JP2918292B2 - Sliding material - Google Patents

Sliding material

Info

Publication number
JP2918292B2
JP2918292B2 JP2134183A JP13418390A JP2918292B2 JP 2918292 B2 JP2918292 B2 JP 2918292B2 JP 2134183 A JP2134183 A JP 2134183A JP 13418390 A JP13418390 A JP 13418390A JP 2918292 B2 JP2918292 B2 JP 2918292B2
Authority
JP
Japan
Prior art keywords
lead
powder
copper
sintered material
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2134183A
Other languages
Japanese (ja)
Other versions
JPH0428836A (en
Inventor
照男 大橋
靖久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2134183A priority Critical patent/JP2918292B2/en
Publication of JPH0428836A publication Critical patent/JPH0428836A/en
Application granted granted Critical
Publication of JP2918292B2 publication Critical patent/JP2918292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関のメインジャーナル軸受、コンロ
ッド軸受などの滑り軸受、一般機械要素としてのブシュ
などに使用される摺動材料に関するものである。さらに
詳しく述べるならば本発明は銅を主成分として、鉛、イ
ンジウムなどの軟質金属を添加元素とした銅系焼結摺動
材料に関するものである。
Description: TECHNICAL FIELD The present invention relates to a sliding material used for a sliding bearing such as a main journal bearing and a connecting rod bearing of an internal combustion engine, and a bush as a general mechanical element. . More specifically, the present invention relates to a copper-based sintered sliding material containing copper as a main component and a soft metal such as lead or indium as an additional element.

〔従来の技術〕[Conventional technology]

従来、上記用途に使用される摺動材料は銅・鉛系ケル
メット合金が一般的であるので、以下この銅・鉛合金の
例を主として説明する。
Conventionally, a sliding material used for the above-mentioned applications is generally a copper-lead kelmet alloy. Hereinafter, an example of the copper-lead alloy will be mainly described.

従来、銅・鉛合金のバイメタル材は水またはガスアト
マイズ法で作った粉末を鉄板上に散布し還元雰囲気中で
焼結して製造されていた。すべり軸受材料として使用さ
れる銅・鉛合金は銅に固溶しない鉛との合金であるため
に、鉛は一種の介在物として働くため、その分布状態は
微細であるほど負荷能力を向上させることは容易に推定
される。しかし従来法ではPb相の大きさには粉末の凝固
速度により定められる微細化の限界があり、焼結温度や
時間の条件の工夫をしても十分な微細化焼結組織は得ら
れない。
Conventionally, a bimetallic material of a copper / lead alloy has been manufactured by spraying a powder made by a water or gas atomizing method on an iron plate and sintering it in a reducing atmosphere. Copper and lead alloys used as sliding bearing materials are alloys with lead that do not form a solid solution with copper.Because lead acts as a kind of inclusion, the finer the distribution, the better the load capacity. Is easily estimated. However, in the conventional method, the size of the Pb phase has a limit of refinement determined by the solidification rate of the powder, and even if the conditions of the sintering temperature and time are devised, a sufficient refined sintered structure cannot be obtained.

近年自動車用エンジンを始めとして内燃機関の性能は
著しく向上し、その分、軸受への負荷も非常に厳しくな
っている状況ではより高負荷に耐える軸受として銅鉛合
金では鉛の分布をより微細なものにすることが求められ
るようになった。
In recent years, the performance of internal combustion engines, including automobile engines, has significantly improved, and the load on bearings has become extremely severe.In this situation, copper-lead alloys have a finer lead distribution as bearings that can withstand higher loads. It became necessary to make things.

銅・鉛合金軸受材料において銅マトリックス内に分散
した鉛相が潤滑金属として作用することは良く知られて
いるが、鉛の分布が微細な方がよいのか、粗い方がよい
のかについて賛否両論あり、明解な答えはまだ得られて
いない。
It is well known that the lead phase dispersed in the copper matrix acts as a lubricating metal in copper / lead alloy bearing materials, but there are cons and cons on whether the lead distribution should be fine or coarse. , No clear answer yet.

銅・鉛焼結合金の鉛層を微細化することを開示する特
許として米国特許第4,818,628号がある。この特許で
は、焼結を、誘導加熱により650℃以上で行う第1段加
熱と、850℃程度で炉内で行う第2段加熱とにより行
い、鉛粒径が平均で8μm以下、最大鉛粒径が44μm以
下の微細組織を得ることが提案されている。この米国特
許では原料粉末は、147μm以下のものが好ましいとさ
れており、粉末の製法は言及されておらないが、この粉
末のサイズを考慮すると一般的なガスもしくは水アトマ
イズ法であると考えられる。また、上記米国特許第4,81
8,628号は、腐食の発生、進展がオーバレイのクラック
から始まってケルメット中の鉛相に達する時、鉛相が粗
いと鉛相での腐食の進展が起こりやすいことからケルメ
ット地の鉛相を微細にすることを提案している。
U.S. Pat. No. 4,818,628 discloses a patent that discloses miniaturization of a lead layer of a copper / lead sintered alloy. In this patent, sintering is performed by a first-stage heating at 650 ° C. or higher by induction heating and a second-stage heating at 850 ° C. in a furnace. It has been proposed to obtain a microstructure having a diameter of 44 μm or less. In this U.S. patent, the raw material powder is preferably 147 μm or less, and the method of producing the powder is not mentioned, but it is considered to be a general gas or water atomization method in consideration of the size of the powder. . Also, the above-mentioned U.S. Pat.
No. 8,628 states that when the occurrence and progress of corrosion starts from cracks in the overlay and reaches the lead phase in kelmet, if the lead phase is coarse, the progress of corrosion in the lead phase is likely to occur, the lead phase in the kelmet ground is finely divided. Suggest to do.

(発明が解決しようとする課題) 本発明者はアトマイズ合金粉をできるだけ微細化し、
また焼結条件を工夫して結晶粒成長の抑制しつつ焼結を
行って銅・鉛焼結体を作成し、その組織を観察し、以下
の知見を得た。すなわち、焼結体中の鉛相は銅マトリッ
クスの粒界に沿って凝固した網状形状が残っている。こ
のような組織を有する焼結体の性能は微細化により多少
の向上が見られるが、従来の性能を大幅に凌駕する性能
の達成は出来ない。
(Problem to be Solved by the Invention) The present inventor made atomized alloy powder as fine as possible,
In addition, sintering was performed while devising sintering conditions while suppressing crystal grain growth to prepare a copper / lead sintered body, and the structure thereof was observed, and the following knowledge was obtained. That is, the lead phase in the sintered body remains in a network shape solidified along the grain boundaries of the copper matrix. Although the performance of the sintered body having such a structure is slightly improved by miniaturization, it is not possible to achieve a performance far exceeding the conventional performance.

(課題を解決するための手段) 本発明は、上記したような従来の焼結摺動材料の性能
を大幅に改良するものであり、Pb,In,Bi,Tlから選択さ
れた一種以上の成分を5〜60%含有し、残部がCuおよび
不可避的不純物からなる焼結合金から構成され、前記P
b,In,Bi,Tlなどが平均粒径10μm以下の実質的に擬片状
の微細粒子として分散しており、境界潤滑条件下で相手
軸との摺動面略全面で皮膜を形成することを特徴とす
る。
(Means for Solving the Problems) The present invention significantly improves the performance of the conventional sintered sliding material as described above, and comprises one or more components selected from Pb, In, Bi, and Tl. And 5 to 60%, the balance being a sintered alloy consisting of Cu and unavoidable impurities.
b, In, Bi, Tl, etc. are dispersed as substantially quasi-flake fine particles with an average particle size of 10 μm or less, and a film is formed on almost the entire sliding surface with the partner shaft under boundary lubrication conditions. It is characterized by.

さらに本発明はPb,In,Bi,Tlから選択された一種以上
の成分を5〜60%、およびSnを15%以下含有し、残部が
Cuおよび不可避的不純物からなる焼結合金から構成さ
れ、前記Pb,In,Bi,Tlなどが平均粒径10μm以下の実質
的に擬片状の微細粒子として分散しており、境界潤滑条
件下で相手軸との摺動面略全面で皮膜を形成することを
特徴とする。
Further, the present invention contains 5 to 60% of one or more components selected from Pb, In, Bi, and Tl and 15% or less of Sn, with the balance being
Consisting of a sintered alloy composed of Cu and unavoidable impurities, the Pb, In, Bi, Tl, etc. are dispersed as substantially pseudo-flake-like fine particles having an average particle size of 10 μm or less, and under boundary lubrication conditions. It is characterized in that a film is formed on almost the entire sliding surface with the mating shaft.

以下、本発明の構成を説明する。 Hereinafter, the configuration of the present invention will be described.

先ず本発明の摺動材料の組成を説明する。本発明に係
る摺動材料はPb,In,Bi,TlなどのCuに対する固溶度が少
ない元素を軟質金属として含有する。これらの金属はCu
マトリックス中に分布してなじみ性、潤滑性などを発揮
する。軟質金属の含有量が5%(百分率は特に断らない
限り重量%である)未満であると上記の性能が不十分と
なり、一方含有量が60%を超えると銅・鉛合金の強度が
不十分になり負荷能力が不十分となる。また、後述する
ように本発明においてはPb,Inなどの相は微細な形状で
密集していることに関連してPb,In、Bi,Tlなどの含有量
が5%未満であると軟質相が孤立し、散開して分散し、
本発明による鉛等の連続層を摺動面に形成する効果を奏
することができないので、上記した下限含有量5%以上
の添加が必要である。軟質金属の含有量は特に耐疲労性
・高負荷用の目的では好ましくは5〜30%、より好まし
くは8〜25%とするとよく、また境界潤滑用の目的で
は、好ましくは20〜60%、より好ましくは30〜50%とす
るとよい。
First, the composition of the sliding material of the present invention will be described. The sliding material according to the present invention contains, as a soft metal, an element having a low solid solubility in Cu, such as Pb, In, Bi, or Tl. These metals are Cu
It is distributed in the matrix and exhibits conformability and lubricity. If the soft metal content is less than 5% (percentage is% by weight unless otherwise specified), the above performance becomes insufficient, while if the content exceeds 60%, the strength of the copper-lead alloy is insufficient. And the load capacity becomes insufficient. In addition, as described later, in the present invention, the phase of Pb, In, etc. is densely packed in a fine shape, and the soft phase is contained when the content of Pb, In, Bi, Tl, etc. is less than 5%. Are isolated, spread and dispersed,
Since the effect of forming a continuous layer of lead or the like on the sliding surface according to the present invention cannot be exerted, it is necessary to add the above lower limit content of 5% or more. The content of the soft metal is preferably 5 to 30%, more preferably 8 to 25% for the purpose of fatigue resistance and high load, and preferably 20 to 60% for the purpose of boundary lubrication. More preferably, it is 30 to 50%.

上記した軟質金属の残部はCuおよび不純物である。Cu
はマトリックスとして上記した軟質金属を均一微細に分
布させ、強固に支持するとともに摩擦により発生した熱
を逃がす熱の良導体の役割を担う。
The balance of the above soft metals is Cu and impurities. Cu
Serves as a good conductor of heat for distributing the above-mentioned soft metal uniformly and finely as a matrix, firmly supporting it, and releasing heat generated by friction.

ここで、従来のアトマイズ粉焼結ではPbの含有量を高
くすると材料自体の強度が低くなり、耐疲労性に劣り、
高負荷用としては十分な使用には耐えないが、本願の如
く、メカニカルアロイング法による粉末の焼結体ではCu
地自体が強化されるため高Pb含有量が採用できる。この
高PbがCuに比べ廉価のため材料コストの点でも有利とな
る。
Here, in the conventional atomized powder sintering, when the content of Pb is increased, the strength of the material itself is reduced, and the fatigue resistance is poor,
Although it does not withstand sufficient use for high load, as in the present application, powder sintered body by mechanical alloying method has Cu
High Pb content can be adopted because the ground itself is strengthened. Since this high Pb is inexpensive compared to Cu, it is advantageous in terms of material cost.

次に上記組成でさらにSnを15%以下添加することがで
きる。SnはCu地を固溶強化する成分であり、15%を超え
ると固溶限を超えた過剰金属間化合物によりCu地を逆に
脆くしてしまう。好ましくは0.5〜12%のSn含有量がよ
い。
Next, 15% or less of Sn can be further added in the above composition. Sn is a component that strengthens the solid solution of Cu. If the content exceeds 15%, the excessively high intermetallic compound exceeding the solid solubility limit causes the Cu to be brittle. Preferably, the Sn content is 0.5 to 12%.

上記した成分以外にSb,Fe,Ni,Mnなどを硬質成分とし
て各5%以下の少量を添加することができる。これらの
硬質成分は分散強化によって焼結体を強化し、負荷能力
を高める。さらに、Cu系摺動材の公知の副成分を適宜、
例えばPを1%以下、好ましくは0.001〜0.5%添加して
もよい。
In addition to the above components, small amounts of 5% or less can be added using Sb, Fe, Ni, Mn, etc. as hard components. These hard components strengthen the sintered body by dispersion strengthening and increase the load capacity. In addition, known sub-components of Cu-based sliding material,
For example, P may be added to 1% or less, preferably 0.001 to 0.5%.

以下、本発明が最も特徴とする焼結組織を説明する。 Hereinafter, the sintered structure which is the most characteristic of the present invention will be described.

従来の銅・鉛合金においては鋳造状態の鉛相が残存す
るか、あるいは焼結中に鉛相が再溶融して銅の結晶粒界
に沿って再分布しており、網状に分布していた。しかし
本発明による鉛相はこのような鋳造・再溶融組織の痕跡
がなく、擬片状を呈している。このような組織は従来銅
・鉛合金では類似した例がなく、鋳鉄においてMg添加し
た球状黒鉛と通常のねずみ鋳鉄の片状黒鉛の中間形状の
黒鉛に見られる(日本金属学会編「改訂5版、金属便
覧」第597頁参照)。この擬片状鉛相は一般的な形状と
しては片状である(網状形態を有しない、長い形状であ
り、球状のように縦横比率が略同等でない)が、ぎざぎ
ざした形状、小さい突起を有する形状、局部的に太くな
っている形状、末端が枝別れした形状などの不規則形状
があるので「擬」片状と称する。
In conventional copper-lead alloys, the lead phase in the cast state remains, or the lead phase remelts during sintering and is redistributed along the copper grain boundaries, and is distributed in a network. . However, the lead phase according to the present invention has no trace of such a cast / remelted structure, and exhibits a pseudo-flake shape. There is no similar example in the conventional copper-lead alloys, and it is found in the intermediate shape of spheroidal graphite to which Mg is added in cast iron and flaky graphite of ordinary gray cast iron. , Metal Handbook, p. 597). This pseudo-flaky lead phase is generally flaky (has no reticulated morphology, is a long shape, and the aspect ratio is not substantially the same as a sphere), but has a jagged shape and small projections It is called a “pseudo” flake because it has irregular shapes such as a shape, a locally thickened shape, and a shape with a branched end.

本発明の鉛相は寸法が平均寸法が10μm以下である。
鉛相の平均寸法10μm以下は上述の擬片状組織とともに
本発明による鉛皮膜形成作用を奏するために必要な条件
である。これらの条件が満たされると、従来の網状鉛相
はCu結晶粒界を取り巻いているので、通常20〜40μmの
鋳造凝固したCu相の粒径とほぼ同じ間隔で鉛相が散開し
て分散している。本発明においては鉛相は鋳造組織では
得られない擬片状であるので、アトマイズ粉よりも鉛相
は遥かに密集しており、鉛相の平均間隔が遥かに狭くな
っている。
The lead phase of the present invention has an average size of 10 μm or less.
The average dimension of the lead phase of 10 μm or less is a necessary condition for exhibiting the lead film forming action according to the present invention together with the above-mentioned pseudo-flake structure. When these conditions are satisfied, the conventional reticulated lead phase surrounds the Cu crystal grain boundary, so that the lead phase spreads and disperses at almost the same interval as the grain size of the cast and solidified Cu phase of 20 to 40 μm. ing. In the present invention, since the lead phase is a pseudo-flake shape that cannot be obtained by a cast structure, the lead phase is much denser than the atomized powder, and the average interval between the lead phases is much narrower.

以上鉛相を例をとって本発明の組織を説明したがイン
ジウム、ビスマス、タリウムなどが添加元素である場合
にもメカニカルアロイング法により銅が硬質金属とし
て、インジウムなどが延性金属として作用し、kneading
効果によりインジウムなどが光学顕微鏡では検出できな
いほど微細に分散した組織を作ることができる。なお、
本願で言うメカニカルアロイング法とは、狭義のメカニ
カルアロイングとメカニカルグラインディングの総称で
ある。
Although the structure of the present invention has been described taking the lead phase as an example, indium, bismuth, and copper are used as hard metals by the mechanical alloying method even when the additional element is an additional element, indium or the like acts as a ductile metal, kneading
Due to the effect, a structure in which indium or the like is so finely dispersed that it cannot be detected by an optical microscope can be formed. In addition,
The mechanical alloying method referred to in the present application is a general term for mechanical alloying and mechanical grinding in a narrow sense.

上記した組織を作るためにはメカニカルアロイング法
などの超微細組織を作る方法により得た粉末を焼結する
ことが必要である。かかる方法により得た粉末の表面は
非常に活性であるので、焼結を行う際には焼結雰囲気条
件の点に注意しなければならない。焼結は、裏金上での
一次焼結、一次焼結粉の裏金への圧下、および二次焼結
のプロセスで行うことができる。
In order to form the above-mentioned structure, it is necessary to sinter the powder obtained by a method of forming an ultrafine structure such as a mechanical alloying method. Since the surface of the powder obtained by such a method is very active, attention must be paid to the sintering atmosphere conditions when sintering. The sintering can be performed by a primary sintering on the back metal, a pressing of the primary sintered powder to the back metal, and a secondary sintering process.

以下、メカニカルアロイング粉焼結材に例をとって本
発明をさらに説明する。
Hereinafter, the present invention will be further described using an example of a mechanically alloyed powder sintered material.

〔作用〕[Action]

一定時間摺動させたメカニカルアロイング粉焼結材と
アトマイズ粉焼結材の摩擦面の観察を行ったところ、ア
トマイズ粉焼結材の摺動試験後の表面は銅マトリックス
の金属光沢を呈しているが、メカニカルアロイング粉焼
結材の方は摩擦方向に延びた黒い縞模様が帯状に何本も
観察された。この黒い縞模様の境界部分を電子顕微鏡観
察、鉛のライン分析およびEPMAの観察結果からメカニカ
ルアロイング粉焼結材に現れる黒い縞模様は鉛で、それ
が摩擦方向に表面を覆っていることが分かった。
Observation of the friction surface between the mechanically alloyed powder sintered material and the atomized powder sintered material slid for a certain period of time showed that the surface of the atomized powder sintered material after the sliding test showed the metallic luster of the copper matrix. However, in the case of the mechanically alloyed powder sintered material, a number of black stripes extending in the friction direction were observed in the form of strips. From the results of electron microscopy, lead line analysis and EPMA observation of the boundary of the black stripes, the black stripes appearing on the mechanically alloyed powder sintered material were lead, which indicated that they covered the surface in the direction of friction. Do you get it.

ケルメット合金で鉛が表面にしみ出してくることは一
般に知られていることであるが、従来のアトマイズ粉焼
結材では今回のメカニカルアロイング粉焼結材のように
摩擦面全面のかなりの部分を覆うほどにはならなかっ
た。
It is generally known that lead oozes out to the surface with a kelmet alloy.However, in the conventional atomized powder sintered material, a considerable portion of the entire friction surface like the mechanical alloying powder sintered material this time is used. Was not enough to cover.

今回の摺動試験は潤滑油として粘度の低い灯油を用い
ており、速度も0.5m/sと遅いので実験は境界潤滑領域で
行われている。したがって軸と試験片とが固体接触する
部分が存在し、その部分で鉛がしみだしたと考えられ
る。
In this sliding test, low viscosity kerosene was used as the lubricating oil, and the speed was as low as 0.5 m / s, so the experiment was performed in the boundary lubrication region. Therefore, it is considered that there was a portion where the shaft and the test piece were in solid contact, and lead was exuded at that portion.

メカニカルアロイング粉焼結材とアトマイズ粉焼結材
とでは基地での鉛の分布状態が異なるため、そのしみ出
し方とそれが摺動方向へ流動して摩擦面を覆う様相に違
った結果を招いている。
Since the distribution of lead at the matrix is different between the mechanically alloyed powder sintered material and the atomized powder sintered material, the results differ depending on how they exude and flow in the sliding direction to cover the friction surface. Inviting.

メカニカルアロイング粉焼結材とアトマイズ粉焼結材
の表面の鉛のしみ出しを観察した結果をそれぞれ第3図
(A)〜(D)および第4図(A)〜(D)に示す。図
中、A,B,C,Dはそれぞれ10分後、30分後、60分後、120分
後を示す。
FIGS. 3 (A) to 3 (D) and FIGS. 4 (A) to 4 (D) show the results of observation of the exudation of lead on the surfaces of the mechanically alloyed powder sintered material and the atomized powder sintered material, respectively. In the figure, A, B, C, and D indicate after 10, 30, 60, and 120 minutes, respectively.

メカニカルアロイング粉焼結材の鉛分布の細かいもの
は摺動時間で10分に満たないうちから摩擦面に鉛のしみ
出しがあり(第3図(A)参照)、それらが表面を流動
しながら近傍の鉛のしみだし流動につながり、次々にそ
のつながりが成長し摩擦方向に一本の筋となって現れ、
そのすじ模様が集まって次第に摩擦面全面のかなりの部
分を覆う縞模様に成長する(第3図(D)参照)。
In the case of a mechanically alloyed powder sintered material having a fine lead distribution, lead oozes out on the friction surface within a sliding time of less than 10 minutes (see Fig. 3 (A)), and they flow on the surface. However, it leads to the exudation and flow of lead in the vicinity, and the connection grows one after another and appears as a single line in the friction direction,
The streaks gather and gradually grow into stripes covering a substantial part of the entire friction surface (see FIG. 3 (D)).

これに対し、アトマイズ粉焼結材では摺動面の大部分
が銅地として露出しており、わずかにPbの筋が観察され
るのみである。その摺動表面から見たPbの筋の面積率は
多くても40%前後(30%PbとPbを多くした場合)までに
しかならない。
On the other hand, in the case of the atomized powder sintered material, most of the sliding surface is exposed as copper ground, and only a slight streak of Pb is observed. The area ratio of the Pb streaks viewed from the sliding surface is only about 40% at most (when 30% Pb and Pb are increased).

一方、本願の如くメカニカルアロイング焼結材では、
前述の如く摺動面のかなりの部分をPbで覆う。本願で
は、摺動面から見たPbの面積率が、摺動定常状態で略50
%〜約100%である。この面積率は配合されるPb量によ
り左右されるが、通常は80〜95%となることが多い。
On the other hand, in the mechanical alloying sintered material as in the present application,
As described above, a substantial part of the sliding surface is covered with Pb. In the present application, the area ratio of Pb viewed from the sliding surface is approximately 50 in the steady sliding state.
% To about 100%. Although this area ratio depends on the amount of Pb to be blended, it is usually 80 to 95% in many cases.

以上の観察結果から、鉛相が密集して存在することが
鉛のしみ出し面積を本質的に高め、摺動面の略全面を鉛
で被覆することに重要な役割を果たしていることが分か
る。このように鉛相を密集させるためには鉛の添加量、
鉛相の寸法および形状を本発明が定義するところにより
限定することが必要である。
From the above observation results, it can be understood that the dense presence of the lead phase essentially increases the area of lead exudation and plays an important role in covering substantially the entire sliding surface with lead. In order to concentrate the lead phase in this way, the amount of added lead,
It is necessary to limit the size and shape of the lead phase as defined by the present invention.

以下、実施例によりさらに詳しく本発明を説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

〔実施例〕〔Example〕

水アトマイズ法で作った30%鉛を含む銅鉛合金粉末を
ステンレス製ボールを用いた高エネルギー型ボールミル
(アトライタ)にかけ、50時間のメカニカルアロイング
を行って微細合金粉を作った。その組成は31.6%Pb,0.9
1%Sn,Fe<0.055,Ni<0.05%,Sb<0.05%、残部Cuであ
った。アトマイズ後の合金粉およびメカニカルアロイン
グ50時間後の合金粉の電子顕微鏡写真とEPMAによる鉛の
分布を調べた結果、メカニカルアロイング合金粉では、
鉛の分布をほとんど識別できないほどに組織が細かく均
一になっていた。
A copper-lead alloy powder containing 30% lead prepared by a water atomization method was applied to a high-energy ball mill (attritor) using stainless steel balls, and mechanically alloyed for 50 hours to produce a fine alloy powder. Its composition is 31.6% Pb, 0.9
1% Sn, Fe <0.055, Ni <0.05%, Sb <0.05%, and the balance was Cu. As a result of examining the distribution of lead by electron micrograph and EPMA of the alloy powder after atomization and the alloy powder 50 hours after mechanical alloying, the mechanical alloying powder was
The tissue was so fine and uniform that the lead distribution could hardly be discerned.

メカニカルアロイング合金粉のX線回折結果は銅相手
と鉛相ともに各格子面のピーク位置の変化は認められず
銅と鉛とが原子の置換を起こすほどの合金化は起こって
いないことを示した。
X-ray diffraction results of the mechanical alloying alloy powder show no change in the peak position of each lattice plane in both the copper counterpart and the lead phase, indicating that alloying has not occurred enough to cause the substitution of atoms between copper and lead. Was.

このようにして得た合金粉を4〜5トン/cm2の加圧力
直径13φ厚さ約3mmの円板形状の圧粉体にして、水素ガ
ス還元性雰囲気で700℃、60分間焼結し銅・鉛焼結体を
得た。
The alloy powder thus obtained is formed into a disc-shaped green compact having a pressing diameter of 4 to 5 ton / cm 2, a diameter of 13 φ and a thickness of about 3 mm, and sintered at 700 ° C. for 60 minutes in a hydrogen gas reducing atmosphere. A copper / lead sintered body was obtained.

メカニカルアロイングを行っていないアトマイズ合金
粉についても同じ条件で焼結体を作り比較材とした。
A sintered body was prepared under the same conditions for the atomized alloy powder not subjected to mechanical alloying, and used as a comparative material.

第1図、第2図はメカニカルアロイング合金粉の焼結
組織とアトマイズ合金粉の焼結組織の光学顕微鏡写真を
それぞれ示す。メカニカルアロイング粉の焼結組織が非
常に細かくなっており、アトマイズ粉焼結材はPbの網状
組織が見られる。これらの組織の画像解析にかけた結
果、鉛相の平均面積と平均粒径がメカニカルアロイング
法の焼結材の方がそれぞれおよそ1/3および1/8になって
いることがわかった。
1 and 2 show optical micrographs of the sintered structure of the mechanical alloying alloy powder and the sintered structure of the atomized alloy powder, respectively. The sintered structure of the mechanical alloying powder is very fine, and the atomized powder sintered material has a network structure of Pb. Image analysis of these structures revealed that the average area and average particle size of the lead phase were about 1/3 and 1/8, respectively, of the sintered material by the mechanical alloying method.

機械的特性としての代表として測定した硬さはメカニ
カルアロイング粉焼結材の方がアトマイズ粉焼結材より
高くなっており、Pb分散僧を微細にしたことによる強化
が認められる。
The hardness measured as a representative of the mechanical properties is higher in the mechanically alloyed powder sintered material than in the atomized powder sintered material, and the strengthening due to the finer Pb dispersion is observed.

また円筒平板試験機を用い、下記条件で摩擦係数およ
び摩耗量の測定を行った。
Further, the friction coefficient and the wear amount were measured under the following conditions using a cylindrical flat plate testing machine.

潤滑油:灯油バス 温度:室温 軸:S45C焼入れ材(直径45mm) 軸表面粗さ:Rz0.8μm 荷重:9kg 軸回転数:273rpm 速度:0.5m/sec 時間:126分 アトマイズ粉焼結材とメカニカルアロイング粉焼結材
の摩耗量を第5図に、30%Pb−Cuに対するPbのしみ出し
面積率を第6図にそれぞれ示す。摩耗量はアトマイズ粉
焼結材よりメカニカルアロイング粉焼結材の方が明らか
に少なくかつ定常状態でのしみだし面積率も極めて高く
なっている。
Lubricating oil: Kerosene bath Temperature: Room temperature Shaft: S45C hardened material (diameter 45mm) Shaft surface roughness: Rz 0.8μm Load: 9kg Shaft rotation speed: 273rpm Speed: 0.5m / sec Time: 126 minutes Atomized powder sintered material and mechanical FIG. 5 shows the amount of wear of the alloying powder sintered material, and FIG. 6 shows the exudation area ratio of Pb to 30% Pb-Cu. The wear amount of the mechanically alloyed powder sintered material is clearly smaller than that of the atomized powder sintered material, and the exudation area ratio in the steady state is extremely high.

したがって、メカニカルアロイング粉焼結材は耐摩耗
性に優れており、これは軸と軸受との間で固体接触が起
こると接触部で温度が上昇し鉛がしみ出し、摩耗を抑制
するためであると考えられる。
Therefore, the mechanical alloying powder sintered material has excellent wear resistance, because when solid contact occurs between the shaft and the bearing, the temperature rises at the contact part and lead exudes to suppress wear. It is believed that there is.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明の焼結材料の材料特性は低
摩耗量と高負荷能力に特長があり、また軸受使用中には
鉛等の軟質金属が軸受の接触面略全面を被覆することに
特長がある。よって本発明の摺動材料は高負荷・高出力
の内燃機関用軸受材料や境界潤滑領域で使用される軸受
材料として好適である。
As described above, the material characteristics of the sintered material of the present invention are characterized by low wear and high load capacity, and during use of the bearing, a soft metal such as lead covers almost the entire contact surface of the bearing. There are features. Therefore, the sliding material of the present invention is suitable as a bearing material for a high-load and high-output internal combustion engine or a bearing material used in a boundary lubrication region.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の焼結材料の金属組織を示す顕微鏡写
真、 第2図は従来の焼結材料の金属組織を示す顕微鏡写真、 第3図(A)〜(D)は本発明の摺動材料の摺動後の表
面のPbを観察した金属組織を示す顕微鏡写真、 第4図(A)〜(D)は本発明の摺動材料の摺動後の表
面のPbを観察した金属組織を示す顕微鏡写真、 第5図はメカニカルアロイング粉焼結材料とアトマイズ
粉焼結材料の摩耗量を示すグラフ、 第6図はメカニカルアロイング粉焼結材料とアトマイズ
粉焼結材料のPbのしみ出し面積率を示すグラフである。
FIG. 1 is a micrograph showing the metal structure of the sintered material of the present invention, FIG. 2 is a micrograph showing the metal structure of a conventional sintered material, and FIGS. 3 (A) to 3 (D) are the slides of the present invention. 4 (A) to 4 (D) are micrographs showing the metallographic structure of the sliding material of the present invention after observing the Pb on the surface after sliding. FIG. 5 is a graph showing the wear of the mechanically alloyed powder sintered material and the atomized powder sintered material, and FIG. 6 is the Pb stain of the mechanically alloyed powder sintered material and the atomized powder sintered material. It is a graph which shows a projection area ratio.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Pb,In,Bi,Tlから選択された一種以上の成
分を5〜60%含有し、残部がCuおよび不可避的不純物か
らなる焼結合金から構成され、前記Pb,In,Bi,Tlから選
択された少なくとも1種以上の成分が平均粒径10μm以
下の実質的に擬片状の微細粒子として分散していること
を特徴とする摺動材料。
1. A sintered alloy containing 5 to 60% of one or more components selected from Pb, In, Bi, and Tl, with the balance being Cu and unavoidable impurities. A sliding material wherein at least one component selected from the group consisting of Tl and Tl is dispersed as substantially quasi-flake-like fine particles having an average particle diameter of 10 µm or less.
【請求項2】Pb,In,Bi,Tlから選択された一種以上の成
分を5〜60%、およびSnを15%以下含有し、残部がCuお
よび不可避的不純物からなる焼結合金から構成され、前
記Pb,In,Bi,Tlから選択された少なくとも1種以上の成
分が平均粒径10μm以下の実質的に擬片粒子として分散
していることを特徴とする摺動材料。
2. A sintered alloy containing 5 to 60% of one or more components selected from Pb, In, Bi, and Tl and 15% or less of Sn and the balance of Cu and unavoidable impurities. A sliding material, wherein at least one or more components selected from the group consisting of Pb, In, Bi, and Tl are substantially dispersed as pseudo-piece particles having an average particle size of 10 μm or less.
JP2134183A 1990-05-25 1990-05-25 Sliding material Expired - Fee Related JP2918292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2134183A JP2918292B2 (en) 1990-05-25 1990-05-25 Sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2134183A JP2918292B2 (en) 1990-05-25 1990-05-25 Sliding material

Publications (2)

Publication Number Publication Date
JPH0428836A JPH0428836A (en) 1992-01-31
JP2918292B2 true JP2918292B2 (en) 1999-07-12

Family

ID=15122382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2134183A Expired - Fee Related JP2918292B2 (en) 1990-05-25 1990-05-25 Sliding material

Country Status (1)

Country Link
JP (1) JP2918292B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110020171A1 (en) * 2008-01-23 2011-01-27 Hitoshi Wada Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060870A (en) * 2000-08-24 2002-02-28 Taiho Kogyo Co Ltd Cu-Pb BASED COPPER ALLOY HAVING FINE LEAD STRUCTURE AND PLAIN BEARING FOR INTERNAL COMBUSTION ENGINE
JP2003136629A (en) * 2001-11-01 2003-05-14 Daido Metal Co Ltd Multilayered material and method for manufacturing multilayered material
AT413034B (en) 2003-10-08 2005-10-15 Miba Gleitlager Gmbh ALLOY, ESPECIALLY FOR A GLIDING LAYER
JP4476634B2 (en) 2004-01-15 2010-06-09 大豊工業株式会社 Pb-free copper alloy sliding material
JP4410612B2 (en) 2004-06-10 2010-02-03 大豊工業株式会社 Pb-free bearing for fuel injection pump
AT502506B1 (en) * 2006-03-30 2007-04-15 Miba Gleitlager Gmbh Slip bearing for truck engine crankshaft comprises silver, copper and bismuth, and is lead-free
AT503735B1 (en) * 2006-06-09 2008-05-15 Miba Gleitlager Gmbh COMPOSITE STOCK
KR20090028638A (en) 2006-08-05 2009-03-18 다이호 고교 가부시키가이샤 Lead-free copper alloy sliding material
EP2166117B1 (en) 2007-05-15 2014-12-10 Taiho Kogyo Co., Ltd Pb-free copper alloy sliding material and plain bearings
WO2010030031A1 (en) * 2008-09-10 2010-03-18 大豊工業株式会社 SLIDING COMPONENT CONSISTING OF Pb-FREE Cu-Bi TYPE SINTERED MATERIAL
JP5058276B2 (en) 2010-02-23 2012-10-24 大同メタル工業株式会社 Copper-based sliding material
JP5377557B2 (en) 2011-03-30 2013-12-25 大同メタル工業株式会社 Copper-based sliding material
JP5403636B2 (en) 2011-08-22 2014-01-29 大同メタル工業株式会社 Copper-based sliding material
JP5340355B2 (en) 2011-08-30 2013-11-13 大同メタル工業株式会社 Copper-based sliding material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110020171A1 (en) * 2008-01-23 2011-01-27 Hitoshi Wada Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material

Also Published As

Publication number Publication date
JPH0428836A (en) 1992-01-31

Similar Documents

Publication Publication Date Title
JP2918292B2 (en) Sliding material
JP3298634B2 (en) Sliding material
US9657777B2 (en) Wear resistant lead free alloy bushing and method of making
KR100814656B1 (en) Free copper alloy sliding material
KR101265391B1 (en) Pb-FREE COPPER ALLOY SLIDING MATERIAL AND PLAIN BEARINGS
JP2652866B2 (en) Sintered material for oil-impregnated bearing and method for producing the same
JP3373709B2 (en) Copper-based sliding bearing materials and sliding bearings for internal combustion engines
JP3839740B2 (en) Sliding material
US5346668A (en) Copper based alloy for wear resistant sliding layer and sliding member
US4406857A (en) Alloy for antifriction bearing layer and process of forming an antifriction layer on steel supporting strip
JP2532790B2 (en) Copper-lead alloy bearing with overlay
US5665480A (en) Copper-lead alloy bearing
JP3292445B2 (en) Sliding material with excellent wear resistance
JP3042539B2 (en) Sliding material
JP3298636B2 (en) Sliding material
JP3339780B2 (en) Sliding material with excellent wear resistance
JP2553374B2 (en) Sintered alloy material for oil-impregnated bearing and manufacturing method thereof
JP6363931B2 (en) Copper alloy for slide bearing
JP2505632B2 (en) Sliding material
JP2904355B2 (en) Manufacturing method of sintered sliding material
JPH0819945B2 (en) Multi-layer lead bronze bearing for high loads
JPS58113335A (en) Wear resistant sintered copper alloy with self-lubricity and its manufacture
JPS6253580B2 (en)
JP3838833B2 (en) Al-Bi based sintered bearing alloy and method for producing the same
JPS6316455B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees