JP3339780B2 - Sliding material with excellent wear resistance - Google Patents

Sliding material with excellent wear resistance

Info

Publication number
JP3339780B2
JP3339780B2 JP21672196A JP21672196A JP3339780B2 JP 3339780 B2 JP3339780 B2 JP 3339780B2 JP 21672196 A JP21672196 A JP 21672196A JP 21672196 A JP21672196 A JP 21672196A JP 3339780 B2 JP3339780 B2 JP 3339780B2
Authority
JP
Japan
Prior art keywords
powder
hard
hard material
base
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21672196A
Other languages
Japanese (ja)
Other versions
JPH1046272A (en
Inventor
正仁 藤田
康志 斎藤
Original Assignee
エヌデーシー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌデーシー株式会社 filed Critical エヌデーシー株式会社
Priority to JP21672196A priority Critical patent/JP3339780B2/en
Publication of JPH1046272A publication Critical patent/JPH1046272A/en
Application granted granted Critical
Publication of JP3339780B2 publication Critical patent/JP3339780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は耐摩耗性に優れる摺動材
料に係り、なかでも、自動車、産業機械、農業機械等に
使用されている摺動部材、ワッシャ−などの材料に適
し、特に耐摩耗性に優れ、苛酷な境界潤滑状態におい
て、有効な摺動材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding material having excellent abrasion resistance, and more particularly to a sliding material and a washer used for automobiles, industrial machines, agricultural machines, and the like. The present invention relates to a sliding material which has excellent wear resistance and is effective in severe boundary lubrication.

【0002】[0002]

【従来の技術】従来、ブシュ、ワッシャ−などとして使
用される摺動材料のうち、焼結合金から成る摺動材料
は、主として、青銅、鉛青銅などの焼結合金から成って
いる。これら合金は、潤滑油が存在する使用条件下では
良好な摺動特性を持っているが、潤滑油は存在しないか
ほとんど存在しない境界潤滑条件では異常摩耗や焼き付
きを起こす。
2. Description of the Related Art Conventionally, among sliding materials used as bushes, washers and the like, a sliding material made of a sintered alloy is mainly made of a sintered alloy such as bronze and lead bronze. These alloys have good sliding characteristics under use conditions in which lubricating oil is present, but cause abnormal wear and seizure under boundary lubricating conditions in which lubricating oil is absent or almost absent.

【0003】すなわち、鉛青銅などの焼結合金は、潤滑
性ならびになじみ性にすぐれるPbが全体にわたって分
散しているために、軸受材料又は摺動材料として使用す
ると、良好な潤滑性が保持される。しかし、潤滑条件が
苛酷な境界潤滑条件下では、耐摩耗性に問題があり、し
ばしば異常摩耗を引き起す事例も報告されている。
[0003] That is, in a sintered alloy such as lead bronze, Pb having excellent lubricity and conformability is dispersed throughout, so that when used as a bearing material or a sliding material, good lubricity is maintained. You. However, under severe boundary lubrication conditions, there is a problem in wear resistance, and cases of causing abnormal wear are often reported.

【0004】このようなところから、鉛青銅基地中に、
硬質物として、硬い化合物(Fe3Pなど)の粒子や、
Mo粉末またはCo粉末、更にNi基合金粉末の粒子を
点在させることによって耐焼付性や耐摩耗性を向上させ
ることが提案されている。(特公昭57−50844号
公報参照)。
[0004] From such a place, in the lead bronze base,
As a hard material, particles of a hard compound (such as Fe 3 P)
It has been proposed to improve the seizure resistance and wear resistance by interspersing particles of Mo powder, Co powder, and Ni-based alloy powder. (See Japanese Patent Publication No. 57-50844).

【0005】耐焼付性と耐摩耗性を兼備せしめるため
に、銅青銅基地中に、黒鉛粒子とNi−B化合物の粒子
とを添加した摺動材料が提案されている。(特開平4−
198440号公報参照)
[0005] In order to provide both seizure resistance and wear resistance, sliding materials have been proposed in which graphite particles and Ni-B compound particles are added to a copper bronze base. (JP-A-4-
(See JP-A-198440)

【0006】しかしながら、このような摺動材料におい
て硬質物として介在させる粒子は、主としてFe3Pや
NiBなどの化合物系粒子であり、結晶性が強いため、
形状は、破砕面がナイフエッヂのような鋭角の形をなす
ものである。このため、摺動材料のうちでも、自動車な
どの軸受として使用すると、軸受そのものの摩耗量が低
減できるが、かえって相手方の軸を摩耗させる。
However, the particles interposed as a hard material in such a sliding material are mainly compound-based particles such as Fe 3 P and NiB and have strong crystallinity.
The shape is such that the crushing surface forms an acute angle like a knife edge. For this reason, even when the sliding material is used as a bearing for an automobile or the like, the amount of wear of the bearing itself can be reduced, but the shaft of the partner is rather worn.

【0007】また、軸受として加工して摺動面を仕上げ
る場合、通常、切削加工により仕上げる。しかし、この
ような場合でも、あまり硬くなり過ぎると、超硬バイト
でも切削加工が出来ない。このため、切削加工には、ダ
イヤモンドバイトを使用しなければならず、このところ
が加工上の大きな問題点になっている。
[0007] When finishing the sliding surface by working as a bearing, it is usually finished by cutting. However, even in such a case, if it is too hard, cutting cannot be performed even with a carbide cutting tool. For this reason, a diamond tool must be used for cutting, which is a major problem in machining.

【0008】 すなわち、上記の摺動材料では、いずれ
も、添加される硬質物の粉末そのものが硬い。とくに、
硬質物の粉末が化合物であるか、ビッカ−ス硬さ(H
v)で1000以上を示すもののいずれかから成ってい
るため、硬さがあまりにも硬い硬質物の粉末が添加され
ていることとなる。また、このようなあまりにも硬い硬
質物の粉末は鉛青銅基地との焼結性も弱く、このため、
添加された硬質物の粉末が摩耗粉として脱落し、相手方
の軸を傷つけてしまう。
That is, in any of the above sliding materials, the powder of the hard substance to be added is hard. In particular,
Whether the powder of the hard material is a compound or Vickers hardness (H
Since it is made of any one of those which show 1000 or more in v), it means that a hard material powder having too high hardness is added. In addition, the powder of such a hard hard material has a weak sinterability with a lead bronze base, and therefore,
The added hard material powder falls off as wear powder and damages the shaft of the other party.

【0009】同時に、潤滑条件が直接相手方の軸と接触
する境界潤滑条件に達すると、相手方の軸の荷重は硬質
物の粉末によって受けることになる。このときにも、硬
質物の粉末と鉛青銅基地との焼結性が弱いことから、相
手方の回転軸と硬質物の粉末との間で摩擦熱が発生し、
この摩擦熱が放散しにくいことから、発熱が加速される
と、焼付に至る。
At the same time, when the lubrication condition reaches a boundary lubrication condition for directly contacting the mating shaft, the load on the mating shaft is received by the powder of the hard material. Also at this time, since the sinterability between the hard material powder and the lead bronze base is weak, frictional heat is generated between the counterpart rotating shaft and the hard material powder,
Since the frictional heat is difficult to dissipate, if heat generation is accelerated, seizure will result.

【0010】[0010]

【発明が解決しようとする課題】 本発明は上記欠点の
解決を目的とし、とくに、鉛青銅系焼結合金から成る基
地を構成する基地粉末の中に硬質物の粉末を添加介在さ
せて焼結して焼結軸受層を形成した摺動材料であって、
この添加する硬質物の粉末は、適切な硬度を与えるとと
もに、鉛青銅系焼結合金の基地に対し適切な焼結性を与
えるものとして構成し、境界潤滑下においても、より適
切な耐摩耗性が与えられ、軸受として使用できる摺動材
料を提供する。
DISCLOSURE OF THE INVENTION The present invention aims at solving the above-mentioned drawbacks, and in particular, sintering by adding a hard material powder to a base powder constituting a base made of a lead-bronze-based sintered alloy. A sliding material having a sintered bearing layer formed thereon,
The hard material powder to be added is configured to give appropriate hardness and appropriate sinterability to the base of the lead-bronze sintered alloy, so that even under boundary lubrication, more appropriate wear resistance is obtained. To provide a sliding material that can be used as a bearing.

【0011】 このような摺動材料であると、硬質物の
粉末として過剰な硬度を有する化合物系のものが添加さ
れることがなく、配合される硬質物の粉末は適切な硬さ
を有するため、相手方の軸をいためることがない。
With such a sliding material, a hard compound powder having an excessive hardness is not added as a hard material powder, and the compounded hard material powder has an appropriate hardness. , Do not hurt the other party's axis.

【0012】 また、添加される硬質物の粉末は、後に
のべるとおり、Co基合金という、合金系粉末であるか
ら、鉛青銅基地との焼結性も良好であり、摩擦熱の熱伝
達性も良く、軸受面での温度上昇もわずかである。
Further, since the powder of the hard material to be added is an alloy-based powder called a Co-based alloy, as described later, the sinterability with the lead-bronze matrix is good, and the heat transfer of frictional heat is also high. Good, temperature rise on the bearing surface is small.

【0013】[0013]

【課題を解決するための手段】 すなわち、本発明に係
る摺動材料は、鋼板の裏金と、この裏金の一方の面上に
基地粉末と硬質物の粉末との混合粉末を散布焼結して一
体に設けた焼結軸受層と、から成る摺動材料であって、
焼結軸受層において硬質物の粉末は混合粉末全体を10
0質量%として0.5〜20質量%を含み、基地粉末は
1〜30質量%Pb、1〜15質量%Snならびに残部
Cuから成る鉛青銅合金であって、硬質物の粉末は1
6.5〜18.5質量%Cr、27〜30質量%Mo、
3.0〜4.0質量%Siならびに残部CoからなるC
o基合金であることを特徴とする。
That is, the sliding material according to the present invention is obtained by spraying and sintering a mixed powder of a base powder and a hard material powder on a back metal of a steel plate and on one surface of the back metal. And a sintered bearing layer provided integrally,
The powder of the hard material in the sintered bearing layer is 10
0.5 to 20% by mass as 0% by mass, and the base powder is a lead-bronze alloy comprising 1 to 30% by mass Pb, 1 to 15% by mass Sn and the balance Cu, and the hard material powder is 1% by mass.
6.5 to 18.5 mass% Cr, 27 to 30 mass% Mo,
C consisting of 3.0 to 4.0 mass% Si and the balance Co
It is an o-based alloy.

【0014】更に詳しく説明すると、先に示した通り、
従来提案されてきた硬質物の粉末は主として化合物系で
あり、いずれもきわめて硬い硬さ、ちなみにHvで10
00以上を有しているし、MoやCoなどの粉末はHv
で200〜500程度で硬さが低く、境界潤滑条件で適
切な性能を達成できない。
More specifically, as described above,
Conventionally proposed hard material powders are mainly of compound type, and all have extremely hard hardness.
00 or more, and powder such as Mo or Co
, The hardness is low at about 200 to 500, and an appropriate performance cannot be achieved under boundary lubrication conditions.

【0015】硬い化合物系粉末でも、粒子そのものは、
化合物系のインゴットを粉砕した結果得られるものであ
るから、形状は、鋭角なエッヂシェイプを示す。
[0015] Even with a hard compound-based powder, the particles themselves are:
Since it is obtained as a result of crushing a compound-based ingot, the shape shows a sharp edge shape.

【0016】そこで、本発明においては、相手方の軸を
傷つけず、かつその軸に対して適切な形状、硬さを有し
耐摩耗性に優れる硬質物の粉末として金属系合金粉末を
選定した。
Therefore, in the present invention, a metal alloy powder is selected as a hard material powder which does not damage the shaft of the counterpart, has an appropriate shape and hardness with respect to the shaft, and has excellent wear resistance.

【0017】これに併せて、硬質物の粉末として、軸受
面の温度上昇を防止し、熱放散性を高めるために、鉛青
銅基地に対する焼結性を配慮した。
At the same time, in order to prevent the temperature of the bearing surface from rising and to enhance the heat dissipation as a hard material powder, consideration was given to the sinterability of the lead bronze base.

【0018】 この結果、添加すべき硬質物の粉末とし
ては、化合物系のものとしては構成せずに、合金系のも
のとして構成する。この組成の合金は、Co−Mo−C
r系合金、なかでも、16.5〜18.5質量%Cr、
27〜30質量%Mo、3.0〜4.0質量%Si、残
部Coから成る合金、ちなみに、17.5質量%Cr、
28質量%Mo、3.4質量%Siならびに残部Coか
ら成る合金が適切であることがわかった。なお、以下に
おいて質量%は単に%として示す。
As a result, the hard material powder to be added is not constituted as a compound-based powder, but is constituted as an alloy-based powder. An alloy of this composition is Co-Mo-C
r-based alloys, in particular, 16.5 to 18.5 mass% Cr,
An alloy consisting of 27 to 30% by mass Mo, 3.0 to 4.0% by mass Si, and the balance Co. Incidentally, 17.5% by mass Cr,
An alloy consisting of 28% by weight Mo, 3.4% by weight Si and the balance Co has been found to be suitable. In the following, mass% is simply shown as%.

【0019】更に、この合金系の硬質物の粉末の形状と
しては、丸みを帯びた形状とし、このような形状の粉末
は、アトマイズ法によって製造するのがきわめて適切で
あった。
Further, the shape of the powder of the alloy-based hard material is a rounded shape, and it is extremely appropriate to manufacture the powder having such a shape by an atomizing method.

【0020】ちなみに、28%Mo−17.5%Cr−
3.4%Si−残部CoのCo基合金の粉末であると、
硬度はHv(ビッカ−ス硬度)で800であって、硬
さ、焼結性など上記の条件が充足できる。
By the way, 28% Mo-17.5% Cr-
When it is a Co-based alloy powder of 3.4% Si-balance Co,
The hardness is 800 in Hv (Vickers hardness), and the above conditions such as hardness and sinterability can be satisfied.

【0021】 そこで、23%Pb−2%Sn−残部C
uの鉛青銅合金から成る基地粉末の中に、硬さHv(ビ
ッカ−ス硬度)1350迄の硬質物の粉末を同じ割合で
配合して、焼結軸受層から成る摺動材料をつくり、この
摺動材料について、硬質物の粉末の硬さHvと相手方の
軸の摩耗量(μm)との間の関係を求めたところ、図5
に示す結果が得られた。
Therefore, 23% Pb-2% Sn-balance C
In a base powder composed of a lead-bronze alloy of u, a powder of a hard material having a hardness of up to Hv (Vickers hardness) of 1350 is blended in the same ratio to prepare a sliding material composed of a sintered bearing layer. For the sliding material, the relationship between the hardness Hv of the powder of the hard material and the wear amount (μm) of the mating shaft was determined.
The result shown in FIG.

【0022】なお、この摩耗試験の条件は、表1に示
し、硬質物の粉末としては、従来例の化合物系粉末の硬
さはことごとく硬さHvが1000以上であるので、硬
さHv1000以上のものとしては、化合物系粉末を用
いた。硬さHv1000以下のものは、Cr−Mo−S
i−Co系の合金の粉末、Hv500以下のものはMo
やCoなどの単体粉末を用いた。
The conditions of the abrasion test are shown in Table 1. As a hard powder, the hardness of the compound powder of the conventional example is 1000 or more. As the material, a compound-based powder was used. Those with a hardness of Hv 1000 or less are Cr-Mo-S
i-Co based alloy powder, Hv 500 or less is Mo
A simple powder such as Co or Co was used.

【0023】 図5では、横軸に添加した硬質物の粉末
の硬度をとり、縦軸は軸受と軸の摩耗量をとり、符号
(イ)の線で焼結軸受層における硬質物の粉末硬度と摩
耗量の関係、(ロ)の線で相手方の軸における硬質物の
粉末硬度と摩耗量の関係を示す。なお、相手方の軸の硬
さは、図5において(ハ)で示す領域にある。
In FIG. 5, the abscissa indicates the hardness of the powder of the hard material added, the ordinate indicates the wear amount of the bearing and the shaft, and the line (a) indicates the powder hardness of the hard material in the sintered bearing layer. The line (b) shows the relationship between the powder hardness of the hard material and the amount of wear on the counterpart shaft. Note that the hardness of the shaft of the other party is in a region indicated by (c) in FIG.

【0024】 図5において、表1に示すテスト条件で
摩耗試験すると、Hv1000を超えるような化合物系
硬質物の粉末を5%添加すると、(ロ)の線で示される
推移から明らかなように、試験時間100時間の長時間
の摩耗テストで相手方の軸が相当摩耗し、なかでも、硬
さ(Hv)850を境として摩耗量が急速に増加するこ
とがわかった。
In FIG. 5, when an abrasion test is performed under the test conditions shown in Table 1, when 5% of a powder of a compound-based hard material exceeding Hv1000 is added, as is clear from the transition shown by the line (b), A long-term wear test with a test time of 100 hours showed that the mating shaft was considerably worn, and that the amount of wear increased rapidly, especially at a hardness (Hv) of 850.

【0025】 これに対し、摺動材料の焼結軸受層で
は、(イ)の線で示される推移によって明らかなよう
に、硬質物の粉末の硬さが増加すると、それに伴って摩
耗量は減少している。
On the other hand, in the sintered bearing layer of the sliding material, as the hardness of the powder of the hard material increases, the wear amount decreases with the increase in the hardness of the hard material powder, as is apparent from the transition shown by the line (a). are doing.

【0026】このように検討したところ、軸受として摩
耗しにくく、その上、相手方の軸を摩耗させないため、
つまり、互いに相容れない条件をバランスさせるのに
は、硬質物の粉末は、硬さはHvで750〜850程度
が有効で適切である。
As a result of the examination, it is found that the bearing is hardly worn, and that the other shaft is not worn.
That is, in order to balance the mutually incompatible conditions, it is effective and appropriate that the hardness of the hard material powder is about 750 to 850 in Hv.

【0027】また、硬質物の粉末は、このような条件の
ほかに、基地との焼結性、なかでも、Pbを含んで、残
部がCu−Snから成る鉛青銅基地との間で焼結性を高
めることが必要である。
In addition to the above conditions, the powder of the hard material is sintered with the lead bronze base, which contains Pb, with the balance being Cu-Sn. It is necessary to improve the nature.

【0028】すなわち、図3ならびに図4は、硬質物の
粒子として化合物系硬質物の粒子が配合されたものであ
って、これからも焼結性が悪く、放熱性に問題があるこ
とがわかる。すなわち、図3ならびに図4においては、
1は相手方の軸、2は硬質物の粉末、3はPb相、4は
基地、5は鋼の裏金、6は熱流を示す。硬質物の粉末2
と基地4との間の焼結性が悪い場合、硬質物の粉末2の
周りに低融点のPb相3によって囲まれていることにな
り、硬質物の粉末2が、Pb相3が溶融又は軟化したプ
−ルの中に浮いているような状態になる。
That is, FIGS. 3 and 4 show that compound-based hard particles are blended as the hard particles, and it can be seen from this that the sinterability is poor and there is a problem in heat dissipation. That is, in FIGS. 3 and 4,
Reference numeral 1 denotes a shaft of the other party, 2 denotes a powder of a hard material, 3 denotes a Pb phase, 4 denotes a matrix, 5 denotes a steel backing, and 6 denotes a heat flow. Hard material powder 2
When the sinterability between the base material 4 and the base material 4 is poor, the hard material powder 2 is surrounded by the low melting point Pb phase 3, and the hard material powder 2 is melted or melted by the Pb phase 3. It becomes like floating in a softened pool.

【0029】この状態であると、相手方の軸1と硬質物
の粉末2の間で発生した摩擦熱の熱流6は、Pb相3を
介して基地4の中に放熱しなければならない。
In this state, the heat flow 6 of the frictional heat generated between the mating shaft 1 and the hard powder 2 must be radiated into the matrix 4 via the Pb phase 3.

【0030】 とくに、Pb相3の熱伝導率はCu基地
の1/10以下と悪い。このため、この悪い熱伝導が障
壁になり、熱放散は大巾に低下する。
In particular, the thermal conductivity of the Pb phase 3 is as poor as 1/10 or less of that of the Cu base. Thus, this poor heat conduction becomes a barrier and heat dissipation is greatly reduced.

【0031】ちなみに、Pb相3の熱伝導率は0.08
2cal/cm・deg・secであり、基地4中のC
uの熱伝導率は0.94cal/cm・deg・sec
である。
Incidentally, the thermal conductivity of Pb phase 3 is 0.08
2 cal / cm · deg · sec, C in base 4
u has a thermal conductivity of 0.94 cal / cm · deg · sec
It is.

【0032】これに対し、本発明のように、基地4中に
硬質物の粉末2としてCr−Mo−Si−Co合金の粉
末が配合され、この硬質物の粉末2が基地4に対して十
分に焼結されている場合は、図1ならびに図2に示され
るようになる。なお、図1ならびに図2の各符号は図3
ならびに図4と同等のものを示す。
On the other hand, as in the present invention, a powder of a Cr—Mo—Si—Co alloy is blended as the hard powder 2 in the matrix 4, and the hard powder 2 is sufficiently mixed with the matrix 4. 1 and FIG. 2. 1 and 2 are the same as those in FIG.
4 and those equivalent to FIG.

【0033】この場合は、基地4に対して硬質物の粉末
2が十分に焼結されていることもあって、各粉末2の粒
子の周囲にはPb相3の存在が少なく、摩擦熱による熱
流6はスム−ズに基地4ならびに裏金5へ放散され、表
面の温度上昇を抑えることが出来る。
In this case, since the hard powder 2 is sufficiently sintered with respect to the matrix 4, the presence of the Pb phase 3 around the particles of each powder 2 is small, and The heat flow 6 is smoothly dissipated to the base 4 and the back metal 5 to suppress a rise in surface temperature.

【0034】とくに、境界潤滑下では、この特性はきわ
めて重要で潤滑油が乏しい場合や、潤滑油の粘度が低い
場合は、硬質物の粉末と相手方の軸との間の発熱量も大
きくなり、潤滑油による熱の放散も期待出来なくなる。
このことから、基地への熱放散性は重要な意味をもって
いる。
In particular, under boundary lubrication, this property is extremely important, and when the lubricating oil is poor or the viscosity of the lubricating oil is low, the calorific value between the hard material powder and the counterpart shaft also increases, Dissipation of heat by lubricating oil cannot be expected.
Therefore, heat dissipation to the base is important.

【0035】また、軸受の寿命としても、放熱性が良い
場合は、Pb相の表面における消耗も少なくなり、安定
した潤滑状態を保つことが出来る。
In addition, when the bearing has good heat dissipation, the wear on the surface of the Pb phase is reduced and a stable lubricating state can be maintained.

【0036】すなわち、基地と硬質物の粉末の各粒子と
焼結性は、熱の放散性という観点からは密接な関係があ
る。このところは、硬質物の粒子の基地に対する焼結性
は、キャビテ−ションテストを施すことで確認すること
が出来る。
That is, the matrix, the particles of the hard material powder, and the sinterability have a close relationship from the viewpoint of heat dissipation. Here, the sinterability of the hard particles to the matrix can be confirmed by performing a cavitation test.

【0037】以上のべた様に、添加する硬質物の粉末と
しては、次の条件を持っていることが必要である。 (1)、硬質物の粉末の硬さがHvで750〜850程
度であること、(2)、基地との焼結性が良いこと、
(3)、なお、このほかに、硬質物の粉末の形状が丸み
を帯びた形であることが好ましい。
As described above, the hard material powder to be added must satisfy the following conditions. (1) that the hardness of the hard material powder is about 750 to 850 in Hv, (2) that the sinterability with the matrix is good,
(3) In addition, it is preferable that the shape of the hard material powder be rounded.

【0038】 これに併せて、これらの条件を満足する
硬質物の粉末として、Co基合金、なかでも、Co−M
o−Cr−Si系合金、とくに、16.5〜18.5%
Cr、27〜30%Mo、3.0〜4.0%Siならび
に残部Coから成る硬質物の粉末が適切である。
In addition, as a hard material powder satisfying these conditions, a Co-based alloy, in particular, Co-M
o-Cr-Si based alloy, especially 16.5 to 18.5%
A hard powder composed of Cr, 27 to 30% Mo, 3.0 to 4.0% Si, and the balance Co is suitable.

【0039】また、硬質物の粉末は、上記のように、球
状、球状に近く、更に、一部に丸味がある形状に調整す
るのが好ましいが、粉末の粒径は100μm若しくはそ
れ以下に調整するのが好ましい。この粒径であると、1
00μm以上のものに較べると、分散性が向上し、添加
量が少なくとも、耐摩耗性を一層向上させることができ
る。
As described above, the hard material powder is preferably adjusted to have a spherical shape, a shape close to a spherical shape, and a partially round shape, but the particle size of the powder is adjusted to 100 μm or less. Is preferred. With this particle size, 1
Compared with those having a particle size of 00 μm or more, the dispersibility is improved, and at least the amount of addition can further improve the abrasion resistance.

【0040】 次に、各成分元素の含有量限定理由につ
いて、焼結軸受層の基地を構成する基地粉末とこの基地
粉末に配合される硬質物の粉末とに分けて説明すると、
つぎのとおりである。
Next, the reasons for limiting the content of each component element will be described separately for the base powder constituting the base of the sintered bearing layer and the powder of the hard material mixed with this base powder.
It is as follows.

【0041】 1.基地粉末、 基地粉末は鉛青銅合金の粉末であって、その合金の組成
は1〜30%Pb、1〜15%Snを含み、残部がCu
から成っている。 Pb(1〜30%) Pbは軟質成分であって潤滑性に寄与し、なかでも、潤
滑油がほとんど存在しない境界潤滑などのときには、焼
結軸受層の基地中においてPb相を多くすることによっ
て摩耗量を低減できる。しかし、Pb1%未満では、添
加の効果はない。Pb30%を超えると、合金強度が低
下するほか、あまり、Pbが多いと、摺動時に溶融し、
上記の通り、Pb相のプ−ルを生成する可能性があり、
このため、30%以下が好ましい。 Sn(1〜15%) SnはCuと合金化し、焼結軸受層の基地強度を高め
る。Sn1%未満ではその効果は少なく、Sn15%を
超えると、Cu−Sn化合物を生成して、脆弱になるほ
か、この化合物が基地中においてきわめて硬い硬質物の
粉末を配合した場合と同じ挙動を示し、Sn15%以下
が好ましい。
1. The base powder is a powder of a lead bronze alloy, and the composition of the alloy contains 1 to 30% Pb and 1 to 15% Sn, and the balance is Cu.
Consists of Pb (1 to 30%) Pb is a soft component and contributes to lubricity. In particular, in the case of boundary lubrication where almost no lubricating oil is present, by increasing the Pb phase in the matrix of the sintered bearing layer The amount of wear can be reduced. However, if the content of Pb is less than 1%, there is no effect of the addition. If the content of Pb exceeds 30%, the alloy strength decreases, and if the content of Pb is too large, it melts during sliding,
As described above, there is a possibility that a pool of the Pb phase is generated,
For this reason, 30% or less is preferable. Sn (1 to 15%) Sn alloys with Cu to increase the matrix strength of the sintered bearing layer. If Sn is less than 1%, the effect is small. If Sn exceeds 15%, a Cu—Sn compound is generated and becomes brittle. In addition, this compound shows the same behavior as when a very hard hard material powder is compounded in a matrix. , Sn 15% or less.

【0042】 2.硬質物の粉末(焼結軸受層を構成す
る混合粉末の全体を100%として0.5〜20%配合
する)、 この硬質物の粉末は、先にのべたとおり、Co−Mn−
Cr系のCo基合金の粉末であって、Cr、Moおよび
Siを含むCo基合金である。(段落[0012]およ
び[0018]参照)この粉末の各粒子においては、C
o基地中でCr、Mo、SiおよびCo基地の一部のC
oは硬質相、すなわち、析出硬質相として析出してお
り、この硬質相の硬さ(Hv)は1100程度である。
このように硬質物の粉末は硬さ(Hv)1000程度の
硬質相が析出されている合金であるから、硬質物の粉末
の硬さ(Hv)は、先にのべたとおり、800程度とな
り、(段落[0020]参照)適切な硬さを与え、併せ
て良好な焼結性を与える。 Cr(16.5〜18.5%) Crは、Co基地中で先にのべた硬さ(Hv)1000
程度の硬質相を生成する成分である。しかし、Crがあ
まり多いと、この硬い析出硬質相が多くなると、硬質物
の粉末の硬さが硬くなり過ぎる。このところから、硬質
物の粉末の硬さ(Hv)750〜850に保つのには、
他の成分とのバランスから16.5〜18.5%が適切
である。また、硬化物の粉末は焼結軸受層の粉末全体を
100%として20%まで配合すると、摺動材料として
あまり硬くなり過ぎて好ましくないので、それ以下配合
する。 Mo(27〜30%) MoはCrおよびCoと共に先にのべた硬さ(Hv)1
000程度の硬質相を生成し、併せて焼結軸受層の鉛青
銅合金基地の基地硬さの向上にも寄与し、この鉛青銅合
金基地との焼結性を向上させる。このため、他の成分と
のバランスから、適切な硬さや焼結性などの上から、2
7〜30%が好ましい。 Si(3.0〜4.0%) SiはCo合金の溶製の時のフラックスとして使われ、
高温(1900℃〜2000℃)の溶製時のCoの酸化
をおさえるのにどうしても必要である。したがって、C
o合金溶製時にどうしてもSiは溶入し、Co合金では
Siのある程度の溶入はどうしてもまぬがれない。一
方、Siは硬化成分と知られるが、Siだけの単相によ
る硬化の程度は、先にのべたCr、MoおよびCoとと
もに硬さ1000程度の析出硬質相の析出による場合に
較べるとやや低い。しかしながら、Siが溶入されてい
ると、Siは焼結性に寄与する。この点、Si3.0〜
4.0%の範囲では、Coとの化合物も生成せず、硬さ
(Hv)750〜850の範囲に保つのに適切であり、
Siの混入を3.0〜4.0%の範囲内におさえる溶製
であると、Co合金の溶製も支障なくできる。 Co残部 Coは他の成分に較べるときわめて高価であり、なるべ
く少ないのが望ましい。しかし、先にのべたとおり、C
rやMoがCo基地において硬さ(Hv)1000程度
の析出硬質相を生成して耐摩耗性を与え、良好な焼結性
も与える上からは、Coベ−ス成分とするのが好まし
い。
[0042] 2. Hard material powder (0.5 to 20% is mixed with 100% of the mixed powder constituting the sintered bearing layer), and the hard material powder is Co-Mn-
Cr-based Co-based alloy powder, which is a Co-based alloy containing Cr, Mo and Si. (See paragraphs [0012] and [0018]) In each particle of this powder, C
o Cr in the base, Mo, Si and some C in the Co base
o is precipitated as a hard phase, that is, a precipitated hard phase, and the hardness (Hv) of the hard phase is about 1100.
Since the hard material powder is an alloy in which a hard phase having a hardness (Hv) of about 1000 is precipitated, the hardness (Hv) of the hard material powder is about 800, as described above, (See paragraph [0020].) Gives appropriate hardness and also good sinterability. Cr (16.5 to 18.5%) Cr has a first solid hardness (Hv) of 1000 in a Co matrix.
It is a component that produces a hard phase of a certain degree. However, when the amount of Cr is too large, when the amount of the hard precipitated hard phase increases, the hardness of the powder of the hard material becomes too hard. From this point, in order to keep the hardness (Hv) of the hard material powder at 750 to 850,
From a balance with other components, 16.5 to 18.5% is appropriate. If the powder of the hardened material is mixed up to 20% with the whole powder of the sintered bearing layer being 100%, it becomes too hard as a sliding material, which is not preferable. Mo (27 to 30%) Mo has a solid hardness (Hv) of 1 together with Cr and Co.
Approximately 000 hard phases are generated, and also contribute to the improvement of the base hardness of the lead-bronze alloy base of the sintered bearing layer, and the sinterability with this lead-bronze alloy base is improved. For this reason, from the viewpoint of balance with other components, appropriate hardness and sinterability, etc.,
7-30% is preferred. Si (3.0-4.0%) Si is used as a flux when melting a Co alloy,
It is absolutely necessary to prevent oxidation of Co during melting at a high temperature (1900 ° C. to 2000 ° C.). Therefore, C
When smelting an o-alloy, Si inevitably penetrates, and in a Co alloy, some infiltration of Si is inevitable. On the other hand, although Si is known as a hardening component, the degree of hardening by a single phase of Si alone is slightly lower than that by the precipitation of a hard phase having a hardness of about 1000 together with the above-mentioned Cr, Mo and Co. However, when Si is introduced, Si contributes to sinterability. In this regard, Si 3.0 to 3.0
In the range of 4.0%, a compound with Co is not formed, and the hardness (Hv) is suitable to be kept in a range of 750 to 850,
If the smelting is such that the mixing of Si is within the range of 3.0 to 4.0%, the smelting of the Co alloy can be performed without any trouble. Co balance Co is extremely expensive compared to other components, and it is desirable that Co be as small as possible. However, as mentioned earlier, C
From the viewpoint that r and Mo form a precipitated hard phase having a hardness (Hv) of about 1000 on the Co base to give wear resistance and also provide good sinterability, it is preferable to use a Co base component.

【0043】 以上の通りの組成の硬質物の粉末はその
ものとして、焼結軸受層を構成する粉末全体を100%
として0.5〜20%配合する。
The powder of the hard material having the composition as described above is 100% of the entire powder constituting the sintered bearing layer.
0.5 to 20%.

【0044】 すなわち、硬質物の粉末は、0.5%未
満の添加ではその効果はない。20%を超えると、基地
中に硬質物の粒子が連結して存在するようになり、基地
自体の焼結性を阻害し、さらに、先にのべたとおり、摺
動材料として焼結軸受層の硬さがあまり硬くなり過ぎ
る。
That is, the effect of the hard powder is less than 0.5% when the addition is less than 0.5%. If it exceeds 20%, the particles of the hard material will be present in the matrix in a linked manner, impairing the sinterability of the matrix itself. The hardness is too hard.

【0045】また、硬質物の粉末の粒度は50μm以下
の粉末粒度にすることが必要である。
It is necessary that the particle size of the powder of the hard material be 50 μm or less.

【0046】すなわち、摺動材料として軸受面の仕上げ
加工性ならびに性能は硬質物の粉末の粒度に依存する。
例えば、硬質物の添加量が同一であっても、粗粒(15
0〜50μm)のものに比べ、細粒、なかでも50μm
以下にすると、硬くても軸摩耗量が減少し、硬質物の粉
末の分散性は一層向上し、結果的に、この分散性の向上
が耐摩耗性の向上につながる。
That is, the finish workability and performance of the bearing surface as a sliding material depend on the particle size of the hard material powder.
For example, even if the addition amount of the hard material is the same, the coarse particles (15
0-50 μm), compared with those of fine particles, especially 50 μm
In the following, even if the material is hard, the amount of shaft wear is reduced, and the dispersibility of the powder of the hard material is further improved. As a result, the improvement in the dispersibility leads to the improvement in wear resistance.

【0047】この点について更に詳しく説明すると、硬
質物の粉末の粒径が粗い場合には、軸受層の内面仕上げ
加工(要するに、通常の機械加工)において、どうして
も、表面粗さ(Ra)は1.0〜1.2μmとなる。こ
れに対し、細粒(50μm以下)の場合は、表面粗さ
(Ra)が0.5〜0.3μmになり、平滑度は大巾に
向上する。
To explain this point in more detail, when the particle diameter of the hard material powder is coarse, the surface roughness (Ra) is inevitably 1 in the inner surface finishing of the bearing layer (that is, ordinary machining). 0.0 to 1.2 μm. On the other hand, in the case of fine grains (50 μm or less), the surface roughness (Ra) is 0.5 to 0.3 μm, and the smoothness is greatly improved.

【0048】このところについて、図6ならびに図7に
示す軸受層表面の拡大写真を見ると、硬質物の粉末の粗
い場合は(図6参照)、基地と添加される硬質物の粉末
粒子との間にすき間が見られ、更に、機械加工によるバ
イトの切削時に、硬質物の粒子が変形を受けた形跡がみ
られる。これに対し、細粒の硬化物の粉末を添加した場
合には、硬質物の粉末は緻密に基地中に埋収されてお
り、有効な仕上げ状態になってきわめて平滑な軸受面が
得られる。
Referring to enlarged photographs of the surface of the bearing layer shown in FIGS. 6 and 7, when the hard material powder is coarse (see FIG. 6), the base material and the added hard material powder particles are mixed. There is a gap between them, and further, there is evidence that the hard material particles have been deformed during cutting of the cutting tool by machining. On the other hand, when fine-grained hardened material powder is added, the hard material powder is densely buried in the matrix, resulting in an effective finished state and an extremely smooth bearing surface.

【0049】[0049]

【実施例】まず、表2に示される通り、摺動材料No.
1〜No.12を用意した。各摺動材料は基地を成す基
地粉末中に、硬質物の粉末2.5〜10%を配合して全
体として100%に成る様に混合し、裏金を成す鋼板上
にこの混合粉末を所定厚さに散布した。
First, as shown in Table 2, sliding material Nos.
1 to No. 12 were prepared. Each sliding material is mixed with 2.5 to 10% of a hard material powder in a base powder forming a base and mixed so as to make a total of 100%, and the mixed powder having a predetermined thickness is formed on a steel plate forming a backing metal. I sprayed it.

【0050】それを水素雰囲気中で温度700〜900
℃にて10〜30分加熱焼結した。
It is heated in a hydrogen atmosphere at a temperature of 700-900.
C. for 10 to 30 minutes.

【0051】なお、表2に示す硬質物の粉末において、
摺動材料No.1〜6の硬質物の粉末は、いずれも、C
o系粉末であって、その組成は28%Mo−17.5%
Cr−3.5%Si−残部Coから成って、これら各成
分はCo基地中に硬質相を析出し、粒径は50μm以下
である。また、摺動材料No.7〜12はいずれも比較
例を示し、摺動材料No.7ならびに10は硬質物の粉
末としてNi−Bの化合物粉末を配合し、摺動材料N
o.8ならびに11は硬質物の粉末としてFe3Pの化
合物粉末を配合し、摺動材料No.9ならびに12は硬
質物の粉末が添加されていない。
In the powder of the hard material shown in Table 2,
Sliding material No. The hard material powders of 1 to 6 are all C
o-based powder, the composition of which is 28% Mo-17.5%
Each of these components precipitates a hard phase in the Co matrix and has a particle size of 50 μm or less. In addition, the sliding material No. 7 to 12 show comparative examples, and sliding material Nos. 7 and 10 are compounded with Ni-B compound powder as a hard material powder,
o. Nos. 8 and 11 are compounded with a compound powder of Fe 3 P as a hard material powder. Nos. 9 and 12 do not contain a hard powder.

【0052】このように焼結によって得られた各焼結体
について、圧延、再焼結ならびに圧延の各処理を施し、
摺動材料No.1〜12を得た。
Each of the sintered bodies obtained by sintering is subjected to rolling, re-sintering and rolling,
Sliding material No. 1-12 were obtained.

【0053】これら処理のうちで、圧延とはロ−ル圧延
であり、密度を100%まで上げた。再焼結は、700
〜900℃の温度で、より強固な基地をつくるために行
なったものである。
In these treatments, rolling is roll rolling, and the density was increased to 100%. Resintering is 700
This was performed at a temperature of 〜900 ° C. to make a stronger base.

【0054】このように得られた各摺動部材の厚さは
2.20mmであり、これら材料を用いて摩擦摩耗特性
を調査するために、内径20mm、長さ20mm、厚さ
2.0mmのブシュをつくり、摩耗試験した。
The thickness of each sliding member obtained in this manner is 2.20 mm. In order to investigate the friction and wear characteristics using these materials, the sliding member having an inner diameter of 20 mm, a length of 20 mm and a thickness of 2.0 mm was used. A bush was made and tested for wear.

【0055】この摩耗試験の試験条件は表3に示す通り
である。
The test conditions for this wear test are as shown in Table 3.

【0056】この摩耗試験においては、軽油を潤滑油と
して用い、境界潤滑に近いテスト条件とし、軸受の摩耗
量相手方の軸の摩耗量、更に、軸受の背面温度を測定し
た。この測定結果は、表2に示す。
In this wear test, light oil was used as a lubricating oil, and under the test conditions close to boundary lubrication, the amount of wear of the bearing, the amount of wear of the mating shaft, and the back surface temperature of the bearing were measured. Table 2 shows the measurement results.

【0057】硬質物の粉末として、Co系合金粉末を使
用した各摺動材料No.1〜6(本発明に係るもの)
は、基地の組成にかかわらず、相手方の軸の摩耗も少な
いほか、軸受層の摩耗も1.0〜3.7μmという低摩
耗量を示し、背面温度も60〜75℃であって、比較例
No.7〜12に較べて、熱放散性が良好ですぐれた結
果を示した。
Each of the sliding materials No. using Co-based alloy powder as the hard material powder was used. 1 to 6 (according to the present invention)
Shows that the wear of the mating shaft is low, the wear of the bearing layer is as low as 1.0 to 3.7 μm, and the back surface temperature is 60 to 75 ° C. regardless of the composition of the matrix. No. As compared with 7 to 12, the heat dissipation was good and excellent results were shown.

【0058】更に、表2には示されていないが、硬質物
の粉末であるCo系合金粉末において、Crを8%、S
iを2.5%まで低減させ、これらの粉末を添加配合し
た。この摺動材料であると、軸受側の摩耗量は1.0〜
2.0μm更に増加し、背面温度も最大で12℃高くな
った。
Further, although not shown in Table 2, in the Co-based alloy powder, which is a hard material powder, 8% Cr and S
i was reduced to 2.5%, and these powders were added and blended. With this sliding material, the amount of wear on the bearing side is 1.0 to
The back surface temperature was further increased by at most 12 ° C. by 2.0 μm.

【0059】また、基地をみると、Pb相の多い基地と
した方が、摩耗量も少なく、更に、比較例としての摺動
材料No.7、8においては、基地中のPb相が多くな
っているのにも拘らず、Pb相の少ない本発明の摺動材
料No.5に較べて、軸受摩耗量も多く、本発明に係る
ものがすぐれていることがわかる。
Looking at the matrix, the matrix having a larger Pb phase has a smaller amount of wear, and the sliding material No. as a comparative example. In Nos. 7 and 8, although the Pb phase in the matrix was increased, the sliding material No. of the present invention having a small Pb phase was used. As compared with No. 5, the amount of bearing wear was large, and it can be seen that the one according to the present invention was excellent.

【0060】以上の通り、本発明に係る摺動材料は、比
較例と比べ軸の損耗がきわめて少なく、より苛酷な境界
潤滑下においても、すぐれた耐摩耗性を示し摺動部材を
得ることが出来る。
As described above, the sliding material according to the present invention has extremely small shaft wear as compared with the comparative example, exhibits excellent wear resistance even under more severe boundary lubrication, and can provide a sliding member. I can do it.

【0061】[0061]

【表1】 [Table 1]

【0062】[0062]

【表2】 [Table 2]

【0063】[0063]

【表3】 [Table 3]

【0064】[0064]

【発明の効果】以上の通り、本発明は、鋼板裏金上に一
体に設けられた焼結軸受層が基地中に硬質物の粉末0.
5〜20%を分散焼結して成る摺動材料であって、この
硬質物の粉末は、16.5〜18.5%Cr、27〜3
0%Mo、3.0〜4.0%Siを含み、残部がCuか
ら成っている。
As described above, according to the present invention, the sintered bearing layer integrally provided on the steel sheet back metal has a hard powdery material in the matrix.
A sliding material obtained by dispersing and sintering 5 to 20%, and the powder of the hard material is 16.5 to 18.5% Cr, 27 to 3%.
It contains 0% Mo, 3.0 to 4.0% Si, and the balance is made of Cu.

【0065】このため、苛酷な境界潤滑条件であって
も、すぐれた耐摩耗性を示すほか、相手方の軸の摩耗量
も大巾に低減できる。
Therefore, even under severe boundary lubrication conditions, excellent wear resistance is exhibited and the amount of wear of the mating shaft can be significantly reduced.

【0066】また、境界潤滑のときに摩擦熱が多量に発
生しても、硬質物の粉末が上記組成から成って各成分が
Co基地中に析出しているため、焼結軸受層の基地中に
硬質物の粉末が均一に分散されて焼結性がきわめて良好
であり、摩擦熱は基地が主としてCuから成るところを
利用して、熱放散が促進できる。
Even if a large amount of frictional heat is generated during boundary lubrication, since the hard material powder is composed of the above-mentioned composition and each component is precipitated in the Co matrix, the hard bearing powder is not formed in the matrix of the sintered bearing layer. The powder of the hard material is uniformly dispersed and the sinterability is extremely good, and the heat dissipation can be promoted by utilizing the fact that the matrix mainly consists of Cu.

【0067】更に、硬質物の粉末の粒度が50μm以下
であると、粉末の分散性が高められ、耐摩耗性が一層向
上する。
Further, when the particle size of the hard material powder is 50 μm or less, the dispersibility of the powder is enhanced, and the wear resistance is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一つの実施例に係る摺動材料の構造を
示す説明図である。
FIG. 1 is an explanatory view showing a structure of a sliding material according to one embodiment of the present invention.

【図2】図1に示す摺動材料の熱放散態様を示す説明図
である。
FIG. 2 is an explanatory view showing a heat dissipation mode of the sliding material shown in FIG.

【図3】比較例の一つの摺動材料の構造を示す説明図で
ある。
FIG. 3 is an explanatory view showing the structure of one sliding material of a comparative example.

【図4】図3に示す摺動材料の熱放散態様を示す説明図
である。
FIG. 4 is an explanatory view showing a heat dissipation mode of the sliding material shown in FIG. 3;

【図5】添加される硬質物の粉末の硬さを摺動材料の摩
耗量との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the hardness of the powder of the hard material to be added and the wear amount of the sliding material.

【図6】径100〜150μmの硬質物の粉末を配合し
た場合の軸受層の金属組織を示す顕微鏡写真である。
FIG. 6 is a micrograph showing a metal structure of a bearing layer when a hard powder having a diameter of 100 to 150 μm is compounded.

【図7】径50μm以下の硬質物の粉末を配合した場合
の軸受層の金属組織を示す顕微鏡写真である。
FIG. 7 is a micrograph showing a metal structure of a bearing layer when a hard powder having a diameter of 50 μm or less is compounded.

【符号の説明】[Explanation of symbols]

1 相手方の軸 2 硬質物の粉末 3 Pb相 4 基地 5 裏金 6 熱流 DESCRIPTION OF SYMBOLS 1 Counterpart shaft 2 Hard material powder 3 Pb phase 4 Base 5 Back metal 6 Heat flow

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 1/00 - 49/14 B22F 7/00 F16C 33/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) C22C 1/00-49/14 B22F 7/00 F16C 33/12

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼板の裏金と、この裏金の一方の面上に
基地粉末と硬質物の粉末との混合粉末を散布焼結して一
体に設けた焼結軸受層と、から成る摺動材料であって、 前記焼結軸受層において前記硬質物の粉末は前記混合粉
末全体を100質量%として0.5〜20質量%を含
み、前記基地粉末は1〜30質量%Pb、1〜15質量
%Snならびに残部Cuから成る鉛青銅合金であって、
前記硬質物の粉末は16.5〜18.5質量%Cr、2
7〜30質量%Mo、3.0〜4.0質量%Siならび
に残部CoからなるCo基合金であることを特徴とする
耐摩耗性に優れる摺動材料。
1. A sliding material comprising: a back metal of a steel plate; and a sintered bearing layer provided by integrally spraying and sintering a mixed powder of a base powder and a hard material powder on one surface of the back metal. In the sintered bearing layer, the powder of the hard material contains 0.5 to 20% by mass based on 100% by mass of the whole mixed powder, and the base powder has 1 to 30% by mass Pb and 1 to 15% by mass. % Sn and the balance Cu, which is a lead bronze alloy,
The powder of the hard material is 16.5 to 18.5 mass% Cr, 2
A sliding material having excellent wear resistance, which is a Co-based alloy comprising 7 to 30% by mass Mo, 3.0 to 4.0% by mass Si, and the balance Co.
【請求項2】 前記硬質物の粉末がビッカ−ス硬さ(H
v)で750〜850であることを特徴とする請求項1
記載の耐摩耗性に優れる摺動材料。
2. The method according to claim 1, wherein the powder of the hard material has a Vickers hardness (H
2. The method according to claim 1, wherein v) is 750 to 850.
A sliding material with excellent wear resistance as described.
【請求項3】 前記硬質物の粉末は、Co基地と、この
Co基地中に析出されたCr、Mo、SiおよびCoの
析出硬質相とから成ることを特徴とする請求項1記載の
耐摩耗性に優れる摺動材料。
3. The wear-resistant powder according to claim 1, wherein the hard material powder comprises a Co base and a precipitated hard phase of Cr, Mo, Si and Co precipitated in the Co base. Sliding material with excellent properties.
【請求項4】 前記硬質物の粉末が丸味をおびた形状か
ら成ることを特徴とする請求項1記載の耐摩耗性に優れ
る摺動材料。
4. The sliding material according to claim 1, wherein the hard material powder has a rounded shape.
【請求項5】 前記硬質物の粉末を粒径50μm以下に
調整することを特徴とする請求項1記載の耐摩耗性に優
れる摺動材料。
5. The sliding material according to claim 1, wherein the hard material powder is adjusted to a particle size of 50 μm or less.
JP21672196A 1996-07-30 1996-07-30 Sliding material with excellent wear resistance Expired - Fee Related JP3339780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21672196A JP3339780B2 (en) 1996-07-30 1996-07-30 Sliding material with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21672196A JP3339780B2 (en) 1996-07-30 1996-07-30 Sliding material with excellent wear resistance

Publications (2)

Publication Number Publication Date
JPH1046272A JPH1046272A (en) 1998-02-17
JP3339780B2 true JP3339780B2 (en) 2002-10-28

Family

ID=16692888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21672196A Expired - Fee Related JP3339780B2 (en) 1996-07-30 1996-07-30 Sliding material with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP3339780B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293368A (en) * 1998-04-07 1999-10-26 Daido Metal Co Ltd Copper sliding alloy
JP4476634B2 (en) 2004-01-15 2010-06-09 大豊工業株式会社 Pb-free copper alloy sliding material
JP4410612B2 (en) 2004-06-10 2010-02-03 大豊工業株式会社 Pb-free bearing for fuel injection pump
CN101541989B (en) 2006-08-05 2014-05-28 大丰工业株式会社 Lead-free copper alloy sliding material
WO2008140100A1 (en) 2007-05-15 2008-11-20 Taiho Kogyo Co., Ltd. Pb-FREE COPPER ALLOY SLIDING MATERIAL AND PLAIN BEARINGS
US9028582B2 (en) 2008-01-23 2015-05-12 Taiho Kogyo Co., Ltd. Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material
JP6959171B2 (en) * 2018-03-28 2021-11-02 大同メタル工業株式会社 Sliding member and its manufacturing method

Also Published As

Publication number Publication date
JPH1046272A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
JP3939931B2 (en) Copper-based multi-layer sliding material
US9657777B2 (en) Wear resistant lead free alloy bushing and method of making
JP3298634B2 (en) Sliding material
US8404356B2 (en) Contact material, composite sintered contact component and method of producing same
JP3373709B2 (en) Copper-based sliding bearing materials and sliding bearings for internal combustion engines
KR20090130128A (en) Pb-free copper alloy sliding material and plain bearings
JP3839740B2 (en) Sliding material
JP4476634B2 (en) Pb-free copper alloy sliding material
JP2001081523A (en) Coppery sliding material
JP3327663B2 (en) High temperature wear resistant sintered alloy
JPH08100227A (en) Sintered sliding member
JP3292445B2 (en) Sliding material with excellent wear resistance
JP2010533756A (en) Lead-free sintered lubricating material and sintered powder for its production
JP2918292B2 (en) Sliding material
JP3339780B2 (en) Sliding material with excellent wear resistance
JPH11293368A (en) Copper sliding alloy
JP3898619B2 (en) Copper-based alloy for sliding
US5665480A (en) Copper-lead alloy bearing
JP3042539B2 (en) Sliding material
JP3298636B2 (en) Sliding material
JP4757460B2 (en) Pb-free copper alloy composite sliding material with excellent seizure resistance
US4994235A (en) Wear-resistance aluminum bronze alloy
JP2904355B2 (en) Manufacturing method of sintered sliding material
JPH0711046B2 (en) Al-Sn bearing alloy
JPH0257653A (en) Al-sn bearing alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees