JPS6316455B2 - - Google Patents

Info

Publication number
JPS6316455B2
JPS6316455B2 JP14014380A JP14014380A JPS6316455B2 JP S6316455 B2 JPS6316455 B2 JP S6316455B2 JP 14014380 A JP14014380 A JP 14014380A JP 14014380 A JP14014380 A JP 14014380A JP S6316455 B2 JPS6316455 B2 JP S6316455B2
Authority
JP
Japan
Prior art keywords
graphite
added
wear resistance
sliding
brass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14014380A
Other languages
Japanese (ja)
Other versions
JPS5763653A (en
Inventor
Takashi Kurosawa
Keiichiro Mizuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP14014380A priority Critical patent/JPS5763653A/en
Publication of JPS5763653A publication Critical patent/JPS5763653A/en
Publication of JPS6316455B2 publication Critical patent/JPS6316455B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は黄銅合金、特に耐摩耗性が必要とされ
る用途に有用な黄銅合金に関する。 黄銅合金は耐食性、耐摩耗性及び鋳造性が良
く、高力黄銅や青銅に比較し安価である。 しかし、黄銅合金は耐摩耗性に優れているとは
いえ高荷重領域では高力黄銅に、そして高速摺動
下においては青銅より劣る。 従つて、黄銅合金単独で所望の潤滑効果が得ら
れない場合、耐摩耗性を向上させる目的で固体潤
滑剤の添加が考えられる。 固体潤滑剤としては、黒鉛、鉛または硫化銅、
硫化鉛、二硫化モリブデン等からなる硫化物や弗
化物が挙げられる。これらの固体潤滑剤を含有せ
しめるための方法は、焼結法及び含浸法や鋳造法
がある。 例えば、これらの方法による黒鉛の分散含有に
おいては、均一混合上の問題や製法上の制約によ
り、特に黒鉛粒子の粒度と含有量に注意が払われ
ている。 しかし、これらの方法によつて得られた合金は
黒鉛の適正な粒度及び含有量にもかかわらず、ま
た基合金の強化が得られているにもかかわらず、
所望の耐摩耗性が得られなかつた。 一般に摺動体として要求される主な特性は相手
材に対し摩耗や損傷を与えず、摺動体自身が耐摩
耗性であることが必要である。 本発明の目的は低摩擦係数で耐摩耗性のすぐれ
た黄銅合金で、特に高圧力用無給油軸受及び摺動
板用として、低摩擦係数で耐摩耗性を有する黄銅
合金を提供することにある。 本発明は、銅合金地金中、最も安価で、かつ鋳
造性、被削性に優れた黄銅合金に、固体潤滑剤の
黒鉛を分散せしめることで、著るしく耐摩耗性が
向上すること、および鉛と黒鉛の共存で潤滑相剰
効果が得られること、およびSnを添加すること
により応力腐食割れ防止が可能であること。さら
には、Cr,Si,Ce,Laから選ばれる2種以上を
添加することで、著るしく強靭化した黄銅合金を
得ることができることを見出したことにもとづ
く。 すなわち、本発明は重量割合でCu60.0〜88.0
%、pb0.1〜20.0%、Ti0.1〜2.0%、p0.1〜1.0%、
黒鉛1.0〜10.0%及び残Znからなること、および
この合金にSn0.5〜2.0%を添加したもの、さら
に、Cr,Si,Ce,Laから選ばれる2種以上を0.5
〜2.0%添加したことを特徴とするものであり、
その目的とするところは、従来の黄銅合金に比較
して、著るしく耐摩耗性の優れた黄銅合金を提供
すことにある。 次に本発明の詳細を述べる。 先ず、黄銅合金中へ黒鉛を添加する場合、添加
量として、10%を越えると、特に鋳造法におい
て、溶湯の湯流性が悪くなり、健全な鋳物が得難
くなるので10%以下の範囲にすべきである。1.0
未満だと所望の潤滑効果が得られない。また、鉛
の添加量は0.1〜20.0%とする。20.0%をこえる
と、添加量に対して耐摩耗性の顕著な改善効果は
得られず、摺動材自身の強度が低下し、0.1%未
満だと所望の潤滑効果は得られない。 Tiの添加は黒鉛と金属マトリツクスとの濡れ
性を改善すると共に、金属マトリツクスの結晶粒
微細化による強靭性向上の効果がある。Tiの添
加量が0.1%未満では上記した効果がなく、2.0%
を越えると金属マトリツクスに完全に固溶せず残
存する。 しかしながらその添加量は黒鉛粒子の表面積に
比例し、例えば、平均粒径250μm(60mesh)の黒
鉛粒子を6%添加した場合、Ti0.6〜0.8%が好適
範囲である。Tiは大気中の溶湯温度950℃程度で
溶湯中及び大気中の酸素と化合し酸化チタンとな
りその効果を消失するが、前記のごとく添加量が
0.8%以上であると黒鉛粒子表面層に炭化チタン
として析出するのみでなく、金属マトリツクス中
に固溶せず残存することがあり、これが切削加工
時にバイトの割損や摺動材とした場合、相手材を
ステイク(かじり)することにもなるので、平均
粒径250μm(60mesh)の黒鉛に対し0.8%を越え
て添加することは望ましくない。 pは脱酸作用を主目的として添加するものであ
るが本発明においては耐摺動摩耗性を確保するた
めに添加するものである。添加量が0.1%未満で
あると効果が無く、1.0%を越えると他の配合元
素と化合物を生成することから、溶湯の湯流性が
悪くなり適当でない。本発明のもう一つの発明に
おけるSnは長期的に使用される部材に対して添
加するもので、その目的は応力腐食割れを防止す
ることにある。 添加量は0.5〜2.0%で、0.5%未満では効果がな
く、2.0%を越えると耐摺動摩耗性の向上に若干
の効果があるが顕著な潤滑効果は得られない。 また、本発明のもう一つの発明においては、
Cr,Si,Ce,Laから選ばれる2種以上を0.5〜2.0
%添加される。これらを含む金属としてミツシユ
メタル(MM)等が用いられる。 添加量が0.5%未満であると耐高温酸化性の効
果が期待できず、20%を越えると耐高温酸化性を
低下させず耐摩耗性を向上させることが不能とな
る。 例えばCu中へのCrの溶解度限は1070℃で約0.7
%でそれ以上であると、粗大なCr化合物が多量
に銅基体中に析出し所望の耐高温酸化の特性は得
られない。すなわち、2.0%を越えることは極端
な耐高温酸化の特性の低下になり適当でない。 また、黒鉛は摺動面上に面積比15〜50%露出し
た状態において著るしく耐摩耗性が向上する。そ
して、黒鉛が摺動面上に露出しやすい形状とし
て、箔状や鱗片状に対し塊状又は球状が適してい
る。 従来一般の黒鉛分散焼結合金においては、分散
する黒鉛粒子は均一混合の目的から粒度分布や添
加量に注意がはらわれており、かかる焼結法によ
れば粒径が100μmより小さい程すぐれているとい
われている。 一方、鋳造法では粒子径の大きいもの程すぐれ
ている。 さらに、本発明の目的において黒鉛粒子に関す
る詳細について検討を行なつた結果、例えば6重
量%の黒鉛粒子をその形状が箔状のもの鱗片状の
ものおよび塊状又は球状のもの、それぞれを基合
金溶湯中に分散し、鋳込んだ後鋳型壁面側を約2
mm切削し、摺動面とした場合、摺動面積に対する
黒鉛粒子露出部面積比は、箔状黒鉛粒子で13.1
%、鱗片状黒鉛で14.7%、塊状(球状)黒鉛粒子
では23.1%となり、塊状又は球状の黒鉛粒子は黒
鉛露出面積が大となることが判明した。 一方、摺動特性試験の結果から、黒鉛露出面積
の大きさに比例した耐摩耗性が得られた。 すなわち、摺動特性は黒鉛の添加量のみならず
摺動表面積に対する黒鉛粒子露出面積比に著るし
く影響を受け、それは、黒鉛粒子の形状に深く関
係し、鋳型壁面を切削し摺動面とする場合箔状や
鱗片状に比較し、塊状又は球状のものが良好であ
るということが判明した。 従つて、黒鉛粒子形状は塊状又は球状のものを
使用し、摺動面積に対する黒鉛粒子露出面積は、
15〜50%とすることが望ましい。 以上、本発明の化学組成の合金により、高圧力
下ですぐれた低摩擦係数で耐摩耗性が得られた。 次に本発明の実施例を説明する。 実施例 1 鋳物用黄銅合金地金(YBsCIn)と同じ組成に
なるように市販の銅及び亜鉛の地金を黒鉛製ルツ
ボに入れて溶解後、Pb,P及びTiを添加溶解し
た。この溶湯4.7Kgに対し自家製塊状黒鉛(−16
〜80mesh)を0.3Kg投入し撹拌分散した後、金型
に注湯し、加圧凝固(600Kg/cm2)して第1表の
組成の鋳塊を得た。 実施例 2 実施例1におけるPb,P及びTiの添加のとき
に更にSnを加える以外は実施例1と同様にして
第1表に示す組成の鋳塊を得た。 実施例 3,4 実施例2におけるPb,P,Ti,Snの添加のと
きに更にCr+Si+MM(実施例3),Si+MM(実
施例4a)又はCr+MM(実施例4b)を加える以外
は実施例2と同様にして第1表に示す組成の鋳塊
を得た。 比較例 1,2 市販の鋳物用黄銅合金地金(YBsCIn3)の鋳
塊を比較例1とした。また実施例1においてPb
を添加しないほかは実施例1と同様にして第1表
に示す組成の鋳塊を得、比較例2とした。 得られた鋳塊を金型壁面から約2mm切削し、摺
動面としたところの試験片を切出し、相手材を
SAE4620(HRC;58〜63)とし、寸法形状;外径
35mm、巾8.15mm、面粗さ0.13〜0.28μRMSの外周
に、面圧10〜300Kg/cm2で押し付け、摺動速度
(周速)0.03m/Sとし、乾式下(無給油状態)
で摺動試験を行なつた。 試験結果を第1表に示した。
The present invention relates to brass alloys, particularly brass alloys useful in applications where wear resistance is required. Brass alloys have good corrosion resistance, wear resistance, and castability, and are cheaper than high-strength brass or bronze. However, although brass alloys have excellent wear resistance, they are inferior to high-strength brass in high-load areas and inferior to bronze under high-speed sliding conditions. Therefore, if the desired lubricating effect cannot be obtained with the brass alloy alone, adding a solid lubricant may be considered for the purpose of improving wear resistance. Solid lubricants include graphite, lead or copper sulfide;
Examples include sulfides and fluorides such as lead sulfide and molybdenum disulfide. Methods for incorporating these solid lubricants include a sintering method, an impregnation method, and a casting method. For example, when dispersing and containing graphite using these methods, particular attention is paid to the particle size and content of graphite particles due to problems with uniform mixing and restrictions on manufacturing methods. However, the alloys obtained by these methods, despite the appropriate grain size and content of graphite, and despite the reinforcement of the base alloy,
The desired wear resistance could not be obtained. In general, the main properties required for a sliding body are that it does not cause wear or damage to the mating material, and that the sliding body itself has wear resistance. An object of the present invention is to provide a brass alloy with a low coefficient of friction and excellent wear resistance, particularly for use in high-pressure oil-free bearings and sliding plates. . The present invention is characterized in that wear resistance is significantly improved by dispersing graphite, a solid lubricant, in a brass alloy, which is the cheapest among copper alloy ingots and has excellent castability and machinability. Also, the coexistence of lead and graphite provides a mutually lubricating effect, and the addition of Sn makes it possible to prevent stress corrosion cracking. Furthermore, it is based on the discovery that by adding two or more selected from Cr, Si, Ce, and La, it is possible to obtain a brass alloy that is significantly tougher. That is, the present invention has a weight ratio of Cu60.0 to 88.0.
%, pb0.1~20.0%, Ti0.1~2.0%, p0.1~1.0%,
Consisting of 1.0-10.0% graphite and residual Zn, 0.5-2.0% Sn added to this alloy, and 0.5% or more of two or more selected from Cr, Si, Ce, and La.
It is characterized by the addition of ~2.0%,
The aim is to provide a brass alloy that has significantly better wear resistance than conventional brass alloys. Next, details of the present invention will be described. First, when adding graphite to brass alloys, if the amount exceeds 10%, the flowability of the molten metal will deteriorate, especially in casting methods, making it difficult to obtain sound castings, so it should be in the range of 10% or less. Should. 1.0
If it is less than that, the desired lubrication effect cannot be obtained. Further, the amount of lead added is 0.1 to 20.0%. If it exceeds 20.0%, no significant improvement in wear resistance will be achieved with respect to the amount added, and the strength of the sliding material itself will decrease, and if it is less than 0.1%, the desired lubricating effect will not be obtained. Addition of Ti has the effect of improving the wettability between graphite and the metal matrix and improving toughness by refining the crystal grains of the metal matrix. If the amount of Ti added is less than 0.1%, the above effects will not be obtained, and if the amount of Ti added is less than 0.1%, then 2.0%
If it exceeds 100%, it will not be completely dissolved in the metal matrix and will remain. However, the amount added is proportional to the surface area of the graphite particles, and for example, when 6% of graphite particles with an average particle size of 250 μm (60 mesh) are added, a suitable range of Ti is 0.6 to 0.8%. Ti combines with oxygen in the molten metal and in the atmosphere when the molten metal temperature in the atmosphere is around 950℃, forming titanium oxide, and its effect disappears, but as mentioned above, the amount added is
If it is 0.8% or more, it not only precipitates as titanium carbide on the surface layer of graphite particles, but also may remain in the metal matrix without being dissolved as a solid solution. It is not desirable to add more than 0.8% to graphite with an average particle size of 250 μm (60 mesh), as it will also stake the mating material. P is added primarily for the purpose of deoxidizing, but in the present invention it is added to ensure sliding wear resistance. If the amount added is less than 0.1%, there will be no effect, and if it exceeds 1.0%, compounds will be formed with other blended elements, resulting in poor flowability of the molten metal, which is not appropriate. In another aspect of the present invention, Sn is added to members that will be used for a long period of time, and its purpose is to prevent stress corrosion cracking. The amount added is 0.5 to 2.0%; if it is less than 0.5%, there is no effect, and if it exceeds 2.0%, it is slightly effective in improving sliding wear resistance, but no significant lubricating effect is obtained. Moreover, in another invention of the present invention,
0.5 to 2.0 of two or more selected from Cr, Si, Ce, and La
% added. Mitsushi Metal (MM) and the like are used as metals containing these. If the amount added is less than 0.5%, no effect on high-temperature oxidation resistance can be expected, and if it exceeds 20%, it becomes impossible to improve wear resistance without reducing high-temperature oxidation resistance. For example, the solubility limit of Cr in Cu is approximately 0.7 at 1070℃.
%, a large amount of coarse Cr compounds will precipitate into the copper substrate, making it impossible to obtain the desired high-temperature oxidation resistance properties. That is, if it exceeds 2.0%, the high temperature oxidation resistance properties will be extremely deteriorated and it is not appropriate. Furthermore, the wear resistance of graphite is significantly improved when 15 to 50% of the area ratio is exposed on the sliding surface. As a shape in which graphite is easily exposed on the sliding surface, a lump or spherical shape is more suitable than a foil shape or a scale shape. Conventionally, in general graphite-dispersed sintered alloys, attention has been paid to the particle size distribution and addition amount of the dispersed graphite particles for the purpose of uniform mixing, and according to this sintering method, the smaller the particle size is than 100 μm, the better. It is said that there are. On the other hand, in the casting method, the larger the particle size, the better. Further, as a result of studying details regarding graphite particles for the purpose of the present invention, it was found that, for example, 6% by weight of graphite particles were added to base alloy molten metal in foil-like, scale-like, lump-like or spherical shapes, respectively. After dispersion and casting, the wall side of the mold is approximately 2
When the sliding surface is made by cutting mm, the ratio of exposed area of graphite particles to sliding area is 13.1 for foil graphite particles.
%, 14.7% for flaky graphite and 23.1% for massive (spherical) graphite particles, indicating that the graphite exposed area is large in massive or spherical graphite particles. On the other hand, the results of the sliding property test showed that wear resistance was proportional to the size of the graphite exposed area. In other words, the sliding properties are significantly affected not only by the amount of graphite added but also by the ratio of the graphite particle exposed area to the sliding surface area. It has been found that lump-like or spherical forms are better than foil-like or scale-like forms. Therefore, the shape of the graphite particles used is lumpy or spherical, and the exposed area of the graphite particles relative to the sliding area is:
It is desirable to set it to 15-50%. As described above, the alloy having the chemical composition of the present invention provides excellent wear resistance with a low coefficient of friction under high pressure. Next, embodiments of the present invention will be described. Example 1 Commercially available copper and zinc ingots were placed in a graphite crucible and melted to have the same composition as a foundry brass alloy ingot (YBsCIn), and then Pb, P, and Ti were added and melted. Homemade massive graphite (-16
After 0.3 kg of 80 mesh) was added and stirred and dispersed, it was poured into a mold and solidified under pressure (600 kg/cm 2 ) to obtain an ingot having the composition shown in Table 1. Example 2 An ingot having the composition shown in Table 1 was obtained in the same manner as in Example 1 except that Sn was further added when adding Pb, P, and Ti in Example 1. Examples 3 and 4 Same as Example 2 except that Cr+Si+MM (Example 3), Si+MM (Example 4a), or Cr+MM (Example 4b) was added when adding Pb, P, Ti, and Sn in Example 2. In the same manner, ingots having the compositions shown in Table 1 were obtained. Comparative Examples 1 and 2 Comparative Example 1 was an ingot of a commercially available brass alloy ingot for casting (YBsCIn3). In addition, in Example 1, Pb
An ingot having the composition shown in Table 1 was obtained in the same manner as in Example 1, except that no ingot was added, and Comparative Example 2 was obtained. The obtained ingot was cut approximately 2 mm from the mold wall surface, a test piece was cut out with the sliding surface, and the mating material was cut out.
SAE4620 (HRC; 58 to 63), dimensions and shape: outer diameter
35 mm, width 8.15 mm, and surface roughness of 0.13 to 0.28 μRMS, press it with a surface pressure of 10 to 300 Kg/ cm2 , and set the sliding speed (circumferential speed) to 0.03 m/S under dry conditions (no lubrication).
A sliding test was conducted. The test results are shown in Table 1.

【表】 第1表から明らかなように、実施例の黄銅合金
は限界面圧及びPV値が比較例1の市販黄銅合金
の10倍、比較例2の黒鉛分散黄銅合金の1.7倍で
あり、耐摩耗性に優れることが示される。また比
較例2に較べて摩耗係数、温度上昇及び相手材摩
耗量が小さい。 データの添付を省略したが、本発明のSn添加
材は応力腐食割れがなく、加工時の亀裂発生は皆
無となつた。更にCr,Si,MM添加材は耐高温
酸化性に優れ、集電材に使用した場合、優れた耐
摩耗性が得られることが確認された。 本発明の黄銅合金は、低摩擦係数で耐摩耗性に
優れ、高温用、高荷重用の無給油軸受、摺動板等
に用いられる。
[Table] As is clear from Table 1, the critical surface pressure and PV value of the brass alloy of the example are 10 times that of the commercially available brass alloy of Comparative Example 1, and 1.7 times that of the graphite-dispersed brass alloy of Comparative Example 2. It is shown that it has excellent abrasion resistance. Furthermore, compared to Comparative Example 2, the wear coefficient, temperature rise, and amount of wear on the mating material are smaller. Although data has been omitted, the Sn-added material of the present invention has no stress corrosion cracking, and no cracking occurred during processing. Furthermore, it was confirmed that Cr, Si, and MM additives have excellent high-temperature oxidation resistance, and when used in current collectors, excellent wear resistance can be obtained. The brass alloy of the present invention has a low coefficient of friction and excellent wear resistance, and is used for oil-free bearings for high temperatures and high loads, sliding plates, etc.

Claims (1)

【特許請求の範囲】 1 重量割合でCu60.0〜88.0%,Pb0.1〜20.0%,
Ti0.1〜2.0%,P0.1〜1.0%、黒鉛1.0〜10.0%及び
残Znからなる耐摩耗性黄銅合金。 2 重量割合でCu60.0〜88.0%,Pb0.1〜20.0%,
Ti0.1〜2.0%,P0.1〜1.0%、黒鉛1.0〜10.0%,
Sn0.5〜2.0%及び残Znからなる耐摩耗性黄銅合
金。 3 重量割合でCu60.0〜88.0%,Pb0.1〜20.0%,
Ti0.1〜2.0%,P0.1〜1.0%、黒鉛1.0〜10.0%,
Sn0.5〜2.0%及びCr,Si,Ce,Laから選ばれる
2種以上を0.5〜2.0%及び残Znからなる耐摩耗性
黄銅合金。
[Claims] 1. Cu60.0~88.0%, Pb0.1~20.0%,
A wear-resistant brass alloy consisting of 0.1-2.0% Ti, 0.1-1.0% P, 1.0-10.0% graphite, and the balance Zn. 2 Cu60.0~88.0%, Pb0.1~20.0% by weight,
Ti0.1~2.0%, P0.1~1.0%, graphite 1.0~10.0%,
A wear-resistant brass alloy consisting of 0.5-2.0% Sn and the balance Zn. 3 Cu60.0~88.0%, Pb0.1~20.0% by weight,
Ti0.1~2.0%, P0.1~1.0%, graphite 1.0~10.0%,
A wear-resistant brass alloy consisting of 0.5 to 2.0% Sn, 0.5 to 2.0% of two or more selected from Cr, Si, Ce, and La, and the balance Zn.
JP14014380A 1980-10-06 1980-10-06 Wear resistant brass alloy Granted JPS5763653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14014380A JPS5763653A (en) 1980-10-06 1980-10-06 Wear resistant brass alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14014380A JPS5763653A (en) 1980-10-06 1980-10-06 Wear resistant brass alloy

Publications (2)

Publication Number Publication Date
JPS5763653A JPS5763653A (en) 1982-04-17
JPS6316455B2 true JPS6316455B2 (en) 1988-04-08

Family

ID=15261865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14014380A Granted JPS5763653A (en) 1980-10-06 1980-10-06 Wear resistant brass alloy

Country Status (1)

Country Link
JP (1) JPS5763653A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126696A (en) * 1988-11-07 1990-05-15 Fujikura Ltd Enameled wiring board and manufacture thereof
CN113061777A (en) * 2021-03-25 2021-07-02 上海五星铜业股份有限公司 Brass alloy and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107779654A (en) * 2017-11-09 2018-03-09 四川城际轨道交通材料有限责任公司 A kind of train earthing or grounding means collection electroplax alloy material
JP6759389B2 (en) * 2019-02-22 2020-09-23 Ntn株式会社 Sintered bearing
JP7021312B2 (en) * 2020-09-02 2022-02-16 Ntn株式会社 Sintered bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126696A (en) * 1988-11-07 1990-05-15 Fujikura Ltd Enameled wiring board and manufacture thereof
CN113061777A (en) * 2021-03-25 2021-07-02 上海五星铜业股份有限公司 Brass alloy and preparation method thereof
CN113061777B (en) * 2021-03-25 2022-01-28 上海五星铜业股份有限公司 Brass alloy and preparation method thereof

Also Published As

Publication number Publication date
JPS5763653A (en) 1982-04-17

Similar Documents

Publication Publication Date Title
JP5253440B2 (en) Sliding bearings for turbochargers for internal combustion engines
US4383970A (en) Process for preparation of graphite-containing aluminum alloys
JPWO2008140100A1 (en) Pb-free copper alloy sliding material and plain bearing
KR20200130147A (en) Multi-layer sliding bearing element
JP4806823B2 (en) Bronze alloy and manufacturing method thereof, sliding member using bronze alloy
US5296057A (en) High abrasion resistant aluminum bronze alloy, and sliding members using same
JP2918292B2 (en) Sliding material
JPS6316456B2 (en)
CN108515178A (en) A kind of copper-based oil containing bearing material of iron and preparation method thereof
JPH0120215B2 (en)
US20200232068A1 (en) Bronze alloy, and sliding member using the bronze alloy
JPS6316455B2 (en)
JP2008075127A (en) Method of producing magnesium alloy
US5665480A (en) Copper-lead alloy bearing
US4994235A (en) Wear-resistance aluminum bronze alloy
JPS626737B2 (en)
KR100528499B1 (en) Anti-galling alloy with finely dispersed precipitates
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JP2745699B2 (en) Copper-based sintered alloy with excellent wear resistance at high temperatures
CN112708815B (en) Heat-conducting anti-fatigue magnesium alloy and preparation method thereof
JPS6056220B2 (en) aluminum bearing alloy
JP3838833B2 (en) Al-Bi based sintered bearing alloy and method for producing the same
JPS6346138B2 (en)
JPH01283346A (en) Sintered alloy material and its production
JPH04131339A (en) Sintered copper-base alloy excellent in wear resistance