JPH0257653A - Al-sn bearing alloy - Google Patents

Al-sn bearing alloy

Info

Publication number
JPH0257653A
JPH0257653A JP8844789A JP8844789A JPH0257653A JP H0257653 A JPH0257653 A JP H0257653A JP 8844789 A JP8844789 A JP 8844789A JP 8844789 A JP8844789 A JP 8844789A JP H0257653 A JPH0257653 A JP H0257653A
Authority
JP
Japan
Prior art keywords
alloy
bearing
particles
matrix
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8844789A
Other languages
Japanese (ja)
Other versions
JPH0717980B2 (en
Inventor
Masahito Fujita
正仁 藤田
Akira Ogawara
大河原 章
Takeshi Sakai
坂井 武志
Toshihisa Ogaki
大垣 俊久
Takeshi Osaki
剛 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP8844789A priority Critical patent/JPH0717980B2/en
Publication of JPH0257653A publication Critical patent/JPH0257653A/en
Publication of JPH0717980B2 publication Critical patent/JPH0717980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To obtain the title alloy having excellent fatigue resistance, seizure resistance and wear resistance by incorporating specific amounts of Pb and Si into an Al-Sn bearing alloy adding specific small amounts of Sb thereto and depositing Si grains in a spherical or almost spherical shape into an Al matrix. CONSTITUTION:As an Al-Sn bearing alloy, by weight, 0.01 to 0.1% Sb is added to a bearing alloy contg. 7 to 20% Sn, 0.1 to 5% Pb and 1 to 10% Si, contg. 0.3 to 3.0% independent Zn or 0.3 to 3.0% total of Zn, Cu and Mg, furthermore contg. 0.01 to 0.1% total of one or more kinds among Cr, Mn, Fe, Ni, Co, Ti, V and Zr as deposition hardening-type matrix strengthening elements and the balance Al. An Sn-Pb alloy 3 is deposited into an Al matrix 1 adjacently to spherical Si grains therein, by which the Al-Sn bearing alloy having drastically improved lubricity can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はAl−Sn系軸受合金に係り、詳しくは、マト
リックス中に81粒子が1球状若しくはそれに近い形状
に析出され、しかも、、高速・高負荷運転が可能で、な
かでも、高′/a湯下において特に耐疲労性且つ耐焼付
性、耐摩耗性にすぐれるAn!−Sn系軸受合金に係る
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an Al-Sn bearing alloy, and more specifically, 81 particles are precipitated in a matrix in the shape of one sphere or a shape close to it, and moreover, it is suitable for high-speed and high-load applications. It is possible to operate the An! -Relating to Sn-based bearing alloys.

従  来  の  技  術 最近の自動車用エンジンは、小型化、省燃費、高出力の
ものとなり、これにともなって軸受にかかる荷重が増加
すると共に、潤滑油の温度が上昇し、軸受の使用条件は
苛酷化の一途をたどっている。この点から、従来例の多
元系やAll系等では、軸受台金の表面にはオーバーレ
イメツキ等によりPb−Sn系等の表面層が形成されて
いるが、この構造の軸受では、潤滑面の高温化により疲
労や焼付現象にみまわれ、上記の苛酷な使用条件に耐え
られな(なっている。そこで最近は、オーバーレイメツ
キ等によって表面層が形成されない軸受が求められてい
る。しかしながら、この種の軸受でも、上記の苛酷な使
用条件では、必ずしも安定した性能を発揮できないのが
現状である。
Conventional technology Recently, automobile engines have become smaller, more fuel efficient, and have higher output.As a result, the load on the bearings has increased, the temperature of the lubricating oil has also increased, and the operating conditions for the bearings have changed. It is becoming more and more severe. From this point of view, in conventional multi-component systems, All-all systems, etc., a surface layer of Pb-Sn system, etc. is formed on the surface of the bearing base metal by overlay plating, etc., but in bearings with this structure, the lubricating surface is Due to high temperatures, fatigue and seizure phenomena occur, making it difficult to withstand the harsh operating conditions mentioned above.Recently, there has been a demand for bearings that do not have a surface layer formed by overlay plating, etc. Currently, even bearings such as these cannot necessarily exhibit stable performance under the above-mentioned severe operating conditions.

すなわち、表面にオーバーレイメツキ震を有する軸受は
、一般的には、JIS H5402、AJ−1(10%
Sr+、0.15%Cu、0.5%Ni、AlBa/l
や、JIS H5402、AJ−2(6%Sn、2.5
%CU、1.0%N1、AjBaJ)等のJIS規格、
SAE 780(6%sn、2%Si.1%Cu、0.
5%Ni、 0.1%■1、A/Ba1)等のSAE規
格に示される通り、その軸受台金部分はsn含有量が比
較的少ない低5n−Al!合金から成って、これら軸受
合金部分の軸受面は何れもPb−Sn系合金のオーバー
レイメツキ層が形成されている。
In other words, bearings with overlay scratches on their surfaces generally meet JIS H5402, AJ-1 (10%
Sr+, 0.15%Cu, 0.5%Ni, AlBa/l
, JIS H5402, AJ-2 (6% Sn, 2.5
JIS standards such as %CU, 1.0%N1, AjBaJ),
SAE 780 (6% sn, 2% Si.1% Cu, 0.
As shown in SAE standards such as 5% Ni, 0.1%■1, A/Ba1), the bearing base metal part is made of low 5n-Al with a relatively low sn content! An overlay plating layer of a Pb-Sn alloy is formed on the bearing surfaces of these bearing alloy parts.

しかし、これら軸受は、近年の高負荷、高温の使用条件
下では表面のオーバーレイメツキ層がll!滅して焼付
きに至り、使用に耐えられなくなっている。これに対し
、表面にオーバーレイメツキ層を形成しない軸受は、S
AE 7g3(20%Sn。
However, in recent years, under the high load and high temperature operating conditions, these bearings have an overlay plating layer on their surface! It has deteriorated to the point of burn-in and is no longer usable. On the other hand, bearings that do not have an overlay plating layer formed on their surfaces have S
AE 7g3 (20% Sn.

0.5%Si.1.0%Cu%0.1%■1、lBa/
lに示される通り、Sn@有量が多い高5n−AX合金
から成っている。しかし、このようにSnが20%程度
の如く多く含まれる合金は、硬度が低(、Agマトリッ
クスが弱くなるため、高負荷に耐えられない。
0.5% Si. 1.0%Cu%0.1%■1, lBa/
As shown in Figure 1, it is made of a high 5n-AX alloy with a high Sn@ content. However, such an alloy containing as much as 20% Sn has low hardness (and the Ag matrix becomes weak, so it cannot withstand high loads).

また、snn含有量多少に拘らず、AX −Sn系合金
中にpbを添加して潤滑性を増進させ、耐焼付性をもた
せた軸受台金が、例えば、水野昂著昭和29年日刊工業
新聞社発行r軸受台金J第139頁に記載され、この軸
受台金は10%Sn、 1,5%Cu、0,5%Siを
含むとともに3%pbを添加して成るAl −Sn−P
b系合金である。
In addition, regardless of the SNN content, a bearing base metal with PB added to the AX-Sn alloy to improve lubricity and seizure resistance has been developed, for example, by Akira Mizuno, Nikkan Kogyo Shimbun, 1950. This bearing base metal is made of Al-Sn-P containing 10% Sn, 1.5% Cu, 0.5% Si, and added with 3% PB.
It is a b-based alloy.

更ニ、このへl−5n−Pb系合金では、Pb1lとは
ほとんど固溶しないため、このpbの分散性の向上のた
めに、Sbを添加したAX −Sn−PbSb系合金が
特公昭52−121Si号に記載され、更に、Alマト
リックス強化のためにcrを添加した八l −Sn−P
b−3b−Cr系合金が特公昭58−18985号に記
載されている。しかし、これらの八1−Sn−Pb系合
金は通常運転時の潤滑性の向上を目的として開発された
もので、高負荷運転条件では十分な耐疲労性を示さない
欠点がある。
Further, since this l-5n-Pb alloy hardly forms a solid solution with Pb1l, in order to improve the dispersibility of this Pb, an AX-Sn-PbSb-based alloy containing Sb was developed as 121Si and further added cr to strengthen the Al matrix.
A b-3b-Cr alloy is described in Japanese Patent Publication No. 18985/1985. However, these 81-Sn-Pb alloys were developed for the purpose of improving lubricity during normal operation, and have the drawback of not exhibiting sufficient fatigue resistance under high-load operating conditions.

この理由は、通常の運転下に比べると、高負荷運転下の
軸と軸受との潤滑機構は根本的に相違するからである。
The reason for this is that the lubrication mechanism between the shaft and bearing under high load operation is fundamentally different from that under normal operation.

そこで、高負荷運転下の潤滑機構につき、基本的な検討
が1行なわれ、その一つとしてAJ−sn系合金中に粗
大なSlを分散析出させたものが特開昭58−6433
6号によって提案されている。
Therefore, a basic study was conducted on the lubrication mechanism under high load operation, and one of the studies was published in JP-A-58-6433, in which coarse Sl was dispersed and precipitated in an AJ-sn alloy.
It is proposed by No. 6.

この軸受は硬いSi析出物により切削力を持たせたもの
であって、切削力を持つが故に、相手軸の表面凹凸部が
削られて平坦化し、軸受性能を向上させるものである。
This bearing has a cutting force made of hard Si precipitates, and because it has the cutting force, the unevenness on the surface of the mating shaft is shaved off and flattened, improving the bearing performance.

更に詳しく説明すると、球状若しくは片状の黒鉛を析出
させた黒鉛鋳鉄から成る相手軸の表面には、研摩加工時
に脱落した黒鉛粒子のあとに凹部が残り、この凹部周囲
には硬(加工硬化したパリやエツジ等の凸部が生成して
いる。従って、上記の如きへ1−Sn系、Al −Sn
−Pb系等の軸受台金では、これら凹凸部により高負荷
運転時には異常摩耗が発生し易い。これに対し、上記の
粗大なSlを分散析出させた軸受台金では、硬いSlの
析出物により切削力が付与されているために、相手軸の
凹凸部分は機械的に切削されて平坦化され、これ故に、
異常摩耗や焼付きが起らない。
To explain in more detail, on the surface of the mating shaft made of graphite cast iron on which spherical or flaky graphite has been precipitated, recesses remain after graphite particles that have fallen off during polishing, and around these recesses there is hardened (work-hardened) material. Convex portions such as edges and edges are generated.Therefore, as shown above, 1-Sn system, Al-Sn
- In a bearing base metal made of Pb or the like, abnormal wear is likely to occur during high-load operation due to these uneven portions. On the other hand, in the case of the bearing base metal in which the coarse Sl is dispersed and precipitated, the cutting force is applied by the hard Sl precipitates, so the uneven parts of the mating shaft are mechanically cut and flattened. , therefore,
No abnormal wear or seizure occurs.

しかしながら、相手軸が黒鉛鋳鉄以外の場合には、高負
荷運転のときに、かえって粗大なS析出物によって相手
軸の表面が不規則にけずられ、焼付きが発生し、大きな
障害が生じる。
However, if the mating shaft is made of a material other than graphite cast iron, during high-load operation, the surface of the mating shaft will be irregularly scratched by coarse S precipitates, causing seizure and causing major problems.

発明が解決しようとする課題 本発明は上記欠点の解決を目的とし、具体的には、従来
例のAl−Sn系軸受台金では、潤滑性向上のためにS
nやpb等の含有街を高めたり、更に、Alマトリック
スの強化を目的としてCr、Sb等やMn%N1等の元
素を添加していたが、これらの元素によってAlマトリ
ックスの硬度を珊すことはできても、逆にAf金合金脆
弱となり高負荷運転時には殆んど高温下(100〜bの
耐疲労性を示さないということが解った。そこでSiを
球状に近い形で合金中に析出させることにより耐焼付性
、耐摩耗性の問題点を解決することを目的とする。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned drawbacks. Specifically, in the conventional Al-Sn bearing base metal, S is used to improve lubricity.
Elements such as Cr, Sb, etc. and Mn%N1 have been added to increase the content of n and pb, and to further strengthen the Al matrix, but these elements do not increase the hardness of the Al matrix. However, it was found that the Af gold alloy becomes brittle and exhibits almost no fatigue resistance at high temperatures (100~b) during high-load operation.Therefore, Si is precipitated into the alloy in a nearly spherical shape. The purpose is to solve the problems of seizure resistance and wear resistance.

従って、本発明は、最近のエンジンの高出力化に伴ない
、軸受部温度が上昇する傾向にあり、特に、この高温で
の耐疲労性が強く要求されることに看目し、従来のAl
マトリックス強化元素を添加するのにも拘らず、1合金
の脆弱化を改善し、特に高温下での耐疲労性を高めると
共に史に高い耐焼付性、耐摩耗性を具えるAl−5n系
軸受合金を提供する。
Therefore, the present invention has been developed in view of the fact that the temperature of the bearing part tends to rise with the recent increase in the output of engines, and in particular, there is a strong demand for fatigue resistance at this high temperature.
Despite the addition of matrix-strengthening elements, Al-5n bearings improve the embrittlement of alloy 1 and improve fatigue resistance, especially at high temperatures, as well as providing unprecedented seizure resistance and wear resistance. Provide alloys.

課題を解決するための 手段ならびにその作用 すなわら、本発明は、重量%で1〜20%5O50,1
〜5%Pb、1〜10%SiならびにCLI、M(1、
加のうら1種若しくは2種以上を合計で0.3〜3.0
%を含むと共に、Cr、Mn、Fe、 Ni、 Go、
Ti、 V、 Zrのうら1種若しくは2種以上を合計
で0.01〜1.0%含有し、残余が実質的にAlから
成るAJ−Sn系軸受合金において、0.01〜0.1
%のSbを添加してA/マトリックス中にSi粒子を球
状、だ円状若しくは先端が丸味をおびる形状として分散
、析出さゼることを特徴とする。
Means for solving the problem and its operation, the present invention provides 1 to 20% 5O50,1 by weight%.
~5% Pb, 1-10% Si and CLI, M(1,
One or more types of Kanoura in total 0.3 to 3.0
%, as well as Cr, Mn, Fe, Ni, Go,
In an AJ-Sn bearing alloy containing one or more of Ti, V, and Zr in a total of 0.01 to 1.0%, and the remainder substantially consisting of Al, 0.01 to 0.1
% of Sb is added to disperse and precipitate Si particles in the A/matrix in the form of a sphere, an ellipse, or a shape with a rounded tip.

そこで、これら手段たる構成ならびにその作用について
更に詳しく説明すると、次の通りである。
A more detailed explanation of the configuration of these means and their operation will be as follows.

ます、本発明は高温状態における耐疲労性を高めるため
に成されたものである。
First, the present invention was made to improve fatigue resistance under high temperature conditions.

すなわち、従来例においては、単に高融点元素であるC
r%C01N1等を添加し、高温強度を高め、高温下で
硬さが急激に低下することを防止すると共に、耐摩耗性
を高めている。しかし、このように1.l!−Sn系合
金の高温状態における耐疲労性を高めるために、単に高
融点元素を添加すると、硬さは増すが、合金が脆弱とな
り、引張強度、伸びならびに衝撃値が低下する欠点が生
じ、軸受台金としての耐疲労性を高めるのに有効な手段
に到っていない。
That is, in the conventional example, C, which is simply a high melting point element,
r%C01N1 etc. are added to increase high temperature strength, prevent sudden decrease in hardness at high temperatures, and improve wear resistance. However, like this 1. l! - If high melting point elements are simply added to improve the fatigue resistance of Sn-based alloys at high temperatures, the hardness will increase, but the alloy will become brittle and the tensile strength, elongation, and impact value will decrease. No effective means have been found to increase the fatigue resistance of the base metal.

これに対し、本発明は、高温、高荷重下の苛。On the other hand, the present invention is suitable for use under high temperature and high load conditions.

酷な条件に好適な軸受台金を提供するもので、まず、本
発明ではSbを必須成分として添加し、このSbをSi
に作用させ、鋳造時点よりSi結晶の球状化を計り、更
に、熱処理によりこのSi結晶の球状化を高め、これに
より、Al −Sn合金の引張強度、伸びならびに衝撃
強さを高める。
The present invention provides a bearing base metal suitable for severe conditions. First, in the present invention, Sb is added as an essential component, and this Sb is replaced with Si.
is applied to make the Si crystal spheroidal from the time of casting, and furthermore, the spheroidization of the Si crystal is increased by heat treatment, thereby increasing the tensile strength, elongation, and impact strength of the Al-Sn alloy.

すなわち、一般的に云って、耐疲労強さは材料の引張強
さ、伸び、衝撃強さ、組織的構造等に起因するものであ
って、単に軸受成分の添加によっては解決できないとさ
れている。この点について、本発明者等が研究を重ねた
とごろ、このようなSbの作用を知見し、これにもとず
いて本発明は成されたものである。また、本発明は、添
加元素として上記の如(高融点元素をAl−Sn合金に
添加しても、Sbの添加によって機械的特性の低下を防
止することができるので、高温下での機械的特性を急激
に低下させることがない。このような本発明の特徴は高
温、高荷重下で疲労試験を行なった結果、疲労強度の向
上が認められたことでも裏付けることができる。
In other words, it is generally said that fatigue strength is a result of the material's tensile strength, elongation, impact strength, structural structure, etc., and cannot be solved simply by adding bearing components. . Regarding this point, the inventors of the present invention have conducted extensive research and discovered such an effect of Sb, and the present invention has been accomplished based on this knowledge. Furthermore, even if the above-mentioned (high melting point element) is added to the Al-Sn alloy as an additive element, the addition of Sb can prevent the mechanical properties from deteriorating. There is no sudden deterioration in properties.This feature of the present invention can be supported by the fact that an improvement in fatigue strength was observed as a result of fatigue tests conducted at high temperatures and under high loads.

また、本発明は、表面の組織構成の面で高温、高負荷条
件に適合し、これにより表面性能が著しく高められてい
る。
Furthermore, the present invention is suitable for high temperature and high load conditions in terms of the surface structure, thereby significantly improving surface performance.

一般的に、焼付現象はそれに達する過程が複雑で多くの
条件が相乗的に作用して達するため、一義的に把握する
ことは困難であると云われている。しかし、表面にpb
−sn合金のオーバーレイメツキ層を形成したcu −
pb系軸軸受合金高荷重運転下ではこのメツキ層が摩滅
し焼付きに至るのに対し、Al −Sn−Pb系合金で
あって、Sl、Cu等を含む軸受は表面にオーバーレイ
メツキ■が形成されていないのにも拘らず、焼付きに至
らない現象が存在する。
Generally, it is said that it is difficult to understand the burn-in phenomenon unambiguously because the process of reaching it is complex and many conditions act synergistically to achieve it. However, PB on the surface
- Cu with overlay plating layer of sn alloy formed -
PB-based shaft bearing alloys Under high-load operation, this plating layer wears out, leading to seizure, whereas bearings made of Al-Sn-Pb-based alloys containing Sl, Cu, etc., have an overlay plating formed on the surface. There is a phenomenon that does not lead to burn-in even though it is not done.

そこで、本発明者等はこの現象に着目し、両軸受を構造
的に比較検討した。すなわち、第3図は表面にオーバー
レイメツキ躍を有する軸受の一部の拡大断面図であり、
第4図は11−5npb合金であって、表面にオーバー
レイメツキ圀がなくしかもSi、CI等を含む軸受の一
部の拡大断面図である。第3図から明らかな如く、この
軸受は表面のオーバーレイメツキ層4、合′?L!!!
5ならびに裏金6から成って、このオーバーレイメツキ
l14の全表面によって軸荷重が支持される。これに対
し、第4図に示す如(、Al−Sn−pbb合金で81
、Cu等を含む軸受は合金I!I5と裏金6とから成っ
て、この合金1i5のマトリックス中に棒状ヤ片状のS
i粒子2が析出している。従って、この軸受では相手軸
の荷重は硬い81粒子2で支えられ、しかも、Si粒子
が上記の如く切削力を持っている。
Therefore, the present inventors paid attention to this phenomenon and conducted a structural comparative study of both bearings. That is, FIG. 3 is an enlarged cross-sectional view of a part of a bearing having an overlay surface.
FIG. 4 is an enlarged sectional view of a portion of a bearing made of 11-5npb alloy, which has no overlay plating on the surface and contains Si, CI, etc. As is clear from FIG. 3, this bearing has an overlay plating layer 4 on the surface. L! ! !
5 and a back metal 6, and the axial load is supported by the entire surface of this overlay plating l14. On the other hand, as shown in Fig. 4, 81
, Cu, etc. are alloy I! Consisting of I5 and backing metal 6, rod-shaped S pieces are formed in the matrix of this alloy 1i5.
i particles 2 are precipitated. Therefore, in this bearing, the load of the mating shaft is supported by the hard 81 particles 2, and moreover, the Si particles have the cutting force as described above.

要するに、両者の差は面接触と点接触であり、この差に
よって潤滑、111面の温度上昇において決定的な相違
となっている。つまり、第3図に示す軸受のように、面
接触では、高速、高負荷条件下で摩擦面の温度は急速に
上昇するのに対し、第4図に示す軸受のように点接触で
は、合金層50表面と相手軸表面との間に間隙が形成さ
れ、この間隙の′a膜にはあまり大きな荷重がかがらな
いため、十〃な潤滑が保持され、摩擦面の温度上昇はお
さえられる。
In short, the difference between the two is surface contact and point contact, and this difference makes a decisive difference in lubrication and temperature rise on the 111 surface. In other words, in surface contact, as in the bearing shown in Figure 3, the temperature of the friction surface rises rapidly under high speed and high load conditions, whereas in point contact, as in the bearing shown in Figure 4, the temperature of the friction surface increases rapidly under high speed and high load conditions. A gap is formed between the surface of the layer 50 and the surface of the mating shaft, and since a very large load is not applied to the 'a film in this gap, sufficient lubrication is maintained and temperature rise on the friction surface is suppressed.

更に進んで、本発明者等は、第4図に示す如き点接触に
よる軸荷重の支¥1が高荷重下の潤滑にきわめて有効で
あるという基本的見地に立って、その効果を最大限に生
かすための組成ならびに構造について研究し、本発明に
係る軸受台金を完成するに至ったのである。
Proceeding further, the present inventors have taken the basic viewpoint that supporting the shaft load by point contact as shown in FIG. After researching the composition and structure to make the best use of this technology, they were able to complete the bearing base metal according to the present invention.

具体的に示すと、本発明者等はA/−Sn−Pb系合金
であって、SiヤCU等を含む軸受台金におけるSiの
析出形態に着目し、その形態の潤滑面におよぼす効果に
ついて調査研究を進めたところ、 第1に、Slは融点が高い安定物質であり、かつ、非金
属的性質が強く、相手軸の主成分のFeに200℃〜5
00”C程度の高温状態で接触しても、全(拡散若しく
は溶解を起さないことから、軸荷重の点支持手段はSl
がきわめて好適であることがわかった。
Specifically, the present inventors focused on the form of Si precipitation in the bearing base metal, which is an A/-Sn-Pb alloy and includes Si or CU, and investigated the effect of this form on the lubricating surface. As we proceeded with our research, we found that, firstly, Sl is a stable substance with a high melting point, and has strong nonmetallic properties, so that Fe, the main component of the mating shaft,
The point support means for the axial load is Sl
was found to be extremely suitable.

第2に、相手軸を油膜を介し点支持する場合、81粒子
はそのビッカース硬さが599にも達するほど硬く、し
がも、81粒子は化合物でないためもろさがなく、弾性
に冨み、急激な変動荷重に耐えられることがわがった。
Secondly, when the mating shaft is point-supported through an oil film, the 81 particles are so hard that their Vickers hardness reaches 599.However, since the 81 particles are not a compound, they are not brittle, have high elasticity, and suddenly harden. It was found that it can withstand a large amount of fluctuating load.

しかしながら、Siは上記の如く性質を待っているのに
も拘らず、結晶性が強(、Alとの共晶析出形態でも、
板状若しくは棒状を呈し、軸受の製造過程で圧延や熱処
理を経てL、その形状はわずか変化する程度である。こ
のため、Si粒子の析出形態の制御を行なわない場合は
、第5図に示す如く、合金層でマトリックス1中に5−
pb合金粒子とともに析出するSi粒子2は板状若しく
は棒状化し、81粒子2かう離れてSn −Pb合金粒
子3が存在している。この状態であると、硬いSi粒子
2のエツジによって相手軸が削られできずつけられ易く
、かえって、潤滑性が低下し、焼付きが起こる。
However, although Si has the properties described above, it has strong crystallinity (even in the form of eutectic precipitation with Al,
It has a plate-like or rod-like shape, and its shape changes only slightly during rolling and heat treatment during the bearing manufacturing process. Therefore, if the precipitation form of Si particles is not controlled, as shown in FIG.
The Si particles 2 precipitated together with the pb alloy particles are plate-shaped or rod-shaped, and the Sn--Pb alloy particles 3 are present 81 particles 2 apart. In this state, the edges of the hard Si particles 2 cannot scrape the mating shaft and are likely to attach, and on the contrary, the lubricity is reduced and seizure occurs.

この点から、本発明において潤滑性の飛躍的向上のため
に、81粒子から切削力を除去し、球状等の如くエツジ
部に丸味をおびさせるような形態に制御する。
From this point of view, in the present invention, in order to dramatically improve the lubricity, the cutting force is removed from the 81 particles, and the shape is controlled so that the edges are rounded, such as spherical.

すなわら、第1図は本発明の一つの実施例に係る軸受台
金の一部の拡大断面図であって、第1図に示す如(、合
金層において、そのマトリックス1中に分散析出するS
i粒子2は球状化し、この球状Si粒子2によって点接
触の理想に近づけ、より潤滑性を高め月つ耐摩耗性を高
めることができる。また、高速かつ急激な高荷重がかけ
られても、相手軸をきずつけることがない。また、Sl
が球状化しているため、マトリックス中の切欠効果がな
く、強度的にも安定したマトリックスを得ることができ
、耐摩耗性にも優れる。
That is, FIG. 1 is an enlarged sectional view of a part of a bearing base metal according to one embodiment of the present invention, and as shown in FIG. S to do
The i-particles 2 are spherical, and the spherical Si particles 2 bring the ideal point contact closer to the ideal point contact, further increasing lubricity and wear resistance. Furthermore, even if a high load is suddenly applied at high speed, the mating shaft will not be damaged. Also, Sl
Since it is spherical, there is no notch effect in the matrix, and a matrix with stable strength can be obtained, and it also has excellent wear resistance.

このSi粒子の球状化は、Siが析出する共晶点のAl
@金液相の性質を改善することによって達成でき、とく
に、その添加元素として5bIf有効である。
This spheroidization of Si particles is caused by Al at the eutectic point where Si precipitates.
This can be achieved by improving the properties of the @gold liquid phase, and 5bIf is particularly effective as an additive element.

更に、Si)を添加すると、5n−Pb合金粒子3の析
出形gが変化し、第1図に示すように81の球状化粒子
2に5n−Pb台@3がより隣接して存在するようにな
る。この構造は、従来例のもの(例えば、第5図参照)
に比して、潤滑性能を飛躍的に向上させる。
Furthermore, when Si) is added, the precipitation shape g of the 5n-Pb alloy particles 3 changes, and as shown in FIG. become. This structure is that of a conventional example (for example, see Figure 5).
Dramatically improves lubrication performance compared to

また、以上のように表面性能を原理的に解決するほか、
マトリックスの高温での強化をはかる必要がある。
In addition to solving the surface performance in principle as described above,
It is necessary to strengthen the matrix at high temperatures.

すなわち、Alは熱に対して感受性が強く、150℃を
すぎると軟化してしまい(11vlo以下)、強度を失
なってしまう。この軟化の防止のために、析出硬化型の
7トリツクス強化元素として、例えば、Or%Mn、 
Fe%Go、〜1、T1、V、、Zr等を添加し、これ
ら強化元素はその中のl1lj若しくは2種以上を選択
し、゛適切な熱処理を行なうと、高温での強度を更に上
昇させることができる。
That is, Al is highly sensitive to heat, and if the temperature exceeds 150° C., it becomes soft (below 11 vlo) and loses its strength. In order to prevent this softening, precipitation hardening type 7 trix strengthening elements such as Or%Mn,
Adding Fe%Go, ~1, T1, V, Zr, etc., and selecting l1lj or two or more of these reinforcing elements, ``Appropriate heat treatment will further increase the strength at high temperatures. be able to.

以上の通り、本発明においては、牢に従来のように素地
強化元素な添加するだけでなく、これら強化元素ととも
にSbを添加し、硬さのみでなく、引張強度、伸びを従
来より向上させ、耐疲労性を高め、高荷重運転下での軸
受性能の向上をはかるものであるが、そのR構とともに
各成分組成について説明すると、次の通りである。
As described above, in the present invention, in addition to adding elements to strengthen the base as in the past, Sb is added together with these reinforcing elements to improve not only the hardness but also the tensile strength and elongation compared to the past. The purpose is to increase fatigue resistance and improve bearing performance under high load operation.The R structure and the composition of each component are explained as follows.

第1図に示す構成の軸受では、軸荷重をささえる潤滑面
はマトリックス1の表面から突出する81粒子2の先端
部であり、しかも、81粒子と相手軸との間に′a膜が
介在し、流体潤滑が保たれている。しかし、急激な変動
荷重を受け、この油膜が破れ、局部的に境界潤滑に達し
、この時に、Si粒子2の上面に5n−Pb合金のフ、
fルムが介在すれば、焼付きを防止でき、しかも、正常
に′a膜が再生されて流体潤滑の状態にすみやかに復帰
することができる。このときにも、第1図に示す構造で
あると、Si粒子2の近傍にSn −pb合金粒子3が
存在し、この合金は溶融状態でも潤滑油と親和性があり
、このため、油切れを起こしにくい。また、相手軸と8
1粒子とのR原で、Si粒子が高温になっても、5i−
Pbの融解熱で熱吸収され、近傍の7トリツクスのAl
の合金と相手軸との焼付きが起こりにくくなる。又、こ
の時にも第2図に示す如く、Si粒子2に隣接するSn
 −Pb合金粒子3の少なくとも一部が液相化しており
、この液相3aが81粒子2の突出面に供給される。こ
の供給量は温度の上昇とともに、5−えて、81粒子2
の潤滑面には常に5n−Pbの液相3aが介在するため
、オーバーヒー1を未然に防止できる。要するに、81
粒子2が球状化し、これに5n−Pb合酋粒子3が隣接
する構造は、境界潤滑状態(油膜が切れた)で非常に有
効であり、また、普通の流体潤滑状態でも、硬い51粒
子2が相手軸に適切になじみ、かつ、やわらかい5n−
pb層におおわれ、これがシコックアブソーバー的な働
きをする。
In the bearing with the configuration shown in Fig. 1, the lubricating surface that supports the shaft load is the tip of the 81 particles 2 protruding from the surface of the matrix 1, and the 'a film is interposed between the 81 particles and the mating shaft. , fluid lubrication is maintained. However, this oil film ruptures when subjected to a rapidly fluctuating load, reaching local boundary lubrication.
If the F lume is present, seizure can be prevented, and moreover, the 'a film can be normally regenerated and the state of fluid lubrication can be quickly restored. At this time as well, with the structure shown in Fig. 1, Sn-pb alloy particles 3 are present near the Si particles 2, and this alloy has an affinity for lubricating oil even in the molten state, so it is possible to drain the oil. Hard to cause. Also, the mating shaft and 8
In the R source with 1 particle, even if the Si particle becomes high temperature, 5i-
Heat is absorbed by the heat of fusion of Pb, and the nearby 7-trix Al
Seizure between the alloy and the mating shaft is less likely to occur. Also, at this time, as shown in FIG. 2, the Sn adjacent to the Si particles 2
At least a portion of the -Pb alloy particles 3 are in a liquid phase, and this liquid phase 3a is supplied to the protruding surfaces of the 81 particles 2. As the temperature increases, this supply amount increases by 5 to 81 particles to 2.
Since the 5n-Pb liquid phase 3a is always present on the lubricated surface, overheating 1 can be prevented. In short, 81
The structure in which the particles 2 are spherical and the 5n-Pb combined particles 3 are adjacent to them is very effective in boundary lubrication conditions (oil film has broken), and even in normal fluid lubrication conditions, the hard 51 particles 2 5n- which fits properly into the mating shaft and is soft
It is covered with a PB layer, which acts like a shock absorber.

史に、1ぐれた潤滑面を得る為には81粒子やSn −
Pb合金粒子を支持する強靭なマトリックスが必要であ
る。すなわち、前記!許請求の範囲に記載の如く限定す
る理由と、その作用効果(相乗効果を含む)について各
々の元素について列記する。
Historically, in order to obtain an excellent lubricating surface, 81 particles or Sn −
A strong matrix is required to support the Pb alloy particles. Namely, the above! The reasons for the limitations as described in the claims and their effects (including synergistic effects) will be listed for each element.

(1)Sn7〜20%: Snはpbと共にAlマトリックス中に分散して存在し
、軸受が基本的に必要とする耐焼付性、埋収性、なじみ
性を担う金属である。1%未満ではその耐焼付性の効果
if得られず、20%以上ではSn相が三次元的に連続
化し、強度をそこねる。
(1) 7 to 20% Sn: Sn exists dispersed in the Al matrix together with PB, and is a metal that provides the seizure resistance, embeddability, and conformability that bearings basically require. If it is less than 1%, the anti-seizure effect cannot be obtained, and if it is more than 20%, the Sn phase becomes three-dimensionally continuous, impairing the strength.

(2) Pb O,1〜5%: pbは上記SOと共存し、 Snの持つ耐焼付性、埋収
性、なじみ性の能力をより効上させ、かつ親油性、非凝
着性にすぐれ、少量の深h口でも潤滑性能を飛躍的に向
上させる。その黴は0.1%以下では上記効果を発揮で
きず、5%以上は実質的にAlマトリックス中にsnと
共存させ、均一に分散させることが事実上不可能となる
(2) Pb O, 1 to 5%: Pb coexists with the above SO and makes the anti-seizure, embedding, and conformability abilities of Sn more effective, and has excellent lipophilicity and non-adhesive properties. , dramatically improves lubrication performance even with a small amount of deep hole. If the mold is less than 0.1%, it will not be able to exhibit the above effect, and if it is more than 5%, it will substantially coexist with sn in the Al matrix, making it virtually impossible to uniformly disperse it.

(SiSi 1〜10%: Al軸受に非焼付性、耐荷重性、耐摩耗性を付与する重
要な元素で、1%以下では添加効果は認められず、10
%以上では合金が硬くなり延性がな(なり、かえって耐
荷重性を阻害する。
(SiSi 1 to 10%: An important element that provides anti-seizure properties, load resistance, and wear resistance to Al bearings. If it is less than 1%, no effect is observed;
% or more, the alloy becomes hard and loses ductility, which actually impairs load-bearing properties.

(410u、 Mg、Inのうち1種若しくは2種以上
を合計で0.3〜3%: Cu、Mg、10はAlマトリックスを強化する基本的
元素で熱処理を適切に施すことで、その効果を発揮する
。その量は0.3%以下では添加効果はみられず、又、
3%以上ではAlと化合物をつ(す、かえって材料の延
性を阻害する。
(A total of 0.3 to 3% of one or more of 410u, Mg, and In: Cu, Mg, and 10 are basic elements that strengthen the Al matrix, and their effects can be enhanced by applying appropriate heat treatment. If the amount is less than 0.3%, no effect is seen, and
If it exceeds 3%, it will form a compound with Al, which will actually impede the ductility of the material.

(510r%Mn、 Fe、 Ni、C01Ti、 v
、 Zrのうち1種若しくは2種以上を合計で0.01
〜1.0%:これらの元素は何れも化合物を作りやすい
元素で少量の添加で7トリツクスの硬度ヤ強度を上げる
ことができる。特に、適量の添加によって耐疲労性や耐
摩耗性、高温での強度保持に有効である。添加患は0.
01%以下ではその効果はなく、1%以上では化合物が
粗大化し、かえって合金強度を下げる。
(510r%Mn, Fe, Ni, C01Ti, v
, a total of 0.01 of one or two or more of Zr
~1.0%: All of these elements are elements that easily form compounds, and adding a small amount can increase hardness and strength by 7 trix. In particular, when added in an appropriate amount, it is effective in improving fatigue resistance, wear resistance, and maintaining strength at high temperatures. Additional disease is 0.
If it is less than 0.01%, there is no effect, and if it is more than 1%, the compound becomes coarse and the alloy strength is reduced.

+6) St) 0.01〜0.1%:SbはSi粒子
を球状、だ円状若しくは先端が丸味をおびる形状として
分散析出させる効果を持つ。この効果を持たせる為には
、0.01〜0.1%の添加が最も好ましく 、0.0
1%以下ではSi粒子の形状に影響を与えず、又、0.
1%以上加えてもsn相内部に析出し、51粒子の改良
には役にたたない。
+6) St) 0.01 to 0.1%: Sb has the effect of dispersing and precipitating Si particles into a spherical, elliptical, or rounded tip shape. In order to have this effect, it is most preferable to add 0.01 to 0.1%, and 0.0
If it is less than 1%, it does not affect the shape of Si particles, and if it is less than 0.
Even if it is added in an amount of 1% or more, it will precipitate inside the sn phase and will not be useful for improving the 51 grains.

実施例 次に、本発明の実施例について説明する。Example Next, examples of the present invention will be described.

実施例1゜ ます、第1表に示す組成のAl −Sn系軸受台金を連
続持運により厚さ20 msの板状材として鋳造し、各
鋳造ビレットの上下面を1.0關面削し続いて冷間圧延
により2關の厚さまで圧下した。
Example 1 First, an Al-Sn bearing base metal having the composition shown in Table 1 was continuously cast as a plate material with a thickness of 20 ms, and the upper and lower surfaces of each cast billet were ground by 1.0 mm. Subsequently, it was reduced to a thickness of 2 mm by cold rolling.

この状態で300〜350℃の熱処理を行なってひずみ
を除去し、その後、ll[iAJの薄い板を介して裏金
の鉄板に圧着させて厚み1.50mの軸受を得た。
In this state, a heat treatment was performed at 300 to 350° C. to remove strain, and then the bearing was crimped to a steel backing plate through a thin plate of ll[iAJ to obtain a bearing with a thickness of 1.50 m.

これらの軸受のうちで、供試材Ni1〜5は従来例の供
試材であり、1に6〜20は本発明に係るもので、この
中で、Ns、 6〜12はSi球状化の為にSbを添加
しかつ7トリツクス添加の為にCUを加え、その他ニC
r、 Mn、 Fe、 Go%Niをそれぞれ添加し、
結晶粒微細化のためにTiを少量添カロしたもの、供試
材&13〜20は、上記添加元素を適切に組合わせ添加
したものである。
Among these bearings, test materials Ni 1 to 5 are conventional test materials, and 1 to 6 to 20 are those according to the present invention, among which Ns and 6 to 12 are Si spheroidized. Sb was added for the purpose of addition, CU was added for the 7-trix addition, and other
Add r, Mn, Fe, Go%Ni, respectively,
Sample materials &13 to 20, in which a small amount of Ti was added for grain refinement, were added in appropriate combinations of the above additive elements.

これらの各供試材は、軸受として使用される常温及び2
00℃の機械的性質を見るために、引張強度、伸びなら
びに硬さの試験を行ない、これを第2表に示した。なお
、各供試材は裏当金を機械加工により削除してAl−5
n合金部分のみとし、試験片の形状は月S z 220
1の5号に示すものとした。
Each of these test materials was used as a bearing at normal temperature and
To examine the mechanical properties at 00°C, tensile strength, elongation and hardness tests were carried out and are shown in Table 2. In addition, the backing metal of each sample material was removed by machining and made into Al-5.
Only the n alloy part is used, and the shape of the test piece is Moon S z 220.
1, No. 5.

これらの結果から、供試材6〜20は従来材に比べ、高
温(200℃)における強度低下が少なく、CLI、 
MQ、Zn及びCr、 Mn、 Fe、 Go、Ni、
 Ti、V、ZrのA加効果がうががえる。すなわち、
Slの球状化及びマトリックス強化が相開されて強度や
伸びが改善されたものと考えられる。又、伸びも従来例
に比べて向上しており、高温での総合的な機械的性質は
向上したと言える。
From these results, compared to conventional materials, specimens 6 to 20 showed less strength loss at high temperatures (200°C), CLI,
MQ, Zn and Cr, Mn, Fe, Go, Ni,
The A-adding effects of Ti, V, and Zr can be clearly seen. That is,
It is thought that the strength and elongation were improved due to the phase opening of Sl spheroidization and matrix reinforcement. Furthermore, the elongation was improved compared to the conventional example, and it can be said that the overall mechanical properties at high temperatures were improved.

次に、供試材の耐焼付性と耐摩耗性を知るために、鈴木
弐a原摩耗試験機を用いて試験し、その試験条件は次の
通りであった。
Next, in order to find out the seizure resistance and abrasion resistance of the sample materials, a test was conducted using a Suzuki Ni-ahara abrasion tester, and the test conditions were as follows.

マサツ速度  4m1sec 相手材 345G、硬さH,C−55 面アラサ0.8へ1.O8 使用オイル  SAE、 20w−40′a   温 
 150±5℃ 焼付荷重 100ktJ/CF’がら10klJ/13
2stepで焼付きに至るまで15分毎に面圧を上げて
ゆき、焼付きをおこした面圧を焼付荷重とする 耐摩耗性 一方、耐摩耗性をみるために100kq/I
]2一定で6時間試験し、その後の重量変化をみる口の
結果を第2表に示す。
Massage speed 4m1sec Mating material 345G, hardness H, C-55 Surface roughness 0.8 1. O8 Oil used SAE, 20w-40'a temperature
150±5℃ Seizure load 100ktJ/CF' to 10klJ/13
Wear resistance: Increase the surface pressure every 15 minutes until seizure occurs in 2 steps, and use the surface pressure at which seizure occurs as the seizure load.On the other hand, to check the wear resistance, we applied 100kq/I.
] 2 The test was carried out at a constant temperature for 6 hours, and the results of the subsequent weight change are shown in Table 2.

これによれば、供試材6〜20の何れも従来材に比べ良
好な耐焼付性、耐摩耗性を示しており、Sb添加及びマ
トリックス強化元素添加により表面性能も向上している
ことがわかる。すなわら、本発明に係る合金はすぐれた
潤滑機構を有していることを示している。
According to this, all of test materials 6 to 20 exhibit better seizure resistance and wear resistance than conventional materials, and it can be seen that the addition of Sb and matrix-strengthening elements also improves surface performance. . This indicates that the alloy according to the present invention has an excellent lubrication mechanism.

次に、実際に、各供試材をベアリング形状に加工し、最
殺的なベアリングの疲労テストを1′:iなったところ
、第2表に示す結果を1qだ。これは実際のエンジンの
条件とほぼ同じようにベアリングをコンロッドに固定し
、軸に偏心荷重をかけて、以下の条件で耐久テストを行
ない、焼付きや破損を起さず、その性能をH持した時間
の長さで評価するテストである。
Next, we actually machined each sample material into a bearing shape and conducted the most lethal bearing fatigue test of 1':i, and the results shown in Table 2 were 1q. This test was carried out under the following conditions, with the bearing fixed to the connecting rod and an eccentric load applied to the shaft, almost the same as in an actual engine. This is a test that evaluates the length of time spent.

なお、テスト条件は次の通りである。Note that the test conditions are as follows.

面     圧   800kgf/c12回  転 
 数   400Cr、p、1相手材料   FCロア
0、アラサ0.8〜1.5S使用オイル  SAE 2
0v−40 油     i    150℃+5”Cなお、この元
スト時間の上限は300時間とし、N=5の平均値を第
2表に示した。この結果、何れも比較例の従来材に比べ
長い耐久時間を示しており、本発明に係る合金はすぐれ
た耐疲労性−万、従来例&、2の合金と更にSbを0.
03%添加した場合(供試材N17)におけるSlの形
態の変化を示すと、第6図ならびに第7図の通りであっ
た。すなわち、第6図ならびに第7図は従来例の合金と
本発明に係る合金の顕微鏡組織を示す各説明図であって
、とくに、それぞれの試料を8粒の形状がわかるように
深くエツチングし、電子顕微鏡を用いて撮影したもので
ある。これら図面から明確に解るように、第6図の如く
、従来例では粒子2が全く球状化していないのに反し、
本発明ではSbの添加により81粒子2のエツジ部が球
状化していることがわかる。
Surface pressure 800kgf/c 12 rotations
Number 400Cr, p, 1 Mating material FC lower 0, roughness 0.8~1.5S Oil used SAE 2
0v-40 Oil i 150°C + 5"C Note that the upper limit of this original strike time is 300 hours, and the average value of N = 5 is shown in Table 2. As a result, both are longer than the conventional material of the comparative example. The durability time is shown, and the alloy according to the present invention has excellent fatigue resistance.
6 and 7 show the changes in the morphology of Sl in the case of adding 0.3% (sample material N17). That is, FIGS. 6 and 7 are explanatory diagrams showing the microscopic structures of the conventional alloy and the alloy according to the present invention. In particular, each sample was deeply etched so that the shapes of eight grains could be seen, This photo was taken using an electron microscope. As can be clearly seen from these drawings, in contrast to the conventional example where the particles 2 are not spherical at all as shown in FIG.
It can be seen that in the present invention, the edge portions of 81 particles 2 are spherical due to the addition of Sb.

実施例2゜ 本発明に係る軸受台金が高融点金属等をAlマトリック
スの強化剤として添加して、合金の脆弱化を改善する効
果があるか否かを確認するため、代用特性として衝撃値
を測定し、Sbの添加作用による改善効果を実験によっ
て求めた。
Example 2 In order to confirm whether or not the bearing base metal according to the present invention has the effect of improving the brittleness of the alloy by adding a high melting point metal etc. as a reinforcing agent to the Al matrix, the impact value was measured as a substitute property. was measured, and the improvement effect due to the addition of Sb was determined through experiments.

実験の供試材として、実施例1の第1表に示す従来材で
あるSbを含まないに5と本発明に係るものであるNo
、 20にて比較実験を行なった。
As test materials for the experiment, the conventional material No. 5, which does not contain Sb, and the material No. 5 according to the present invention shown in Table 1 of Example 1 were used.
, 20, a comparative experiment was conducted.

実験はJIS Z 2242、シャルピー衝撃試験方法
にて3号試験片(n=5)を作成して行なった。
The experiment was conducted using No. 3 test pieces (n=5) prepared according to JIS Z 2242 and the Charpy impact test method.

実験の結果従来材は平均II0.84k[J・m、/r
fであったが、本発明に係るものは平均[3,20kq
 −MCI2であり、明らかに本発明に係る軸受台金は
5bH1加により改善効果が認められた。
As a result of the experiment, the average II of the conventional material was 0.84k [J・m,/r
f, but the one according to the present invention has an average [3,20 kq
-MCI2, and the bearing base metal according to the present invention clearly showed an improvement effect by adding 5bH1.

〈発明の効果〉 以上詳しく説明した通り、本発明は、型出06で7〜2
0%5O10,1〜5%l1l)、1〜10%Siなら
びにCu、Mg、Znのうち1種若しくは2種以上を会
計で0.3〜3.0%を含むと共に、Cr、 Mn、 
Fe、 N+、GO1■1、V、Zrのうち1種若しく
は2種以上を会計で0゜01〜1.0%含有し、残余が
実質的にAlから成るAX−3ri系軸受合金において
、 0.01〜0.1%のSbを添加してAj?マトリ
ックス中にSi粒子を球状、だ円状若しくは先端が丸味
をおびる形状として分散、析出させて成るもので、この
構成による本発明軸受合金は極めて、潤滑性に優れ、か
つ、100〜250℃の高温における機械的性質が極め
て良好であり、高負荷運転による使用条件の苛酷さに十
分に耐える軸受台金である。
<Effects of the Invention> As explained in detail above, the present invention achieves the
0%5O10, 1~5%l1l), 1~10%Si and one or more of Cu, Mg, and Zn in an amount of 0.3~3.0%, as well as Cr, Mn,
In an AX-3ri bearing alloy containing one or more of Fe, N+, GO1■1, V, and Zr in an amount of 0.01 to 1.0%, the balance is substantially Al. Aj? by adding .01 to 0.1% Sb? It is made by dispersing and precipitating Si particles in a matrix in a spherical, elliptical, or rounded tip shape, and the bearing alloy of the present invention with this structure has extremely excellent lubricity and can withstand temperatures of 100 to 250°C. This bearing base metal has extremely good mechanical properties at high temperatures and can fully withstand the harsh conditions of use caused by high-load operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一つの実施例に係る軸受台金の一部の
拡大断面図、第2図は第1図に示す軸受台金のrIJ滑
機構の説明図、第3図ならびに第4図は従来例の軸受の
一部の各拡大断面図、第5図は第4図の軸受台金の一部
の拡大断面図、第6図は従来例に係る軸受台金の組織を
示す説明図、第1図は本発明に係る軸受台金の組織を示
す説明図である。 符号1・・・・・・マトリックス 2・・・・・・Si
粒子3・・・・・・5n−Pb合金粒子 3a・・・・・・Sロールb液相 4・・・・・・オーバーレイメツキ冒 5・・・・・・軸受合金層  6・・・・・・裏金特許
出願人 工ヌデーシー株式会社 代 理 人 弁理士 松 下 義 勝 弁護士 副 島 文 雄 第3図 第4図 第5図 第1 3Sト)剖は■ 第2 第6図 手 続 補 正 書 5、補正命令の日付 自発 6、補正により増加する請求項の数 なし 特 許 庁 艮 官 吉 田 文 毅 殿 1、補正の対象 明細書全文 8、補正の内容 別紙の通り 3、補正をする者 事件との関係
FIG. 1 is an enlarged sectional view of a part of a bearing base metal according to one embodiment of the present invention, FIG. 2 is an explanatory diagram of the rIJ sliding mechanism of the bearing base metal shown in FIG. 1, and FIGS. The figure is an enlarged sectional view of a part of a conventional bearing, FIG. 5 is an enlarged sectional view of a part of the bearing base metal of FIG. 4, and FIG. 6 is an explanation showing the structure of the bearing base metal of the conventional example. FIG. 1 is an explanatory diagram showing the structure of a bearing base metal according to the present invention. Code 1...Matrix 2...Si
Particles 3...5n-Pb alloy particles 3a...S roll b Liquid phase 4...Overlay plating 5...Bearing alloy layer 6... ...Secret money patent applicant KonuDC Co., Ltd. Agent Patent attorney Yoshikatsu Matsushita Attorney Fumihiro Soejima Figure 3 Figure 4 Figure 5 Figure 1 3S) Autopsy ■ 2 Figure 6 Procedural amendment 5 , the date of the amendment order 6, the number of claims increased by the amendment, Mr. Yoshida Fumiki, an attorney at the Patent Office, 1, the full text of the specification subject to the amendment 8, the content of the amendment as shown in the attached sheet 3, the relationship between the person making the amendment and the case. relationship

Claims (1)

【特許請求の範囲】[Claims] 1)重量%で7〜20%Sn、0.1〜5%Pb、1〜
10%SiならびにCu、Mg、Znのうち1種若しく
は2種以上を合計で0.3〜3.0%を含むと共に、C
r、Mn、Fe、Ni、Co、Ti、V、Zrのうら1
種若しくは2種以上を合計で0.01〜1.0%含有し
、残余が実質的にAlから成るAl−Sn系軸受合金に
おいて、0.01〜0.1%のSbを添加してAlマト
リックス中にSi粒子を球状、だ円状若しくは先端が丸
味をおびる形状としての分散、析出させることを特徴と
するAl−Sn系軸受合金。
1) 7-20% Sn, 0.1-5% Pb, 1-20% by weight
Contains 10% Si and one or more of Cu, Mg, and Zn in a total of 0.3 to 3.0%, and C
r, Mn, Fe, Ni, Co, Ti, V, Zr back 1
In an Al-Sn bearing alloy containing one or more species in a total amount of 0.01 to 1.0%, with the remainder being substantially Al, 0.01 to 0.1% of Sb is added to produce Al. An Al-Sn bearing alloy characterized in that Si particles are dispersed and precipitated in a matrix in a spherical, elliptical, or rounded tip shape.
JP8844789A 1989-04-07 1989-04-07 Al-Sn bearing alloy Expired - Lifetime JPH0717980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8844789A JPH0717980B2 (en) 1989-04-07 1989-04-07 Al-Sn bearing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8844789A JPH0717980B2 (en) 1989-04-07 1989-04-07 Al-Sn bearing alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61061096A Division JPH0617529B2 (en) 1985-09-13 1986-03-18 Al-Sn-Pb-Si bearing alloy

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP13304189A Division JPH0277541A (en) 1989-05-26 1989-05-26 Al-sn bearing alloy
JP13304289A Division JPH0277542A (en) 1989-05-26 1989-05-26 Al-sn bearing alloy
JP13304089A Division JPH0277540A (en) 1989-05-26 1989-05-26 Al-sn bearing alloy
JP29611893A Division JPH0711046B2 (en) 1993-11-01 1993-11-01 Al-Sn bearing alloy

Publications (2)

Publication Number Publication Date
JPH0257653A true JPH0257653A (en) 1990-02-27
JPH0717980B2 JPH0717980B2 (en) 1995-03-01

Family

ID=13943055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8844789A Expired - Lifetime JPH0717980B2 (en) 1989-04-07 1989-04-07 Al-Sn bearing alloy

Country Status (1)

Country Link
JP (1) JPH0717980B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132788A1 (en) 2010-04-22 2011-10-27 大豊工業株式会社 Bearing device
CN110892164A (en) * 2018-05-25 2020-03-17 大丰工业株式会社 Sliding member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132788A1 (en) 2010-04-22 2011-10-27 大豊工業株式会社 Bearing device
US9518603B2 (en) 2010-04-22 2016-12-13 Taiho Kogyo Co., Ltd. Bearing apparatus
CN110892164A (en) * 2018-05-25 2020-03-17 大丰工业株式会社 Sliding member
US10941810B2 (en) 2018-05-25 2021-03-09 Taiho Kogyo Co., Ltd. Sliding member

Also Published As

Publication number Publication date
JPH0717980B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
US4789607A (en) Aluminum bearing alloy and two-layer bearing material having bearing layer of aluminum bearing alloy therein
US6334914B2 (en) Copper alloy sliding material
JP2679920B2 (en) Sliding bearing material with overlay with excellent anti-seizure property
JP3373709B2 (en) Copper-based sliding bearing materials and sliding bearings for internal combustion engines
JP3249774B2 (en) Sliding member
US4170469A (en) Aluminum base bearing alloy and a composite bearing made of the alloy with a steel backing plate
US6692548B2 (en) Copper-based sliding material, method of manufacturing the same, and sliding bearing
KR20090110380A (en) Slide bearing
JP2004277883A (en) Hot-worked aluminum alloy and base layer and bearing element made from the alloy
US5334460A (en) CU-PB system alloy composite bearing having overlay
JP3570607B2 (en) Sliding member
WO2012147780A1 (en) Sliding material, alloy for bearing, and multilayer metal material for bearing
US5482782A (en) Sliding-contact material excellent in corrosion resistance and wear resistance, and method of manufacturing the same
US4471033A (en) Al-Si-Sn Bearing alloy and bearing composite
JPS6263635A (en) Al-sn-pb bearing alloy
JPH0257653A (en) Al-sn bearing alloy
JP3339780B2 (en) Sliding material with excellent wear resistance
US4471031A (en) Al-Si-Pb Bearing alloy and bearing composite
JPS61153255A (en) Al-sn bearing alloy
US5766777A (en) Composite copper alloy bearing
JPH0711046B2 (en) Al-Sn bearing alloy
JPH0347934A (en) Al-sn-pb series bearing alloy
JPS62218538A (en) Al-sn bearing alloy
JPH0257654A (en) Al-sn-pb bearing alloy
JPH0277546A (en) Al-sn-pb bearing alloy