JPH0277542A - Al-sn bearing alloy - Google Patents

Al-sn bearing alloy

Info

Publication number
JPH0277542A
JPH0277542A JP13304289A JP13304289A JPH0277542A JP H0277542 A JPH0277542 A JP H0277542A JP 13304289 A JP13304289 A JP 13304289A JP 13304289 A JP13304289 A JP 13304289A JP H0277542 A JPH0277542 A JP H0277542A
Authority
JP
Japan
Prior art keywords
alloy
bearing
matrix
particles
bearing alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13304289A
Other languages
Japanese (ja)
Inventor
Masahito Fujita
正仁 藤田
Akira Ogawara
大河原 章
Takeshi Sakai
坂井 武志
Toshihisa Ogaki
大垣 俊久
Takeshi Osaki
剛 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP13304289A priority Critical patent/JPH0277542A/en
Publication of JPH0277542A publication Critical patent/JPH0277542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To obtain the title bearing alloy capable of high-speed and high-load driving and having excellent fatigue resistance, seizure resistance and wear resistance at high oil temp. by adding and incorporating specific amounts of Sb to an Al-Sn bearing alloy contg. the elements for the strengthening and hardening of Si and matrix metal. CONSTITUTION:To an Al-Sn bearing alloy having the compsn. contg., by weight, 7 to 20% Sn, 0.1 to 5% Pb and 1 to 1 0% Si, furthermore contg. total >0.01 to <1.0% of one or more kinds of elements improving the hardness and strength of matrix metal among Cr, Mn, Fe, Ni, Co, Ti, V, Zr, etc., and the balance Al, >0.01% to <0.1 % Sb is added. By the addition of Sb, hard Si grains 2 having spherical shape or roundish shape in the tip are dispersed and precipitated in an Al matrix 1 having improved strength and hardness by the metal to be added such as Cr and Sn-Pb alloy grains 3 easy to form a liquid phase 3a are precipitated adjacently to the Si grains 2 to form a lubricating oil film between the Si grains projecting from the surface of the matrix and the sliding mating members, by which the bearing alloy having excellent characteristics can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はAJ−Sn系軸受合金に係り、詳しくは、マト
リックス中にSi粒子ff球状若しくはそれに近い形状
に析出され、しかも、高速・高負荷運転が可能で、なか
でも、高油温下において特に耐疲労性且つ耐焼付性、耐
摩耗性にすぐれるAl−8n系軸受台金に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an AJ-Sn bearing alloy, and more specifically, Si particles are precipitated in a matrix in a spherical or nearly spherical shape, and which is suitable for high-speed and high-load operation. In particular, the present invention relates to an Al-8n bearing base metal which is particularly excellent in fatigue resistance, seizure resistance, and wear resistance under high oil temperatures.

従  来  の  技  術 最近の自動革用エンジンは、小型化、省燃費、高出力の
ものとなり、これにともなって軸受にかかる荷重が増加
すると共に、潤滑油の温度が上昇し、軸受の使用条件は
苛酷化の一途をたどっている。この点から、従来例の多
元系やAl系等では、軸受台金の表面にはオーバーレイ
メツキ等により1)b−Sn系等の表面■が形成されて
いるが、この構造の軸受では、潤滑面の高温化により疲
労や焼付現象にみまわれ、上記の苛酷な使用条件に耐え
られなくなっている。そこで最近は、オーバーレイメツ
キ等によって表面間が形成されない軸受が求められてい
る。しかしながら、この種の軸受でも、上記の苛酷な使
用条件では、必ずしも安定した性能を発揮できないのが
現状である。
Conventional technology Recently, automatic engines have become smaller, more fuel efficient, and have higher output.As a result, the load on the bearings has increased, the temperature of the lubricating oil has increased, and the operating conditions of the bearings have changed. is becoming increasingly severe. From this point of view, in conventional multi-component systems, Al systems, etc., the surface of the bearing base metal is formed with 1) b-Sn system surface (2) by overlay plating, etc., but in bearings with this structure, lubrication Due to the high temperature of the surface, fatigue and seizure phenomena occur, making it unable to withstand the harsh usage conditions mentioned above. Therefore, recently there has been a demand for bearings in which no space between surfaces is formed by overlay plating or the like. However, the current situation is that even this type of bearing cannot necessarily exhibit stable performance under the above-mentioned severe usage conditions.

すなわら、表面にオーバーレイメツキ順を有する軸受は
、−膜内には、JIS I+ 5402、AJ−1(1
0%Sr+、0,75%Cu、 0.5%N1、A I
 Ba l lや、JIS H5402、AJ−2+6
%Si1.2,596Cu、1.0%N1、A/Ba/
)等のJIS規格、SAE 7130+6%5O12%
Si.1%Cu、 0.5%Ni、 0.?9(、Ti
、AluallWの5AEXJ!格に示される通り、そ
の軸受合金部分はSO含有量が比較的少ない低Sn−A
J合金から成って、これら軸受合金部分の軸受面は何れ
もPb −Sn系合金のオーバーレイメツキ層が形成さ
れている。
In other words, bearings with an overlay plating order on the surface must have - JIS I+ 5402, AJ-1 (1
0%Sr+, 0.75%Cu, 0.5%N1, A I
Bal, JIS H5402, AJ-2+6
%Si1.2,596Cu, 1.0%N1, A/Ba/
) etc. JIS standards, SAE 7130+6%5O12%
Si. 1%Cu, 0.5%Ni, 0. ? 9(, Ti
, AllualW's 5AEXJ! As shown in the figure, the bearing alloy part is low Sn-A with relatively low SO content.
J alloy, and an overlay plating layer of a Pb--Sn alloy is formed on the bearing surfaces of these bearing alloy parts.

しかし、これら軸受は、近年の高負荷、高温の使用条件
下では表面のオーバーレイメツキIIが摩滅して焼付き
に至り、使用に耐えられなくなっている。これに対し、
表面にオーバーレイメツキ曝を形成しない軸受は、SA
E 783(20%Sr+、0.5%Si.1.0%C
u、0.1%■1、llBa1lに示される通り、Sn
含有Ii!′f多い高Sn−At台金から成っている。
However, in recent years, under the high-load, high-temperature operating conditions, the overlay plating II on the surface of these bearings has worn away, resulting in seizure, making them unusable. In contrast,
Bearings that do not have overlay plating on the surface are SA
E 783 (20%Sr+, 0.5%Si.1.0%C
u, 0.1% ■1, llBa1l, Sn
Containment Ii! It consists of a high Sn-At base metal.

しかし、このようにSnが20%程度の如く多(含まれ
る合金は、硬度が低(、Agマトリックスが弱くなるた
め、高負荷に耐えられない。
However, alloys containing as much as 20% Sn have low hardness and cannot withstand high loads because the Ag matrix becomes weak.

また、Sn含有伍の多少に拘らず、At−Sn系合金中
にI)bを添加して潤滑性を増進させ、耐焼付性をもた
せた軸受台金が、例えば、水野昂−著昭和29年日刊工
業新聞社発行r軸受台金ノ第139頁に記載され、この
軸受台金は10%Sn、1.5%Cu、0.5%Siを
含むとともに3%pbをAカロして成るA l −Sn
 −Pb系合金である。
In addition, regardless of the Sn content, bearing base metals in which I)b is added to At-Sn alloys to improve lubricity and seizure resistance are available, for example, by Kou Mizuno, published in 1953. This bearing base metal contains 10% Sn, 1.5% Cu, 0.5% Si, and 3% Pb is added to A Calo. Al-Sn
- It is a Pb-based alloy.

史に、このAl−Sn−P’O系合金では、PbtfA
llとはほとんど固溶しないため、このpbの分散性の
向上のために、Sbを添加したAl1−Sn−Pb〜S
b系合金が特公昭52−121Si号に記載され、更に
、Atマトリックス強化のためにCrを添加した八l 
−Sn−Pb−3b−Cr系合金が特公昭58−189
85号に記載されている。しかし、これらのA l −
Sn−Pb系合金は通常運転時の潤滑性の向上を目的と
して開発されたもので、高負荷運転条件では十分なf!
4疲労性を示さない欠点がある。
Historically, in this Al-Sn-P'O alloy, PbtfA
Since there is almost no solid solution with pb, in order to improve the dispersibility of pb, Al1-Sn-Pb~S to which Sb is added is added.
B-based alloys are described in Japanese Patent Publication No. 121-121-1988, and furthermore, 8L alloys are added with Cr to strengthen the At matrix.
-Sn-Pb-3b-Cr alloy was published in 1989-189
It is described in No. 85. However, these A l −
The Sn-Pb alloy was developed with the aim of improving lubricity during normal operation, and has sufficient f! under high-load operating conditions.
4) It has the disadvantage of not exhibiting fatigue properties.

この理由は、通常の運転下に比べると、高負荷運転下の
軸と軸受との潤滑機構は根本的に相違するからである。
The reason for this is that the lubrication mechanism between the shaft and bearing under high load operation is fundamentally different from that under normal operation.

そこで、高負荷運転下の潤滑機構につき、基本的な検討
が行なわれ、その一つとしてAl−Sn系合金中に粗大
なSlを分散析出させたものが特開昭58−64336
号によって提案されている。
Therefore, basic studies were conducted on the lubrication mechanism under high load operation, and one of the studies was published in Japanese Patent Application Laid-Open No. 58-64336, in which coarse Sl was dispersed and precipitated in an Al-Sn alloy.
It is proposed by No.

この軸受は硬いS1析出物により切削力を持たせたもの
であって、切削力を持つが故に、相手軸の表面凹凸部が
削られて平坦化し、軸受性能を向上させるものである。
This bearing has a cutting force due to the hard S1 precipitate, and because it has the cutting force, the surface unevenness of the mating shaft is scraped and flattened, improving the bearing performance.

更に詳しく説明すると、球状若しくは片状の黒鉛を析出
させた黒鉛鋳鉄から成る相手軸の表面には、研摩加工時
に脱落した黒゛鉛粒子のあとに凹部が残り、この四部周
囲には硬く加工硬化したパリやエツジ等の凸部が生成し
ている。従って、上記の如きAl1−8n系、Al −
8n−Pb系等の軸受台金では、これら凹凸部により高
負荷運転時には異常摩耗が発生し易い。これに対し、上
記の粗大なSlを分散析出させた軸受台金では、硬いS
lの析出物により切削力が付与されているために、相手
軸の凹凸部分は機械的に切削されて平坦化され、これ故
に、異常摩耗や焼付きが起らない。
To explain in more detail, on the surface of the mating shaft made of graphite cast iron on which spherical or flaky graphite has been precipitated, recesses remain after the graphite particles that fell off during polishing, and the area around these four parts is hard and work-hardened. Convex parts such as peaks and edges are generated. Therefore, Al1-8n system as mentioned above, Al-
In a bearing base metal made of 8n-Pb or the like, abnormal wear is likely to occur during high-load operation due to these uneven portions. On the other hand, in the bearing base metal in which the coarse Sl is dispersed and precipitated, the hard S
Since the cutting force is applied by the precipitates of 1, the uneven portions of the mating shaft are mechanically cut and flattened, so that abnormal wear and seizure do not occur.

しかしながら、相手軸が黒鉛鋳鉄以外の場合には、高負
荷運転のときに、かえって粗大なS1析出物によって相
手軸の表面が不規則にけずられ、焼付きが発生し、大き
な障害が生じる。
However, if the mating shaft is made of a material other than graphite cast iron, the coarse S1 precipitates may scratch the surface of the mating shaft irregularly during high-load operation, causing seizure and causing major problems.

発明が解決しようとする課題 本発明は上記欠点の解決を目的とし、具体的には、従来
例のA/−Sn系軸受合金では、潤滑性向上のためにs
nやllb等の含有量を高めたり、更に、11マトリツ
クスの強化を目的としてCr、Sb等やMo、N+等の
元素を添加していたが、これらの元素によってAlマト
リックスの硬度を増すことはできても、逆にA1合金が
脆弱となり高負荷運転時には殆んど高温下(100〜2
50℃)での耐疲労性を示さないということが解った。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned drawbacks. Specifically, in the conventional A/-Sn bearing alloy, s is added to improve lubricity.
Elements such as Cr, Sb, Mo, and N+ have been added for the purpose of increasing the content of n and llb, and further strengthening the 11 matrix, but these elements cannot increase the hardness of the Al matrix. Even if it is possible to do so, the A1 alloy becomes brittle and must be used under high temperatures (100~200℃) during high load operation.
It was found that it did not exhibit fatigue resistance at temperatures (50°C).

そこでSiを球状に近い形で合金中に析出させることに
より耐焼付性、耐摩耗性の問題点を解決することを目的
とする。
Therefore, it is an object of the present invention to solve the problems in seizure resistance and wear resistance by precipitating Si in an almost spherical shape in the alloy.

従って、本発明は、最近のエンジンの高出力化に伴ない
、軸受部温度が上昇する傾向にあり、特に、この高温で
の耐疲労性が強く要求されることに着目し、従来のAJ
マトリックス強化元京牙添加するのにも拘らず、A1台
金の脆弱化を改善し、特に高温下での耐疲労性を高める
と共に更に高い耐焼付性、耐摩耗性を具えるAl−Sn
系軸受合金を提供する。
Therefore, the present invention focuses on the fact that the bearing temperature tends to rise with the recent increase in the output of engines, and that fatigue resistance is particularly strongly required at this high temperature.
Al-Sn improves the brittleness of the A1 base metal, improves fatigue resistance especially under high temperatures, and provides even higher seizure resistance and wear resistance despite the addition of matrix reinforcement Genkyoga.
bearing alloys.

課題を解決するための 手段ならびにその作用 すなわち、本発明は、重量?もで1〜20%sn、0.
1〜5%PI)、1〜10 ’?4 S iを含み、C
r、 Mn、[e、N1.001丁1、V%11・のう
ら1種若しくは2種以上を単味若しくは合mで0.01
%超1.0%未満含有し、残余が実質的にAlから成る
Al1−Sn系軸受台金において、0.01%超0.1
%未満のSbを添加してiマトリックス中にSi粒子を
球状、だ円状若しくは先端が丸味をおびる形状として分
散、析出させ、Sn −Pb合金に隣接して存在する構
造としたものから成ることを特徴とする。
Means for solving the problem and its operation, that is, the present invention solves the problem by weight? 1-20% sn, 0.
1-5% PI), 1-10'? 4 S i, including C
r, Mn, [e, N1.001 1, V%11.
% but less than 1.0%, with the remainder substantially consisting of Al, in an Al1-Sn bearing base metal containing more than 0.01% and less than 0.1%.
% of Sb is added to disperse and precipitate Si particles in the i-matrix in a spherical, elliptical, or rounded-tip shape, resulting in a structure that exists adjacent to the Sn-Pb alloy. It is characterized by

そごで、これら手段たる構成ならびにその作用について
更に詳しく説明すると、次の通りである。
Now, the structure of these means and their operation will be explained in more detail as follows.

まず、本発明は高温状態における耐疲労性を高めるため
に成されたちのである。
First, the present invention was made to improve fatigue resistance under high temperature conditions.

すなわち、従来例においては、単に高融点元素であるC
r、 Co、 Ni等を添加し、高温強度を高め、高温
下で硬さが急激に低下することを防止すると共に、耐摩
耗性を高めている。しかし、このように、Al −8n
系合金の高温状態における耐疲労性を高めるために、単
に高融点元素を添加すると、硬さは増すが、合金が脆弱
となり、引張強度、伸びならびに衝撃値が低下する欠点
が生じ、軸受台金としての耐疲労性を高めるのに有効な
手段に到っていない。
That is, in the conventional example, C, which is simply a high melting point element,
Addition of R, Co, Ni, etc. increases high-temperature strength, prevents sudden decrease in hardness at high temperatures, and improves wear resistance. However, in this way, Al-8n
Simply adding high-melting-point elements to increase the fatigue resistance of alloys at high temperatures increases hardness, but the alloy becomes brittle, resulting in lower tensile strength, elongation, and impact value, and bearing base metal No effective means have yet been found to increase fatigue resistance as a material.

これに対し、本発明は、高温、高荷重下の苛酷な条件に
好適な軸受合金な提供するもので、まず、本発明ではS
bを必須成分として添加し、このSbをSiに作用ざぜ
、鋳造時点よりSi結晶の球状化を8↑す、更に、熱処
理により口の81結晶の球状化を高め、これにより、A
t −Sn合金の引張強度、伸びならびに衝撃強さを高
める。
In contrast, the present invention provides a bearing alloy suitable for severe conditions under high temperatures and high loads.
B is added as an essential component, and this Sb acts on Si to make the Si crystals spheroidized from the time of casting.Furthermore, heat treatment increases the spheroidization of the 81 crystals in the mouth, thereby making A.
Increases tensile strength, elongation and impact strength of t-Sn alloys.

すなわら、−膜内に云って、耐疲労強さは材料の引張強
さ、伸び、衝撃強さ、組織的構造等に起因するものであ
って、単に軸受成分の添加によっては解決できないとさ
れている。この点について、本発明者等が研究を重ねた
ところ、このようなSbの作用を知見し、これにもとす
いて本発明は成されたものである。また、本発明は、添
加元素として上記の如く高融点元素をAl−Sn合金に
添加しても、Sbの添加によって礪械的特性の低下を防
止することができるので、高温下でのR機内特性を急激
に低下させることがない。このような本発明のW徴は高
温、高荷重下で疲労試験を行なった結果、彼方強度の向
上が認められたことでも裏付けることができる。
In other words, - Fatigue resistance within the film is due to the tensile strength, elongation, impact strength, organizational structure, etc. of the material, and cannot be solved simply by adding bearing components. has been done. As a result of repeated research by the present inventors regarding this point, they discovered such an effect of Sb, and based on this, the present invention was accomplished. Furthermore, in the present invention, even if a high melting point element is added to the Al-Sn alloy as mentioned above, the addition of Sb can prevent the deterioration of mechanical properties. No sudden deterioration of characteristics. Such W characteristics of the present invention can be supported by the fact that an improvement in cross-sectional strength was observed as a result of fatigue tests conducted at high temperatures and under high loads.

また、本発明は、表面の組a構成の面で高温、高負荷条
件に適合し、これにより表面性能が著しく高められてい
る。
Further, the present invention is suitable for high temperature and high load conditions in terms of the surface set a configuration, and thereby the surface performance is significantly improved.

一般的に、焼付現象はそれに達する過程が複雑で多くの
条件が相乗的に作用して達するため、一義的に把握する
ことは困難であると云われている。しかし、表面にPb
−Sn合金のオーバーレイメツキ+ae形成したCu 
−Pb系軸受合金は高荷重運転下ではこのメツキ1がF
J滅し焼付きに至るのに対し、Al −Sn−I’b系
合金であって、Sl、Cu等を含む軸受は表面にオーバ
ーレイメツキ層が形成されていないのにも拘らず、焼付
きに至らない現象が存在する。
Generally, it is said that it is difficult to understand the burn-in phenomenon unambiguously because the process of reaching it is complex and many conditions act synergistically to achieve it. However, Pb on the surface
-Sn alloy overlay plating + ae formed Cu
-For Pb bearing alloys, this plating 1 is F under high load operation.
In contrast, bearings made of Al-Sn-I'b alloys containing Sl, Cu, etc. do not suffer from seizure, even though no overlay plating layer is formed on the surface. There are phenomena that cannot be achieved.

そこで、本発明者等はこの現象に看目し、両軸受をM4
造的に比較検討した。すなわち、第3図は表面にオーバ
ーレイメツキ層を有する軸受の一部の拡大断面図であり
、第4図はAl−Sn−pb合金であって、表面にオー
バーレイメツキ層がなくしかもSl、Cu等を含む軸受
の一部の拡大断面図である。第3図から明らかな如く、
この軸受は表面のオーバーレイメツキ@4、合金!I!
5ならびに裏金6から成って、このオーバーレイメツキ
層4の全表面によって軸荷重が支持される。これに対し
、第4図に示す如(、Al−Sn−11b系合金で81
、CU等を含む軸受は合金1ii5と裏金6とから成っ
て、この合金H5のマトリックス中に棒状や片状のSi
粒子2が析出している。従って、この軸受では相手軸の
vI重は硬いSi粒子2で支えられ、しかも、Si粒子
が上記の如く切削力を持っている。
Therefore, the inventors of the present invention took note of this phenomenon and installed both bearings with M4
A structural comparison was made. That is, FIG. 3 is an enlarged sectional view of a part of a bearing having an overlay plating layer on the surface, and FIG. 4 is an enlarged sectional view of a bearing having an overlay plating layer on the surface, and FIG. FIG. 2 is an enlarged cross-sectional view of a portion of the bearing including the bearing. As is clear from Figure 3,
This bearing has surface overlay plating @4, alloy! I!
5 and a back metal 6, and the axial load is supported by the entire surface of this overlay plating layer 4. On the other hand, as shown in Fig. 4, 81
, CU, etc., is made of alloy 1ii5 and back metal 6, and rod-shaped or flaky Si is included in the matrix of alloy H5.
Particle 2 is precipitated. Therefore, in this bearing, the vI weight of the mating shaft is supported by the hard Si particles 2, and moreover, the Si particles have cutting force as described above.

要するに、両者の差は面接触と点接触であり、この差に
よって潤滑、11!m面の温度上昇において決定的な相
違となっている。つまり、第3図に示す軸受のように、
面接触では、高速、高負荷条件下でFJI面の温度は急
速に上昇するのに対し、第4図に示す軸受のように点接
触では、合金層5の表面と相手軸表面との間に間隙が形
成され、この間隙の油膜にはあまり大きな荷重がかがら
ないため、十分な潤滑が保持され、摩擦面の;B度上界
はおさえられる。
In short, the difference between the two is surface contact and point contact, and this difference allows for lubrication, 11! There is a decisive difference in the temperature rise on the m-plane. In other words, like the bearing shown in Figure 3,
In surface contact, the temperature of the FJI surface rises rapidly under high-speed, high-load conditions, whereas in point contact, as in the bearing shown in Figure 4, the temperature between the surface of alloy layer 5 and the surface of the mating shaft increases. A gap is formed, and since a very large load is not applied to the oil film in this gap, sufficient lubrication is maintained and the upper limit of the degree B of the friction surface is suppressed.

史に進んで、本発明者等は、第4図に示す如き点接触に
よる軸荷重の支持が高荷重下の潤滑にきわめて有効であ
るという基本的見地に立って、その効果を最大限に生か
すための組成ならびに構造について研究し、本発明に係
る軸受台金を完成するに至ったのである。
Going forward, the present inventors took the basic viewpoint that supporting shaft loads through point contact as shown in Figure 4 is extremely effective for lubrication under high loads, and took full advantage of its effects. Through research on the composition and structure of the bearing base metal according to the present invention, they were able to complete the bearing base metal according to the present invention.

具体的に示すと、本発明者等はAl=Sn−Pb系合金
であって、SlやCu等を含む軸受台金におけるSlの
析出形態に着目し、その形態の潤滑面におよほす効果に
ついて調査研究を進めたところ、 第1に、Slは融点が高い安定物質であり、かつ、非金
属的性質が強く、相手軸の主成分のFeに200℃〜5
00℃程度の高温状態で接触しても、全く拡散若しくは
溶解を起さないことから、軸荷重の点支持手段はSlが
きわめて好適であることがわかった。
Specifically, the present inventors focused on the form of precipitation of Sl in the bearing base metal, which is an Al=Sn-Pb alloy and contains Sl, Cu, etc., and investigated the effect of this form on the lubricating surface. As a result of our research and research, we found that, firstly, Sl is a stable substance with a high melting point, and has strong nonmetallic properties, so that it can react with Fe, the main component of the mating shaft, at 200°C to 50°C.
It has been found that Sl is extremely suitable as a point support means for the axial load because it does not cause any diffusion or dissolution even if it comes into contact at a high temperature of about 00°C.

第2に、相手軸を油膜を介し点支持する場合、Si粒子
はそのビッカース硬さが599にも達するほど硬く、し
かも、81粒子は化合物でないためもろさがなく、弾性
に冨み、急激な変動荷重に耐えられることがわかった。
Secondly, when the mating shaft is point-supported through an oil film, the Si particles are so hard that their Vickers hardness reaches 599, and since the 81 particles are not a compound, they are not brittle, have high elasticity, and are subject to rapid fluctuations. It was found that it could withstand the load.

しかしながら、Slは上記の如く性質を持っているのに
も拘らず、結晶性が強(、A/どの共晶析出形態でも、
板状若しくは棒状を呈し、軸受の製造過程で圧延や熱処
理を経ても、その形状はわずか変化する程度である。こ
のため、Si粒子の析出形態の副葬を行なわない場合は
、第5図に示す如く、合金1でマトリックス1中に5i
−pb合金粒子とともに析出するSi粒子2は板状若し
くは棒状化し、Si粒子2から離れてSn −Pb合金
粒子3が存在している。この状態であると、硬いSi粒
子2のエツジによって相手軸が削られできずつけられ易
く、かえって、潤滑性が低下し、焼付きが起こる。
However, although Sl has the above-mentioned properties, it has strong crystallinity (,A/in any eutectic precipitation form,
It has a plate-like or rod-like shape, and its shape changes only slightly even if it undergoes rolling or heat treatment during the bearing manufacturing process. For this reason, if the precipitation form of Si particles is not buried, as shown in FIG.
The Si particles 2 precipitated together with the -pb alloy particles are plate-shaped or rod-shaped, and the Sn--Pb alloy particles 3 are present apart from the Si particles 2. In this state, the edges of the hard Si particles 2 cannot scrape the mating shaft and are likely to attach, and on the contrary, the lubricity is reduced and seizure occurs.

この点から、本発明において潤滑性の飛躍的向上のため
に、Si粒子から切削力を除去し、球状等の如くエツジ
部に丸味をおびさせるような形態に副葬する。
From this point of view, in the present invention, in order to dramatically improve lubricity, the cutting force is removed from the Si particles, and the Si particles are buried in a shape that gives rounded edges, such as a spherical shape.

すなわら、第1図は本発明の一つの寅施例に係る軸受台
金の一部の拡大断面図であって、第1図に示す如く、合
金層において、そのマトリックス1中に分散析出するS
i粒子2は球状化し、この球状Si粒子2によって点接
触の理想に近づけ、より潤滑性を高め且つ耐摩耗性を高
めることができる。また、高速かつ急激な高荷重がかけ
られても、相手軸をきずつけることがない。また、Sl
が球状化しているため、マトリックス中の切欠効果がな
く、強度的にも安定したマトリックスを得ることができ
、耐摩耗性にも侵れる。
In other words, FIG. 1 is an enlarged sectional view of a part of a bearing base metal according to one embodiment of the present invention, and as shown in FIG. S to do
The i-particles 2 are spherical, and the spherical Si particles 2 bring the contact closer to the ideal point contact, thereby further increasing lubricity and wear resistance. Furthermore, even if a high load is suddenly applied at high speed, the mating shaft will not be damaged. Also, Sl
Since it is spherical, there is no notch effect in the matrix, making it possible to obtain a matrix with stable strength and wear resistance.

このSi粒子の球状化は、Slが析出する共晶点のAt
合金液相の性質を改善することによって達成でき、とく
に、その添加元素としてSbが有効である。
This spheroidization of Si particles is caused by At at the eutectic point where Sl precipitates.
This can be achieved by improving the properties of the alloy liquid phase, and Sb is particularly effective as an additive element.

更に、Sbを添加すると、Sn−Pb合金粒子3の析出
形態が変化し、第1図に示すように81の球状化粒子2
にSn−Pb合金3がより隣接して存在するようになる
。口の構造は、従来例のもの(例えば、第5図参照)に
比して、潤滑性能な飛躍的に向上させる。
Furthermore, when Sb is added, the precipitation form of the Sn-Pb alloy particles 3 changes, and as shown in FIG.
The Sn--Pb alloy 3 is present more adjacent to the surface. The structure of the mouth dramatically improves the lubrication performance compared to the conventional example (see, for example, FIG. 5).

また、以上のように表面性能を原理的に解決するほか、
マトリックスの高温での強化をはかる必要がある。
In addition to solving the surface performance in principle as described above,
It is necessary to strengthen the matrix at high temperatures.

すなわら、Alは熱に対して感受性が強く、150℃を
すぎると軟化してしまい(HVIO以下)、強度を失な
ってしまう。この軟化の防止のために、析出硬化型のマ
トリックス強化元素として、例えば、Or、 Mn、 
Fc、 Go、N1、丁1、V、 lr等を添カロし、
これら強化元素はその中の1種若しくは2種以上を選択
し、適切な熱処理を行なうと、高温での強度を史に上昇
させることができる。
That is, Al is highly sensitive to heat, and if the temperature exceeds 150°C, it will soften (below HVIO) and lose its strength. In order to prevent this softening, precipitation hardening matrix reinforcing elements such as Or, Mn,
Add Fc, Go, N1, D1, V, lr, etc.,
By selecting one or more of these reinforcing elements and performing appropriate heat treatment, the strength at high temperatures can be significantly increased.

以上の通り、本発明においては、単に従来のように素地
強化元素を添加するだけでな(、これら強化元素ととも
にSbを添加し、硬さのみでなく、引張強度、伸びを従
来より向上させ、耐疲労性を高め、高荷重運転下での軸
受性能の向上をはかるものであるが、その機構とともに
各成分組成について説明すると、次の通りである。
As described above, in the present invention, in addition to simply adding base reinforcing elements as in the past, Sb is added together with these reinforcing elements to improve not only the hardness but also the tensile strength and elongation compared to the past. The purpose is to increase fatigue resistance and improve bearing performance under high load operation.The mechanism and composition of each component are explained as follows.

第1図に示す構成の軸受では、軸荷重なささえる潤滑面
はマトリックス1の表面から突出するSi粒子2の先端
部であり、しかも、Si粒子と相手軸との間に油膜が介
在し、流体潤滑が保たれている。しかし、急忠な変動荷
重を受け、この油膜が破れ、局部的に境界潤滑に達し、
この時に、Si粒子2の上面にSn−Pb合金のフィル
ムが介在すれば、焼付きを防止でき、しかも、正常に′
a膜が再生されて流体潤滑の状態にすみやかに復帰する
ことができる。このときにも、第1図に示す構造である
と、Si粒子2の近傍にSn −Pし合金粒子3が存在
し、この合金は溶融状態でも潤滑油と親和性があり、こ
のため、油切れを起こしにくい。また、相手軸とS:粒
子との7擦で、81粒子が高温になっても、5i−Pb
の融解熱で熱吸収され、近傍の7トリツクスのAlの合
金と相手軸との焼付きが起こりにくくなる。又、この時
にも第2図に示す如く、Si粒子2に隣接するSn −
Pb合金粒子3の少なくとも一部が液相化しており、こ
の液相3aがSi粒子2の突出面に供給される。この供
給量は温度の上昇とともに、5−えて、Si粒子2の潤
滑面には常にSn−Pbの液相3aが介在するため、オ
ーバーヒートを未然に防止できる。要するに、Si粒子
2If球状化し、これにSn −Pb合金粒子3が隣接
する構造は、境界潤滑状態(油膜が切れた)で非常に有
効であり、また、普通の流体潤滑状態でも、硬いSi粒
子2が相手軸に適切になじみ、かつ、やわらかい5l)
−pb■におおわれ、これがシミツクアブソーバ−的な
働きをする。
In the bearing with the configuration shown in FIG. 1, the lubricating surface that supports the axial load is the tip of the Si particles 2 protruding from the surface of the matrix 1, and an oil film is interposed between the Si particles and the mating shaft, and the lubricating surface that supports the axial load is Maintains lubrication. However, when subjected to sudden and fluctuating loads, this oil film ruptures and locally reaches boundary lubrication.
At this time, if a Sn-Pb alloy film is interposed on the upper surface of the Si particles 2, seizure can be prevented and the process can be performed normally.
The a-film is regenerated and the state of fluid lubrication can be quickly restored. In this case, too, in the structure shown in FIG. 1, there are Sn-P alloy particles 3 in the vicinity of the Si particles 2, and this alloy has an affinity for lubricating oil even in the molten state. Less likely to break. In addition, even if the 81 particles reached a high temperature after 7 frictions between the other axis and the S: particle, the 5i-Pb
This heat is absorbed by the heat of fusion, making it difficult for the nearby 7-trix Al alloy to seize with the mating shaft. Also, at this time, as shown in FIG. 2, Sn − adjacent to the Si particles 2
At least a portion of the Pb alloy particles 3 are in a liquid phase, and this liquid phase 3a is supplied to the protruding surfaces of the Si particles 2. This supply amount increases as the temperature increases, and since the Sn--Pb liquid phase 3a is always present on the lubricated surface of the Si particles 2, overheating can be prevented. In short, the structure in which the Si particles 2If are spherical and the Sn-Pb alloy particles 3 are adjacent to them is very effective in the boundary lubrication state (oil film has broken), and even in the normal fluid lubrication state, the hard Si particles 2 fits the opponent shaft appropriately and is soft 5L)
It is covered with -pb■, which acts like a stain absorber.

更に、すぐれた潤滑面を得る為にはSi粒子やSn−p
b合金粒子を支持する強靭なマトリックスが0要である
。すむわら、前記特許請求の範囲に記載の如く限定する
理由と、その作用効果(相乗効果を含む)について各々
の元素について列記する。
Furthermore, in order to obtain an excellent lubricating surface, Si particles and Sn-p
b) A strong matrix supporting the alloy particles is not required. In summary, the reasons for the limitations as described in the claims and their effects (including synergistic effects) will be listed for each element.

(11Sn7〜20%: Snはpbと共にAtマトリックス中に分散して存在し
、軸受が基本的に必要とする耐焼付性、埋収性、なじみ
性を担う金属である。7%未満ではその耐焼付性の効果
が得られず、20%以上ではSnIi@が三次元的に連
続化し、強度をそこねる。
(11Sn7-20%: Sn exists dispersed in the At matrix together with PB, and is a metal that is responsible for the seizure resistance, embeddability, and conformability that bearings basically require. If it is less than 7%, the resistance No seizure effect can be obtained, and if the content exceeds 20%, SnIi@ becomes three-dimensionally continuous, impairing the strength.

+21 Pb O,1〜5%: Pbは上記Snと共存し、SOの持つ耐焼付性、埋収性
、なじみ性の能力をより向上させ、かつR′a性、非凝
着性にすぐれ、9司の添加でも潤滑性能を飛躍的に向上
させる。その毒は0.1%未満では上記効果を定厚でき
ず、5%超では実質的にAtマトリックス中にSnと共
存ざぜ、均一に分散させることが事実上不可能となる。
+21 Pb O, 1 to 5%: Pb coexists with the above-mentioned Sn and further improves the seizure resistance, embedding property, and conformability of SO, and has excellent R'a properties and non-adhesive properties, Even the addition of 90% improves the lubrication performance dramatically. If the poison is less than 0.1%, the above effect cannot be achieved at a constant thickness, and if it exceeds 5%, it will substantially coexist with Sn in the At matrix, making it virtually impossible to uniformly disperse it.

13) Si  1〜10%二 At軸受に非焼付性、耐荷重性、耐摩耗性を付与する重
要な元素で、1%未満では添加効果は認められず、10
%超では合金が硬くなり延性がなくなり、かえって耐荷
重性を阻害する。
13) Si 1 to 10% An important element that imparts anti-seizure properties, load resistance, and wear resistance to diAt bearings. If it is less than 1%, no effect is observed;
If it exceeds %, the alloy becomes hard and loses ductility, which actually impairs load-bearing properties.

+4) Cr、 Mn、 Fe、 Ni、 Co%Ti
%V%Zrのうち1種若しくは2種以上を単味若しくは
今市で0.01%超1.0%未満: これらの元素は何れも化合物を作りゃすい元素で9違の
添加でマトリックスの硬度や強度を上げることができる
。特に、適量の添加によって耐疲労性や耐摩耗性、高温
での強度保持に有効である。添加患は0.01%以下で
はその効果はなく、1%以上では化合物が粗大化し、か
えって合金強度を下げる。また、これに元素は通出であ
ると、Sn粒子の粗大化が防止でき、この中でcrにつ
いてはその効果が報告されているが、Crのほかにもこ
れら元素の添加により同等の効果が達成できる。このと
きに、Cr中味よりもCrと他の元素との添加により一
層高めることができる。
+4) Cr, Mn, Fe, Ni, Co%Ti
%V%Zr, one or more of them alone or in the market more than 0.01% but less than 1.0%: All of these elements are elements that tend to form compounds, and 9 different additions can create a matrix. It can increase hardness and strength. In particular, when added in an appropriate amount, it is effective in improving fatigue resistance, wear resistance, and maintaining strength at high temperatures. If the additive amount is less than 0.01%, there is no effect, and if it is more than 1%, the compound becomes coarse and the alloy strength is reduced. In addition, if elements are added to this, it is possible to prevent the coarsening of Sn particles, and among these, the effect of Cr has been reported, but the same effect can be obtained by adding these elements in addition to Cr. It can be achieved. At this time, the Cr content can be further increased by adding Cr and other elements.

すなわら、これら元素のうちでcrはあまり多いと、周
知の通り、Atとの間で金属間化合物を生成し、なかで
も、細かく分散できなくなって好ましくない。この点、
Crのほかに、他の元素を添加すると、Atとの金属間
化合物が生成されても細かく分散できるほか、他の元素
によっても同等に軸受性能の向−Fが達成できる。
In other words, if cr is present in too much of these elements, as is well known, it will form intermetallic compounds with At, making it impossible to finely disperse it, which is undesirable. In this point,
If other elements are added in addition to Cr, even if an intermetallic compound with At is formed, it can be finely dispersed, and the other elements can also achieve the same improvement in bearing performance.

(51Sb O,01%超0.1%未満二SbはSi粒
子を球状、だ円状若しくは先端が丸味なおびる形状とし
て分散析出させる効果を持つ。この効果を持たせる為に
は、0.01%超0.1%未満のみカロが最も好ましく
、o、oB6以下では81粒子の形状に影響を与えず、
又、0.1%以上加えてもSO相内部に析出し、Si粒
子の改良には役にたたない。
(51Sb O, more than 01% and less than 0.1%2Sb has the effect of dispersing and precipitating Si particles in a spherical, oval, or rounded tip shape. In order to have this effect, 0.01% % but less than 0.1% is most preferable, o, oB 6 or less does not affect the shape of the 81 particles,
Moreover, even if it is added in an amount of 0.1% or more, it will precipitate inside the SO phase and will not be useful for improving the Si particles.

実  施  例 次に、本発明の実施例について説明する。Example Next, examples of the present invention will be described.

実施例1゜ まず、第1表に示す組成のAl −Sn系軸受合金を連
続鋳造により厚さ20mmの板状材として鋳造し、各鋳
造ビレットの上下面を1 、 Omlll面削し続いて
冷間圧延により2mmの厚さまで圧下した。
Example 1 First, an Al-Sn bearing alloy having the composition shown in Table 1 was cast as a plate material with a thickness of 20 mm by continuous casting, and the upper and lower surfaces of each cast billet were milled and then cooled. It was rolled down to a thickness of 2 mm by inter-rolling.

この状態で300〜350℃の熱処理を行なってひずみ
を除去し、その後、KAlの薄い板を介して裏金の鉄板
に圧着させて厚み1.50順の軸受を得た。
In this state, a heat treatment was performed at 300 to 350° C. to remove strain, and then a thin KAl plate was crimped onto an iron backing plate to obtain a bearing having a thickness of 1.50 mm.

これらの軸受のうちで、供試材NI1.1〜5は比較例
の供試材であり、No6〜20は本発明に係るもので、
この中で、Nt 6〜13は81球状化の為にSbを添
加し、その他にCr、Mn、 Fe、 Go、N1、■
1、V、 lrをそれぞれ添加したもの、供試材M@、
 14 =20は、上記添加元素を適切に組合わせ添加
したちのである。
Among these bearings, test materials No. 1.1 to 5 are test materials of comparative examples, and No. 6 to No. 20 are those according to the present invention.
Among these, Sb is added to Nt 6 to 13 for 81 spheroidization, and Cr, Mn, Fe, Go, N1,
1, V, lr added, sample material M@,
14 = 20 is obtained by adding an appropriate combination of the above additive elements.

これらの各供試材は、軸受として使用される常温及び2
00℃の機械的性質を見るために、引張強度、伸びなら
びに硬さの試験を行ない、これを第2表に示した。なお
、各供試材は裏当金を機械加工により削除してAl−S
n合金部分のみとし、試験片の形状はJIS Z 22
01の5号に示すものとした。
Each of these test materials was used as a bearing at normal temperature and
To examine the mechanical properties at 00°C, tensile strength, elongation and hardness tests were carried out and are shown in Table 2. In addition, each sample material was made by removing the backing metal by machining and using Al-S.
Only the n alloy part is used, and the shape of the test piece is JIS Z 22.
01 No. 5.

これらの結果から、供試材6〜20は従来材に比べ、高
温(200℃)における強度低下が少なく、Cr、 M
n%Fe、 co、N1、■1、V、 Zrの添加効果
がうかがえる。すなわち、Siの球状化及びマトリック
ス強化が相刺されて強度や伸びが改善されたものと考え
られる。又、伸びも従来例に比べて向上しており、高温
での総合的な機械的性質は向上したと言える。
From these results, test materials 6 to 20 show less strength loss at high temperatures (200°C) than conventional materials, and have Cr, M
The effects of adding n%Fe, co, N1, 1, V, and Zr can be seen. In other words, it is thought that the spheroidization of Si and the reinforcement of the matrix were mutually effective to improve the strength and elongation. Furthermore, the elongation was improved compared to the conventional example, and it can be said that the overall mechanical properties at high temperatures were improved.

次に、供試材の耐焼付性と耐摩耗性を知るために、鈴木
式Is!擦摩耗試験機を用いて試験し、その試験条件は
次の通りであった。
Next, in order to find out the seizure resistance and wear resistance of the test material, the Suzuki method Is! The test was carried out using an abrasion tester, and the test conditions were as follows.

マサツ速度  41m/See 相手材 345C%硬さHIIIC=55面アラサ0.
8〜1.O8 使用オイル  SAE、20v−40 油   温  150±5℃ 焼付荷重 100kq#カら10kq/Cl2Step
F焼付キニ至ルマで15分毎に血圧を上げてゆき、焼付
きをおこした面圧を焼付荷重とする 耐摩耗性 一方、耐摩耗性をみるために100kq/[
1一定で6時間試験し、その後の重患変化なみるこの結
果を第2表に示す。
Masatsu speed 41m/See Compatible material 345C% Hardness HIIIC = 55 Surface roughness 0.
8-1. O8 Oil used: SAE, 20v-40 Oil temperature: 150±5℃ Seizure load: 100kq #kara 10kq/Cl2Step
Wear resistance is measured by increasing the blood pressure every 15 minutes until F seizure occurs, and using the surface pressure that causes seizure as the seizure load.On the other hand, in order to check the wear resistance, 100 kq/[
The test was conducted at a constant temperature of 1 for 6 hours, and the results of the subsequent changes in severe disease are shown in Table 2.

これによれば、供試材6〜20の何れも従来材に比べ良
好な耐焼付性、耐摩耗性を示しており、Sb2加及びマ
トリックス強化元素添加により表面性能も向上している
ことがわかる。すなわら、本発明に係る合金はすぐれた
潤滑R構を有していることを示している。
According to this, all of test materials 6 to 20 exhibit better seizure resistance and wear resistance than conventional materials, and it can be seen that the addition of Sb2 and matrix-strengthening elements also improves surface performance. . This shows that the alloy according to the present invention has an excellent lubrication R structure.

次に、実際に、各供試材をベアリング形状に加工し、R
終的なベアリングの疲労テストを行なったところ、第2
表に示す結果を得た。これは実際のエンジンの条件とほ
ぼ同じようにベアリングをコンロッドに固定し、軸に偏
心荷重をかけて、以下の条件で耐久テストを行ない、焼
付きや破損を起さず、その性能を維持した時間の長さで
評価するテストである。
Next, each sample material was actually processed into a bearing shape, and R
When we conducted the final bearing fatigue test, the second
The results shown in the table were obtained. This test was conducted under the following conditions, with the bearing fixed to the connecting rod and an eccentric load applied to the shaft, almost the same as in an actual engine, and the performance was maintained without seizure or damage. This is a test that evaluates the length of time.

なお、テスト条件は次の通りである。Note that the test conditions are as follows.

面     圧   600kgf10’回  転  
数   400Or、p、11相手材料   FCD 
70、アラサ0,8〜1.5S使用オイル  SAE 
20w−40 油     温   150℃±5℃ なお、このテスト時間の上限は300時間とし、N=5
の平均値を第2表に示した。この結果、何れも比較例の
供試材に比べ長い耐久時間を示しており、本発明に係る
合金はすぐれた耐疲労性−万、従来例に・2の合金と更
にSbを0.03%添加した場合(供試材& 7 )に
おけるSlの形態の変化を示すと、第6図ならびに第7
図の通りであった。すなわち、第6図ならびに第7図は
従来例の合金と本発明に係る合金の顕微鏡組織を示す各
説明図であって、と(に、それぞれの試料をSl粒の形
状がわかるように深(エツチングし、電子顕微鏡を用い
て撮影したものである。これら図面から明確に解るよう
に、第6図の如く、従来例では粒子2が全(球状化して
いないのに反し、本発明ではSbの添加によりSi粒子
2のエツジ部が球状化していることがわかる。
Surface pressure 600kgf10' rotation
Number 400Or, p, 11 Mating material FCD
70, roughness 0.8~1.5S oil used SAE
20w-40 Oil temperature 150℃±5℃ The upper limit of this test time is 300 hours, N=5
The average values are shown in Table 2. As a result, the alloy of the present invention has excellent fatigue resistance, and the conventional alloy has an additional 0.03% Sb content. Figures 6 and 7 show the changes in the morphology of Sl when it is added (sample material &7).
It was as shown in the diagram. That is, FIGS. 6 and 7 are explanatory diagrams showing the microscopic structures of the conventional alloy and the alloy according to the present invention. It is etched and photographed using an electron microscope.As can be clearly seen from these drawings, as shown in Fig. 6, in the conventional example, the particles 2 were completely (not spherical), whereas in the present invention, the particles 2 were Sb-shaped. It can be seen that the edge portions of the Si particles 2 become spherical due to the addition.

実施例2゜ 本発明に係る軸受台金が高融点金属等をAlマトリック
スの強化剤として添加して、合金の脆弱化を改善する効
果があるか否かを確認するため、代用特性として衝撃値
を測定し、Sbの添加作用による改善効果を実験によっ
て求めた。
Example 2 In order to confirm whether or not the bearing base metal according to the present invention has the effect of improving the brittleness of the alloy by adding a high melting point metal etc. as a reinforcing agent to the Al matrix, the impact value was measured as a substitute property. was measured, and the improvement effect due to the addition of Sb was determined through experiments.

実験の供試材として、実施例1の第1表に示す従来材で
あるSbを含まないNa5と本発明に係るものである取
20にて比較実験を行なった。
As sample materials for the experiment, a comparative experiment was conducted using Na5, which is a conventional material that does not contain Sb, shown in Table 1 of Example 1, and Tori 20, which is a material according to the present invention.

実験はJIS Z 2242、シャルピー衝撃試験方法
にて3号試験片(n−51を作成して行なった。
The experiment was conducted using a No. 3 test piece (n-51) according to JIS Z 2242 and the Charpy impact test method.

実験の結果従来材は平均(110,84klJ −a+
/r12であったが、本発明に係るものは平均値2.8
5klJ・m 、’ vであり、明らかに本発明に係る
軸受台金はSb添加により改善効果が認められた。
As a result of the experiment, the conventional material had an average of (110,84klJ -a+
/r12, but the one according to the present invention has an average value of 2.8
5klJ·m,'v, and it was clear that the bearing base metal according to the present invention had an improvement effect due to the addition of Sb.

実施例3゜ 5batの違いによるAt −Sn合金への影響を把握
するため、第3表に示す成分を含有する730℃の溶湯
から厚さ20 mmの板状材を鋳造した。この鋳造材の
断面組織におけるSl粒の形状は画像処理装置を使って
円形度係数を求めた。
Example 3 In order to understand the influence of the difference in 5bat on the At-Sn alloy, a plate-like material with a thickness of 20 mm was cast from a molten metal at 730°C containing the components shown in Table 3. The circularity coefficient of the shape of the Sl grains in the cross-sectional structure of this cast material was determined using an image processing device.

また、この鋳造材からJIS 22201で規定された
試験片14A号を切り出し、その機械的特性第4表に示
す通り、Sbmが0.2%(比較材)より0.06%(
本願発明材)の方が81粒が著しく円形になっており、
また、機械的性質も改善され、特に、材料が破壊するま
での吸収エネルギー(至)を代用するエネルギー値が約
1割向上している。
In addition, a test piece No. 14A specified in JIS 22201 was cut from this cast material, and its mechanical properties were found to be 0.06% (Sbm) than 0.2% (comparative material) as shown in Table 4.
In the invention material), 81 grains are significantly more circular,
The mechanical properties have also been improved, and in particular, the energy value, which represents the amount of energy absorbed until the material breaks, has improved by about 10%.

これらの事からも、Sb!!Iが0.1%未膚の本願発
明材は従来材に比較して明らかな性質上の相違が認めら
れる。
From these things, Sb! ! The material of the present invention containing 0.1% I is clearly different in properties compared to the conventional material.

〈発明の効果〉 以上詳しく説明した通り、本発明は、重量%で7〜20
%5O10,1〜5%pb、1〜10%Siを含み、C
r、 Mn%Fe、 Ni、CO5■+、 V、 7r
のうち1種若しくは2種以上を単味若しくは合檄で0.
01%超1.0%未満含有し、残余が実質的にAlから
成るAt−Sn系軸受合金において、0.01%超0.
1%未満のSbを添加してAtマトリックス中に81粒
子を球状、だ円状若しくは先端が丸味をおびる形状とし
て分散、析出させ、Sn −Pb合金に隣接して存在す
る構造としたものから成るもので、この構成による本発
明軸受合金は極めて、潤滑性に優れ、かつ、100〜2
50℃の高温における機械的性質が極めて良好であり、
高負荷運転による使用条件の苛酷さに十分に耐える軸受
合金である。
<Effects of the Invention> As explained in detail above, the present invention has a weight ratio of 7 to 20% by weight.
%5O10, 1-5% pb, 1-10% Si, C
r, Mn%Fe, Ni, CO5■+, V, 7r
One or more of these can be used alone or in combination for 0.
In an At-Sn bearing alloy containing more than 0.01% but less than 1.0% and the remainder substantially consisting of Al,
It consists of a structure in which less than 1% of Sb is added and 81 particles are dispersed and precipitated in an At matrix in a spherical, elliptical, or rounded-tip shape, and exist adjacent to the Sn-Pb alloy. The bearing alloy of the present invention having this structure has extremely excellent lubricity and has a lubricity of 100 to 2
It has extremely good mechanical properties at a high temperature of 50°C,
This is a bearing alloy that can withstand the harsh conditions of high-load operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一つの実施例に係る軸受台金の一部の
拡大断面図、第2図は第1図に示す軸受台金の潤滑機構
の説明図、第3図ならびに第4図は従来例の軸受の一部
の各拡大断面図、第5図は第4図の軸受台金の一部の拡
大断面図、第6図は従来例に係る軸受台金の組織を示す
説明図、第1図は本発明に係る軸受台金の組織な示す説
明図である。 符号1・・・・・・マトリックス 2・・・・・・Si
粒子3・・・・・・Sn−Pb合金粒子 3a・・・・・・Sn −Pb液相 4・・・・・・オーバーレイメツキ層 5・・・・・・軸受合金ll!6・・・・・・裏金特許
出願人 工ヌデーシー株式会社 代  理  人  弁理士  松  下  義  勝弁
護士  副  島  文  雄 第1図 第3図 第4図 第5図
FIG. 1 is an enlarged sectional view of a part of a bearing base metal according to one embodiment of the present invention, FIG. 2 is an explanatory diagram of the lubrication mechanism of the bearing base metal shown in FIG. 1, and FIGS. 3 and 4. 5 is an enlarged sectional view of a part of the bearing base metal of the conventional example, FIG. 5 is an enlarged sectional view of a part of the bearing base metal of FIG. 4, and FIG. 6 is an explanatory diagram showing the structure of the bearing base metal of the conventional example. FIG. 1 is an explanatory diagram showing the structure of a bearing base metal according to the present invention. Code 1...Matrix 2...Si
Particle 3...Sn-Pb alloy particle 3a...Sn-Pb liquid phase 4...Overlay plating layer 5...Bearing alloy ll! 6...Secret fund patent applicant KoNDC Co., Ltd. Agent Patent attorney Yoshikatsu Matsushita Attorney Fumi Soejima Figure 1 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1)重量%で7〜20%Sn、0.1〜5%Pb、1〜
10%Siを含み、Cr、Mn、Fe、Ni、Co、T
i、V、Zrのうち1種若しくは2種以上を単味若しく
は合量で0.01%超1.0%未満含有し、残余が実質
的にAlから成るAl−Sn系軸受合金において、0.
01%超0.1%未満のSbを添加してAlマトリック
ス中にSi粒子を球状、だ円状若しくは先端が丸味をお
びる形状として分散、析出させ、Sn−Pb合金に隣接
して存在する構造としたものから成ることを特徴とする
Al−Sn系軸受合金。
1) 7-20% Sn, 0.1-5% Pb, 1-20% by weight
Contains 10% Si, Cr, Mn, Fe, Ni, Co, T
In an Al-Sn bearing alloy containing one or more of i, V, and Zr in a single or total amount of more than 0.01% and less than 1.0%, and the remainder substantially consisting of Al, ..
A structure in which more than 0.01% and less than 0.1% of Sb is added to disperse and precipitate Si particles in an Al matrix in the form of a sphere, an ellipse, or a shape with a rounded tip, which exists adjacent to the Sn-Pb alloy. An Al-Sn bearing alloy characterized by comprising:
JP13304289A 1989-05-26 1989-05-26 Al-sn bearing alloy Pending JPH0277542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13304289A JPH0277542A (en) 1989-05-26 1989-05-26 Al-sn bearing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13304289A JPH0277542A (en) 1989-05-26 1989-05-26 Al-sn bearing alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8844789A Division JPH0717980B2 (en) 1989-04-07 1989-04-07 Al-Sn bearing alloy

Publications (1)

Publication Number Publication Date
JPH0277542A true JPH0277542A (en) 1990-03-16

Family

ID=15095456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13304289A Pending JPH0277542A (en) 1989-05-26 1989-05-26 Al-sn bearing alloy

Country Status (1)

Country Link
JP (1) JPH0277542A (en)

Similar Documents

Publication Publication Date Title
US4789607A (en) Aluminum bearing alloy and two-layer bearing material having bearing layer of aluminum bearing alloy therein
US6652675B2 (en) Copper alloy sliding material
JP3373709B2 (en) Copper-based sliding bearing materials and sliding bearings for internal combustion engines
JP3472284B2 (en) Aluminum bearing alloy
AU705396B2 (en) Aluminum alloy bearing and method of making same
JP2769421B2 (en) Copper-lead bearing alloy material excellent in corrosion resistance and method for producing the same
JP2002310158A (en) Multiple layered slide material
JPH0235020B2 (en) ALLSNNPBKEIJIKUKEGOKIN
WO1998004756A1 (en) Sliding material having excellent abrasion resistance
JPH0277542A (en) Al-sn bearing alloy
JPS6254853B2 (en)
JP3339780B2 (en) Sliding material with excellent wear resistance
JPH0277541A (en) Al-sn bearing alloy
JPH0711046B2 (en) Al-Sn bearing alloy
JPH0347936A (en) Al-sn-pb series bearing alloy
JPH0347934A (en) Al-sn-pb series bearing alloy
JPS62218538A (en) Al-sn bearing alloy
JPH0347935A (en) Al-sn-pb series bearing alloy
JPH0257653A (en) Al-sn bearing alloy
JPH0277546A (en) Al-sn-pb bearing alloy
JPH0257654A (en) Al-sn-pb bearing alloy
JPH01301832A (en) Al-sn-pb bearing alloy
JPH0277540A (en) Al-sn bearing alloy
JPH0239572B2 (en) OOBAREIYOMETSUKIGOKIN
JP3531248B2 (en) Bearing and bearing material