the intended purpose cannot be achieved because the growth of silicon particles is obstructed. The sintering step in the present invention is performed when intermediate processing is required before the densification step or when the final product shape is complicated and material strength is required,
Usually, the compacting process of the green compact can be carried out. In the densification step, a porous green compact having a density of 65 to 85% of the true density or a porous solid obtained by solid-phase sintering of the green compact is provided in order to suppress oxidation and improve gas release. It is necessary to extrude the sintered body and apply external stress accompanied by plastic deformation such as forging to densify it to a density of at least 95% or more of the theoretical density ratio. Not surprisingly, there is a close relationship between external stress and the theoretical density ratio and strength. For example, in the case of extrusion, between the extrusion ratio and strength,
There is a relationship as shown in FIG. 3 shows the relationship between the extrusion tensile strength at various extrusion ratios after sintering the sintered aluminum alloy of the component shown in A of Example 1. When the densification is 95% or less, the residual porosity is high and the oxide film between particles is not sufficiently broken, so that the bonding property between particles is weak, and the intended purpose cannot be achieved. The alloy of the present invention has a high tensile strength of 30 kg / mm 2 or more.

【0011】本発明では多孔質な圧粉成形体を用いるた
めプレス形時の成形圧力は1〜2t/cm2 でよく、成形
型の損耗が少なく、また多孔質体を緻密化せしめるため
緻密化の際の変形抵抗が小さいために緻密化用の工具寿
命も非常に長い特徴を有する。
In the present invention, since a porous powder compact is used, the molding pressure in the press form may be 1 to 2 t / cm 2 , the die is less worn, and the porous body is densified to make it compact. Since the deformation resistance at the time of is small, the tool life for densification is very long.

【0012】上述アトマイズ合金粉末に通常の合金成分
として、銅、マグネシウム、マンガン、鉄、ニッケルの
少なくとも1種を0.1〜10重量%含有せしめること
によって、強度、耐熱性の向上の効果がある。10重量
%以上となるとかえって脆化したり、製造時緻密化が困
難となる。また、0.1重量%以上ではその効果がな
い。この中で、ニッケル、マンガン、鉄は通常の鋳造ア
ルミ合金では粗大な偏析物を生成し、強度を著しく低下
させる為、ごく微量の添加に限られていた。しかし、本
発明によれば、アルミニウム焼結合金に偏析が生じず、
微細均一な分散強化粒子を生成し、強度の向上を帰与す
るため、積極的に加えることが可能である。たゞしその
範囲はNi+Fe+Mn<1.6重量%という関係を満
足させることが重要でこれにより強度、耐熱性をバラン
スよく保持することができる。
By adding 0.1 to 10% by weight of at least one of copper, magnesium, manganese, iron and nickel as a normal alloy component to the above atomized alloy powder, strength and heat resistance can be improved. . When it is 10% by weight or more, it becomes rather brittle and it becomes difficult to densify during manufacturing. Further, if it is 0.1% by weight or more, the effect is not obtained. Among them, nickel, manganese, and iron form coarse segregates in ordinary cast aluminum alloys, and significantly reduce the strength. Therefore, addition thereof was limited to a very small amount. However, according to the present invention, segregation does not occur in the aluminum sintered alloy,
It can be added positively in order to produce fine and uniform dispersion-strengthening particles and to contribute to the improvement of strength. However, it is important that the range satisfies the relationship of Ni + Fe + Mn <1.6% by weight, so that strength and heat resistance can be maintained in a good balance.

【0013】本発明材の摺動特性改善を目的として黒鉛
5〜30%、WS2 、あるいはMoS2 等の硫化物を一
種以上合計で5〜30%、CaF2 あるいはBaF2
の弗化物を一種以上合計で5〜30%の固体潤滑成分を
夫々単独で含有せしめたもの、あるいは黒鉛硫化物、弗
化物を二種以上含有し、その合計量が5〜30%含有せ
しめることができる。
In order to improve the sliding characteristics of the material of the present invention, 5 to 30% of graphite, 5 to 30% in total of one or more sulfides such as WS 2 or MoS 2 , and fluorides such as CaF 2 or BaF 2 are added. It is possible to contain one or more solid lubricant components of 5 to 30% in total, or two or more graphite sulfides and fluorides, the total amount of which is 5 to 30%.

【0014】これらの固体潤滑成分の添加は摩擦抵抗を
減少せしめ、材料自体の耐摩耗性および相手材の損耗を
改善する効果を有し、特に潤滑油膜の形成が不十分な摺
動条件な潤滑油が使用できないような乾式摺動条件下で
優れた摺動性能を発揮するものである。しかしその添加
含有量がそれぞれの規定量以下では添加の効果が少な
く、それぞれの規定量以上に添加含有せしめても、性能
向上効果はほとんど増加せず、材質強度が低下するので
好ましくない。なおこれら固体潤滑成分を含有するもの
は含有する潤滑成分により、耐焼付性、耐摩耗性などの
摺動特性がやゝ異なり、例えば潤滑油中で苛酷な摺動条
件下で用いられるものには、黒鉛の如き自己潤滑性と保
油性を有するものが適当であり、低温度から高温度まで
の温度変化の大きい条件下で用いられる場合には黒鉛あ
るいはWS2 等の硫化物と高温特性にすぐれたCaF2
等の弗化物の二種含有したものが特にすぐれた効果を発
揮する等が認められた。
Addition of these solid lubricating components has the effect of reducing the frictional resistance, improving the wear resistance of the material itself and the wear of the mating material, and especially lubrication under sliding conditions where the formation of a lubricating oil film is insufficient. It exhibits excellent sliding performance under dry sliding conditions where oil cannot be used. However, if the added content is less than each specified amount, the effect of the addition is small, and even if added more than each specified amount, the performance improving effect hardly increases and the material strength decreases, which is not preferable. Note that those that contain these solid lubricating components have slightly different sliding characteristics such as seizure resistance and wear resistance depending on the lubricating components that they contain.For example, those that are used under severe sliding conditions in lubricating oil , Such as graphite, which has self-lubricating property and oil retaining property, is suitable, and when used under the condition of large temperature change from low temperature to high temperature, it has excellent high temperature characteristics with graphite or sulfides such as WS 2. CaF 2
It was confirmed that those containing two kinds of fluorides, etc. exhibit particularly excellent effects.

【0015】[0015]

【実施例】以上のような本発明の構成、効果を具体的に
例示するために本発明の実施例を以下説明する。 実施例1 表1に示す組成を有する合金をそれぞれ溶解し冷却凝固
速度が50℃/sec以上になる条件で作製したアトマ
イズ合金粉を−30メッシュ+350メッシュおよび−
350メッシュに粒度調整した粉末を用い、1.5〜2
ton/cm2 の圧力での圧粉成形体および該圧粉成形体
を500℃×30分間水素雰囲気中で焼結せしめた焼結
体を450℃に窒素雰囲気中で加熱したものを押出比
1:13のダイを用い押出し又は圧力8ton/cm2
鍛造を行い表2に示す合金を得た。また比較材を得るた
め表1に示す組成の合金を溶解し、金型鋳造してシリコ
ン最大粒子径40〜50μを有する鋳造材(試料 No.1
0)および表1に示す組成に−60メッシュのAl粉末
−250メッシュのSi粉末−350メッシュ以下のC
u、Mg、Niの粉末を均一混合した粉末を前記と同条
件で圧縮成型焼結、押出しを行って得た合金の特性を表
2(試料 No.9)に示す。
EXAMPLES Examples of the present invention will be described below in order to specifically illustrate the constitutions and effects of the present invention as described above. Example 1 Atomized alloy powder produced by melting each alloy having the composition shown in Table 1 under the condition that the cooling solidification rate is 50 ° C./sec or more is −30 mesh + 350 mesh and −.
Use powder whose particle size has been adjusted to 350 mesh, 1.5-2
The compacted body at a pressure of ton / cm 2 and the sintered compact obtained by sintering the compacted body in a hydrogen atmosphere at 500 ° C. for 30 minutes were heated at 450 ° C. in a nitrogen atmosphere to obtain an extrusion ratio of 1 Extrusion using a die of: 13 or forging at a pressure of 8 ton / cm 2 was performed to obtain alloys shown in Table 2. Further, in order to obtain a comparative material, an alloy having the composition shown in Table 1 was melted and die-cast, and a casting material having a maximum silicon particle size of 40 to 50 μm (Sample No.
0) and the composition shown in Table 1 -60 mesh Al powder-250 mesh Si powder-350 mesh or less C
Table 2 (Sample No. 9) shows the characteristics of the alloy obtained by subjecting the powder obtained by uniformly mixing the powders of u, Mg and Ni to compression molding, sintering and extrusion under the same conditions as above.

【表1】 [Table 1]

【表2】 [Table 2]

【0016】表2に記載の試料を表4、表5に示す摩擦
摩耗試験、表6に示す被削加工試験を行い、その結果を
おのおの表8、表9に示した。また表2に記載のNo.
1およびNo.7の粉末を用いて、圧粉成形時に用いる
金型の摩耗の度合を調べた。この方法はあくまでもモデ
ル的な試験であるが、この結果によれば表10に示すよ
うに、試料No.1の方が金型の摩耗が少ないものと推
定される。
The samples shown in Table 2 were subjected to the friction and wear tests shown in Tables 4 and 5 and the machining test shown in Table 6, and the results are shown in Tables 8 and 9, respectively. In addition, No.
1 and No. The powder of No. 7 was used to examine the degree of wear of the mold used during compacting. This method is only a model test, but according to the result, as shown in Table 10, the sample No. It is estimated that No. 1 has less wear of the mold.

【0017】実施例2 17.1%Si、3.1%Cu、0.30%Mg、0.
10%Ni残部が実質的にAlからなる合金を溶解し、
冷却凝固速度が50℃/sec以上になる条件で作製し
た−30+350メッシュのアトマイズ合金粉末と平均
粒径10μの黒鉛粉末、最大粒子径10μ以下のW
2 、およびCaF2 の粉末を表3に示す組成に均一混
合した粉末を2ton/cm2 の圧力でプレス成型した圧
縮成形体を520℃×10分間加熱したものを理論密度
比で95%以上の密度になるように型鍛造を行って表3
に示す合金を得た。これらの試料を実施例1と同様に表
4、表5に示す摩擦摩耗試験、表6に示す被削加工試験
を行い、その結果をまとめて表8、表9に示した。
Example 2 17.1% Si, 3.1% Cu, 0.30% Mg, 0.
10% Ni melts an alloy whose balance consists essentially of Al,
Atomized alloy powder of -30 + 350 mesh, graphite powder having an average particle size of 10 μm, and W having a maximum particle size of 10 μm or less, which were produced under the condition that the cooling solidification rate was 50 ° C./sec or more.
A powder obtained by uniformly mixing the powders of S 2 and CaF 2 in the composition shown in Table 3 was press-molded at a pressure of 2 ton / cm 2 and heated at 520 ° C. for 10 minutes to obtain a theoretical density ratio of 95% or more. Die forging to the density of Table 3
The alloy shown in was obtained. These samples were subjected to the friction and wear tests shown in Tables 4 and 5 and the machining test shown in Table 6 as in Example 1, and the results are summarized in Tables 8 and 9.

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

【表7】 [Table 7]

【表8】 [Table 8]

【表9】 [Table 9]

【表10】 [Table 10]

【0018】[0018]

【発明の効果】本発明の合金は機械的強度にすぐれ、材
料自体の耐摩耗性、摺動相手材の耐損耗性および製造時
の使用型の耐損耗性、あるいは被削加工性などに卓越し
た特性を有するものである。なお本発明の合金は機械的
強度の向上等を目的としてアルミニウム合金に通常実施
される熱処理が可能なことはいうまでもない。特に、引
張強度が25kg/mm2 以上でかつ、摩耗量が8×10-7
mm3 /kg以下のような合金であれば、従来は使えなかっ
た、コンプレッサーベーン、コンロッド、ピストン、シ
リンダー等の分野へも使用が可能となる。このような分
野では、部品の軽量化に努力がなされており、本発明に
よる合金は、上記のような分野へ使用できるようになっ
た。
The alloy of the present invention has excellent mechanical strength and is excellent in the wear resistance of the material itself, the wear resistance of the sliding mating material, the wear resistance of the die used during manufacturing, and the machinability. It has the characteristics described above. It is needless to say that the alloy of the present invention can be subjected to heat treatment which is usually carried out on an aluminum alloy for the purpose of improving mechanical strength. Especially, the tensile strength is 25 kg / mm 2 or more and the wear amount is 8 × 10 -7
If the alloy is less than mm 3 / kg, it can be used in fields such as compressor vanes, connecting rods, pistons, and cylinders that could not be used before. In such fields, efforts have been made to reduce the weight of parts, and the alloy according to the present invention can be used in the fields as described above.

【図面の簡単な説明】[Brief description of drawings]

図1は本発明材(試料No.2)の組織を示す顕微鏡写
真、図2は比較のための金型鋳造材(試料No.10)
の組織を示す顕微鏡写真である。図3は表7に示す型摩
耗試験に用いた装置の概要を示す説明図、図4は、塑性
加工の量と強度の関係を示すグラフである。
FIG. 1 is a micrograph showing the structure of the material of the present invention (Sample No. 2), and FIG. 2 is a die casting material for comparison (Sample No. 10).
2 is a micrograph showing the structure of FIG. 3 is an explanatory view showing the outline of the apparatus used for the mold wear test shown in Table 7, and FIG. 4 is a graph showing the relationship between the amount of plastic working and strength.

【符号の説明】[Explanation of symbols]

1…相手材 2…攪拌手(両側) 3…合金粉スラリー 4…試験片(SKD鋼) 5…重錘 1 ... Counterpart material 2 ... Stirring hand (both sides) 3 ... Alloy powder slurry 4 ... Test piece (SKD steel) 5 ... Weight

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年1月25日[Submission date] January 25, 1993

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】は本発明材(試料No.2)の金属組織を示す
顕微鏡写真である
[1] is a photomicrograph showing the metal structure of the present invention material (sample No.2).

【図2】は比較のための金属鋳造材(試料No.10)
金属組織を示す顕微鏡写真である
2 is a cast metal material for comparison (Sample No. 10)
3 is a micrograph showing the metal structure of the above .

【図3】は表7に示す型摩耗試験に用いた装置の概要を
示す説明図である。
FIG. 3 is an explanatory diagram showing an outline of an apparatus used for the mold wear test shown in Table 7.

【図4】は、塑性加工の量と強度の関係を示すグラフで
ある。
FIG. 4 is a graph showing the relationship between the amount of plastic working and strength.

【符号の説明】 1・・・相手材 2・・・攪拌手(両側) 3・・・合金粉スラリー 4・・・試験片(SKD) 5・・・重錘[Explanation of symbols] 1 ... Counterpart material 2 ... Stirring hand (both sides) 3 ... Alloy powder slurry 4 ... Test piece (SKD) 5 ... Weight

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン 8〜30重量% 銅、マグネシウム、ニッケル、鉄、マンガン のうちの少なくとも1種以上 0.1〜10重量% (たゞしNi+Fe+Mn<1.6重量%) アルミニウム 残 部 よりなる合金粉末を焼結してなるアルミニウム焼結合金
において、焼結を固相で行ない、かつ押出又は鍛造によ
り塑性変形を加えて緻密化することにより該合金が真密
度に対して95%以上の密度を有し、かつ引張強度が3
0kg/mm2 以上であり、シリコンの最大粒子径が10μ
m以下であることを特徴とする高強度耐摩耗性アルミニ
ウム合金。
1. Silicon 8 to 30% by weight At least one or more of copper, magnesium, nickel, iron and manganese 0.1 to 10% by weight (That is Ni + Fe + Mn <1.6% by weight) Aluminum balance In the aluminum sintered alloy obtained by sintering the alloy powder, the alloy is sintered at a solid phase, and the alloy is densified by applying plastic deformation by extrusion or forging so that the alloy has a true density of 95% or more. It has a density and a tensile strength of 3
0kg / mm 2 or more, maximum particle size of silicon is 10μ
A high-strength, wear-resistant aluminum alloy characterized by being m or less.
【請求項2】 シリコン 8〜30重量% 銅、マグネシウム、ニッケル、鉄、マンガン のうちの少なくとも1種以上 0.1〜10重量% (たゞしNi+Fe+Mn<1.6重量%) アルミニウム 残 部 よりなる合金粉末と固体潤滑成分5〜30重量%とを、
混合、焼結してなるアルミニウム合金において、焼結を
固相で行ない、かつ押出又は鍛造により塑性変形を加え
て緻密化することにより該合金が真密度に対して95%
以上の密度を有し、かつ引張強度が22kg/mm2 以上で
あり、シリコンの最大粒子径が10μm以下であること
を特徴とする高強度耐摩耗性アルミニウム合金。
2. Silicon 8 to 30% by weight At least one or more of copper, magnesium, nickel, iron and manganese 0.1 to 10% by weight (but Ni + Fe + Mn <1.6% by weight) Aluminum balance Alloy powder and solid lubricant component of 5 to 30% by weight,
In an aluminum alloy obtained by mixing and sintering, 95% of the true density is obtained by performing sintering in a solid phase and densifying by applying plastic deformation by extrusion or forging.
A high-strength wear-resistant aluminum alloy having the above density, a tensile strength of 22 kg / mm 2 or more, and a maximum particle size of silicon of 10 μm or less.
【請求項3】 固体潤滑成分が、黒鉛、WS2 、MoS
2 、CaF2 、BaF2 の1種以上よりなることを特徴
とする請求項2に記載の高強度耐摩耗性アルミニウム焼
結合金。
3. The solid lubricating component is graphite, WS 2 , MoS
The high-strength wear-resistant aluminum sintered alloy according to claim 2, wherein the high-strength wear-resistant aluminum sintered alloy is made of one or more of 2 , CaF 2 , and BaF 2 .
JP5329691A 1991-02-25 1991-02-25 Aluminum alloy having high strength and wear resistance Pending JPH06264170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5329691A JPH06264170A (en) 1991-02-25 1991-02-25 Aluminum alloy having high strength and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5329691A JPH06264170A (en) 1991-02-25 1991-02-25 Aluminum alloy having high strength and wear resistance

Publications (1)

Publication Number Publication Date
JPH06264170A true JPH06264170A (en) 1994-09-20

Family

ID=12938765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5329691A Pending JPH06264170A (en) 1991-02-25 1991-02-25 Aluminum alloy having high strength and wear resistance

Country Status (1)

Country Link
JP (1) JPH06264170A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518952A (en) * 2008-04-24 2011-06-30 ボディコート・アイエムティー,インコーポレイテッド Composite preform having controlled porosity in at least one layer and methods of making and using the same
WO2013183488A1 (en) * 2012-06-08 2013-12-12 株式会社豊田中央研究所 Method for molding aluminum alloy powder, and aluminum alloy member
CN104451280A (en) * 2014-12-19 2015-03-25 常熟市精诚铝业有限公司 Wear-resistant aluminum alloy
CN112593127A (en) * 2020-12-14 2021-04-02 东北轻合金有限责任公司 Cast aluminum alloy and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029099A (en) * 1988-06-27 1990-01-12 Nec Corp Read-only semiconductor storage device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029099A (en) * 1988-06-27 1990-01-12 Nec Corp Read-only semiconductor storage device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518952A (en) * 2008-04-24 2011-06-30 ボディコート・アイエムティー,インコーポレイテッド Composite preform having controlled porosity in at least one layer and methods of making and using the same
WO2013183488A1 (en) * 2012-06-08 2013-12-12 株式会社豊田中央研究所 Method for molding aluminum alloy powder, and aluminum alloy member
JP2013256678A (en) * 2012-06-08 2013-12-26 Toyota Central R&D Labs Inc Method for molding aluminum alloy powder, and aluminum alloy member
EP2799165A4 (en) * 2012-06-08 2015-11-11 Toyota Chuo Kenkyusho Kk Method for molding aluminum alloy powder, and aluminum alloy member
CN104451280A (en) * 2014-12-19 2015-03-25 常熟市精诚铝业有限公司 Wear-resistant aluminum alloy
CN112593127A (en) * 2020-12-14 2021-04-02 东北轻合金有限责任公司 Cast aluminum alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
US5292358A (en) Sintered aluminum-alloy
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
JPH0625782A (en) High ductility aluminum sintered alloy and its manufacture as well as its application
JPH0120215B2 (en)
US3983615A (en) Sliding seal member for an internal combustion engine
JPH029099B2 (en)
JP2008075127A (en) Method of producing magnesium alloy
US6706126B2 (en) Aluminum alloy for sliding bearing and its production method
JPS5937339B2 (en) Method for manufacturing high silicon aluminum alloy sintered body
JPH07166278A (en) Coppery sliding material and production thereof
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JPH04325648A (en) Production of sintered aluminum alloy
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
JP2009007433A (en) Copper-based oil-containing sintered sliding member and method for producing the same
JP2002309333A (en) Aluminum alloy, aluminum alloy for plain bearing and plain bearing
JPH0421735A (en) Aluminum series bearing alloy
JP3336949B2 (en) Synchronizer ring made of iron-based sintered alloy
JPH116021A (en) Coppery sintered friction material and its production
JP2889371B2 (en) Method for producing A1 alloy mixed powder and sintered A1 alloy
JPS6316455B2 (en)
JPH10140265A (en) Wear resistant composite material
JPH0665734B2 (en) Metal-based composite material with excellent friction and wear characteristics
JP2695289B2 (en) Method for producing Al alloy mixed powder and Al alloy sintered body