JPH01301832A - Al-sn-pb bearing alloy - Google Patents

Al-sn-pb bearing alloy

Info

Publication number
JPH01301832A
JPH01301832A JP8844589A JP8844589A JPH01301832A JP H01301832 A JPH01301832 A JP H01301832A JP 8844589 A JP8844589 A JP 8844589A JP 8844589 A JP8844589 A JP 8844589A JP H01301832 A JPH01301832 A JP H01301832A
Authority
JP
Japan
Prior art keywords
alloy
bearing
particles
matrix
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8844589A
Other languages
Japanese (ja)
Inventor
Masahito Fujita
正仁 藤田
Akira Ogawara
大河原 章
Takeshi Sakai
坂井 武志
Toshihisa Ogaki
大垣 俊久
Takeshi Osaki
剛 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP8844589A priority Critical patent/JPH01301832A/en
Publication of JPH01301832A publication Critical patent/JPH01301832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To obtain a bearing alloy material having excellent fatigue resistance, seizure resistance and wear resistance in the high temp. range by adding specific amt. of Sr to an Al-Sn-Pb bearing alloy and providing the Si grains deposited in an Al matrix with a graphite shape, elliptic shape or the shape of which the tip has roundness. CONSTITUTION:Sr, 0.01-0.3% by weight, is added to an Al-Sn-Pb bearing alloy contg. 3-35% Sn, 0.1-11% Si, 0.1-10% Pb, 0.1-4% Cu and the balance Al. The shape of the Si grains dispersed and deposited into the Al matrix I of the alloy is formed into a graphite one, elliptic one or the one of which the tip has roundness. The alloy is furthermore subjected to heat treatment, e.g., at 300-350 deg.C to remove its strains and to furthermore increase the sphering of the deposited Si grains. At least a part 3a of Sn-Pb alloy grains 3 adjacent to the Si grains 2 is moreover liquefied by frictional heat to drastically improve the lubricity at the time of using the alloy as a bearing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はAl −Sn−Pb系軸受合金に係り、詳しく
は、マトリックス中に、球状、だ円状若しくは先端が丸
味をおびた形状のSi粒子が分散、析出され、しかも、
高速・高負荷運転時にすぐれ、なかでも、高温領域にお
いて耐疲労性、耐焼付性ならびに耐摩耗性を有するAt
 −Sn−Pb系軸受合金に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an Al-Sn-Pb bearing alloy, and more specifically, the present invention relates to an Al-Sn-Pb bearing alloy. dispersed, precipitated, and
At has excellent fatigue resistance, seizure resistance, and wear resistance in high-temperature ranges, and is excellent during high-speed and high-load operation.
-Relating to Sn-Pb bearing alloy.

従  来  の  技  術 最近の自動車用エンジンは、小型化、省燃費、高出力の
ものとなり、これにともなって軸受にかかる荷重が増加
すると共に、潤滑油の温度が上昇し、軸受の使用条件は
苛酷化の一途をたどっている。従来例の多元系やAl系
軸受のほとんどは軸受台金部分の表面にオーバーレイメ
ツキ等によりPb−Sn系等の表面層を形成したもので
ある。しかし、この構造の軸受では、潤滑面の高温化に
より疲労や焼付現象にみまわれ、上記の苛酷な使用条件
に耐えられな(なっている。
Conventional technology Recently, automobile engines have become smaller, more fuel efficient, and have higher output.As a result, the load on the bearings has increased, the temperature of the lubricating oil has also increased, and the operating conditions for the bearings have changed. It is becoming more and more severe. Most conventional multi-component bearings and Al-based bearings have a surface layer of Pb--Sn based or the like formed on the surface of the bearing base metal by overlay plating or the like. However, bearings with this structure suffer from fatigue and seizure phenomena due to high temperatures on the lubricated surfaces, making them unable to withstand the above-mentioned harsh operating conditions.

そこで最近は、オーバーレイメツキ等によって表面層が
形成されない軸受が求められている。
Therefore, recently there has been a demand for bearings in which no surface layer is formed by overlay plating or the like.

しかしながら、この種の軸受でも、上記の苛酷な使用条
件では、必ずしも安定した性能を発揮できないのが現状
である。
However, the current situation is that even this type of bearing cannot necessarily exhibit stable performance under the above-mentioned severe usage conditions.

すなわち、表面にオーバーレイメツキ層を有する軸受は
、−膜内には、JIS 115402、Al−1(10
%Sn、 0,75%Cu、 0.5%N1、AlBa
1lや、JIS  H5402、Al−2(6%Sn、
2.5%Cu、1.0%N1、A/Ba1)等のJIS
規格、SAE 780(6%Sn、2%Si、1%Cu
、 0.5%N1.0.1%■1、Aj!Ba1)等(
7)SAEfi格に示される通り、その軸受台金部分は
Sn含有量が比較的少ない低Sn−A1合金から成って
いるが、これら軸受合金部分の表面には更にpb−sb
系合金のオーバーレイメツキによって表面層が形成され
、この表面層が軸受面を構成している。しかし、これら
軸受は、近年の高負荷、高温の使用条件下では表面のオ
ーバーレイメツキによる表面層が摩滅して焼付きに至り
、使用に耐えられなくなっている。これに対し、表面に
オーバーレイメツキによって表面層を形成しない軸受は
、SAE 783(20%Sn、 0,5%S1.1,
0%Cu、0.1%■1、Aj!Ba1)に示される通
り、その軸受台金部分がSn含有量の多い高Sn−A1
合金から成っている。しかし、このようにSnが20%
程度の如く多(含まれる合金は、硬度が低(、Alマト
リックスが弱くなるため、高負荷に耐えられない。
That is, a bearing having an overlay plating layer on its surface has - JIS 115402, Al-1 (10
%Sn, 0.75%Cu, 0.5%N1, AlBa
1l, JIS H5402, Al-2 (6%Sn,
JIS such as 2.5%Cu, 1.0%N1, A/Ba1)
Standard, SAE 780 (6% Sn, 2% Si, 1% Cu
, 0.5%N1.0.1%■1, Aj! Ba1) etc. (
7) As shown in the SAEfi rating, the bearing base metal part is made of a low Sn-A1 alloy with a relatively low Sn content, but the surface of these bearing alloy parts is further coated with pb-sb.
A surface layer is formed by overlay plating of the alloy, and this surface layer constitutes the bearing surface. However, under recent high-load, high-temperature operating conditions, the surface layer of these bearings due to the overlay plating on the surface wears out, leading to seizure, making them unusable. On the other hand, bearings that do not have a surface layer formed on the surface by overlay plating meet SAE 783 (20% Sn, 0.5% S1.1,
0%Cu, 0.1%■1, Aj! As shown in Ba1), the bearing base metal part is high Sn-A1 with a high Sn content.
Made of alloy. However, like this, Sn is 20%
To some extent, the alloys contained have low hardness, making the Al matrix weak and unable to withstand high loads.

また、Sn含有量の多少に拘らず、Al −Sn系合金
中にpbを添加して潤滑性を増進させ、耐焼付性をもた
せた軸受台金が、例えば、水野i−著昭Ia29年日刊
工業新聞焼発行r軸受台金〕第139頁に記載され、こ
の軸受台金は10%Sn、 1,5%Cu、0.5%S
iを含むとともに3%pbを添加して成るAl −Sn
−Pb系合金である。
In addition, regardless of the Sn content, bearing base metals made by adding PB to Al-Sn alloys to improve lubricity and provide seizure resistance are available, for example, by Mizuno I. It is described on page 139 of "Bearing Base Metal" published by Kogyo Shimbun, and this bearing base metal contains 10% Sn, 1.5% Cu, 0.5% S.
Al-Sn containing i and adding 3% pb
- It is a Pb-based alloy.

更に、Al −Sn−Pb系合金中のpbはAlとはほ
とんど固溶しないため、このpbの分散性の向上のため
に、sbを添カロしたAl −Sn−Pb−Sb系合金
が特公昭52−12131号に記載され、この上に、A
Xマトリックス強化のためにcrを添加したAl−Sn
 −Pb −Sb −Cr系合金が特公昭58−189
85号に記載されている。しかし、これらのAl −S
n−pb系合金は通常運転時の潤滑性の向上を目的とし
て開発されたもので、高負荷運転条件では十分な耐疲労
性を示さない欠点がある。この理由は、通常の運粘下に
比べると、高負荷運転下の軸と軸受との潤滑へ構は根本
的に相違するからである。
Furthermore, since pb in Al-Sn-Pb alloys hardly forms a solid solution with Al, in order to improve the dispersibility of this Pb, Al-Sn-Pb-Sb alloys with added sb were developed. No. 52-12131, and furthermore, A
Al-Sn added with cr to strengthen the X matrix
-Pb -Sb -Cr alloy
It is described in No. 85. However, these Al-S
N-PB alloys were developed for the purpose of improving lubricity during normal operation, and have the drawback of not exhibiting sufficient fatigue resistance under high-load operating conditions. The reason for this is that the mechanism for lubrication between the shaft and bearing under high load operation is fundamentally different from that under normal viscous operation.

このところから、高負荷運転下の潤滑機構と通常運転下
のそれとの相違点について基本的な検討が行なわれ、こ
の検討結果の一つとしてAl−Sn系合金中に粗大なS
lを分散析出させた軸受が特開昭58−64336号に
よって提案されている。
From this point on, a basic study was conducted on the differences between the lubrication mechanism under high load operation and that under normal operation, and one of the results of this study was that coarse S
A bearing in which l is dispersed and precipitated has been proposed in Japanese Patent Application Laid-Open No. 58-64336.

この軸受は硬いS1析出物により切削力を持たせたもの
であって、切削力を持つが故に、相手軸の表面凹凸部が
削られて平坦化し、軸受性能を向上させるものである。
This bearing has a cutting force due to the hard S1 precipitate, and because it has the cutting force, the surface unevenness of the mating shaft is scraped and flattened, improving the bearing performance.

更に詳しく説明すると、球状若しくは片状の黒鉛を析出
させた黒鉛鋳鉄から成る相手軸の表面には、研磨加工時
に脱落した黒鉛粒子のあとに凹部が残り、この凹部周囲
には硬く加工硬化したパリやエツジ等の凸部が生成して
いる。従って、上記の如きAt−Sn系、Al −Sn
−Pb系等の軸受台金では、これら凹凸部により高負荷
運転時には異常摩耗が発生し易い。これに対し、上記の
粗大なSiを分散析出させた軸受台金では、硬いSiの
析出物により切削力が付与されているために、相手軸の
凹凸部分は機械的に切削されて平坦化され、これ故に、
異常摩耗や焼付きが起らない。
To explain in more detail, on the surface of the mating shaft made of graphite cast iron on which spherical or flaky graphite has been precipitated, recesses remain after the graphite particles that fell off during polishing, and around these recesses there is hard work-hardened paris. Convex portions such as edges and edges are generated. Therefore, the above At-Sn system, Al-Sn
- In a bearing base metal made of Pb or the like, abnormal wear is likely to occur during high-load operation due to these uneven portions. On the other hand, in the bearing base metal in which the coarse Si is dispersed and precipitated, the cutting force is applied by the hard Si precipitates, so the uneven parts of the mating shaft are mechanically cut and flattened. , therefore,
No abnormal wear or seizure occurs.

しかしながら、相手軸が黒鉛鋳鉄以外の場合には、高負
荷運転のときに、かえって粗大なSi析出物によって相
手軸の表面が不規則にけずられ、焼付きが発生し、大き
な障害が生じる。
However, when the mating shaft is made of a material other than graphite cast iron, during high-load operation, the surface of the mating shaft is scratched irregularly by coarse Si precipitates, causing seizure and causing major problems.

発明が解決しようとする課題 本発明は上記欠点の解決を目的とするが、具体的には、
At −Sn−Pb系軸受合金において、潤滑向上のた
めにSnflIPb等の含有量を高め、Atマトリック
スの強化のためにCr、 Sb%Mn。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned drawbacks, and specifically,
In At-Sn-Pb bearing alloys, the content of SnflIPb, etc. is increased to improve lubrication, and Cr, Sb%Mn is added to strengthen the At matrix.

N1等の元素を添加し、これらの元素によってAlマト
リックスの硬度を増加させるが、逆に、これら手段によ
ってかえってA1合金が脆弱になり、高負荷運転時には
殆んど高温下(100〜250℃)での耐疲労性を示さ
ないことになる。このところを本発明においては、Al
マトリックス中に、だ円状、球状若しくは先端が丸味を
おびた形状のSi粒子を析出させることにより解決し、
このようにして耐焼付性、耐摩耗性を向上させる。
Elements such as N1 are added to increase the hardness of the Al matrix, but on the contrary, these measures actually make the A1 alloy brittle, and during high-load operation, it is difficult to use at high temperatures (100 to 250°C). This means that it does not exhibit fatigue resistance. In this invention, Al
This problem is solved by precipitating Si particles in the matrix, which are elliptical, spherical, or have a rounded tip.
In this way, seizure resistance and wear resistance are improved.

課題を解決するための 手段ならびにその作用 すなわら、本発明に係る軸受台金は、型間%で、3〜3
5%Sn、 0.1〜11%s1ならヒニ0.1〜10
%pbを含むほか、0.1〜4%Cuを含有し、残余が
実質的にAlから成るAt−Sn系軸受合金において、
 o、oi〜0.3%のSrを含有して、Alマトリッ
クス中に、球状、だ円状若しくは先端が丸味をおびた形
状のSi粒子を分散、析出させることをW徴とする。
Means for solving the problem and its function are as follows: The bearing base metal according to the present invention has a die-to-mold ratio of 3 to 3.
5% Sn, 0.1-11% S1, Hini 0.1-10
In an At-Sn bearing alloy that contains 0.1 to 4% Cu in addition to 0.1 to 4% Pb, the remainder is substantially Al,
The W feature is defined as the dispersion and precipitation of spherical, elliptical, or rounded-tip Si particles in an Al matrix containing 0.0 to 0.3% Sr.

そこで、これら手段たる構成ならびにその作用について
更に詳しく説明すると、次の通りである。
A more detailed explanation of the configuration of these means and their operation will be as follows.

まず、本発明は高温状態におけるili’l疲労性を高
めるために成されたものである。
First, the present invention has been accomplished in order to improve fatigue resistance under high temperature conditions.

すなわち、従来例においては、単に高融点元素であるc
r、 co、 N*等を添加し、高温強度を高め、高温
下で硬さが急激に低下することを防止すると共に、耐摩
耗性を高めている。しかし、このように、Al −Sn
−Pb系合金の高温状態における耐疲労性を高めるため
には、串に高融点元素を添加して−さを増加させること
によっては達成できず、かえって、合金が脆弱になって
引張強度、伸びならびに衝撃値が低下する。
That is, in the conventional example, c is simply a high melting point element.
R, co, N*, etc. are added to increase high-temperature strength, prevent hardness from rapidly decreasing at high temperatures, and improve wear resistance. However, in this way, Al-Sn
- In order to increase the fatigue resistance of Pb-based alloys at high temperatures, it cannot be achieved by adding high-melting-point elements to the skewers to increase their strength. and the impact value decreases.

この点について、本発明では、高温、高荷重下の苛酷な
条件に好適な軸受台金を提供するために、Srを必須成
分として添加し、このSrを鋳造時点で81に作用させ
てSi結晶粒子の球状化若しくはSit!i晶粒子の一
部の球状化、つまり、Si結晶粒子の先端の丸味化を計
り、史に、通常の条件の熱処理によりこのS1結晶粒子
の球状化若しくは丸味化を高め、これにより、Al −
Sn −pb金合金引張強度、伸びならびに衝撃強さを
高める。
Regarding this point, in the present invention, in order to provide a bearing base metal suitable for severe conditions under high temperature and high load, Sr is added as an essential component, and this Sr is made to act on 81 at the time of casting to form a silicon crystal. Spheroidization of particles or Sit! A part of the i-crystal grains is spheroidized, that is, the tips of the Si crystal grains are rounded, and the spheroidization or rounding of the S1 crystal grains is increased by heat treatment under normal conditions, thereby making Al -
Sn-pb gold alloy enhances tensile strength, elongation and impact strength.

すなわら、−膜内に云って、耐疲労強さは材料の引張強
さ、伸び、衝撃強さ、組織的構造等起因するものであっ
て、単に軸受成分の添加によっては解決できないとされ
ているが、本発明ではsrによって鋳造時に81結晶粒
子の球状化をはかり、この球状化をsrによって熱処理
時に更に高めるのである。
In other words, - Fatigue resistance within a membrane is determined by the tensile strength, elongation, impact strength, and structural structure of the material, and cannot be solved simply by adding bearing components. However, in the present invention, 81 crystal grains are made spheroidal during casting by sr, and this spheroidization is further enhanced by sr during heat treatment.

なお、本発明は、Srの添加によって機械的特性の低下
を防止することができるので、添加元素として上記の如
く高融点元素をAl −Sn−Pb系合金に添加しても
、高温下での機械的特性を急激に低下させることがない
。このような本発明の特徴は高温、高荷重下で疲労試験
を行なった結果、疲労強度の向上が認められたことでも
裏付けることができる。
In addition, in the present invention, since deterioration of mechanical properties can be prevented by the addition of Sr, even if high melting point elements are added to the Al-Sn-Pb alloy as mentioned above as additive elements, the deterioration of mechanical properties can be prevented at high temperatures. No sudden deterioration of mechanical properties. Such characteristics of the present invention can be supported by the fact that an improvement in fatigue strength was observed as a result of conducting a fatigue test under high temperature and high load.

次に、以上の如<A/マトリックス中に、球状若しくは
先端が丸味をおびた形状の31粒子を析出させると、高
温、高負荷条件に適合し表面性能が著しく高められた軸
受面が得られる。
Next, by precipitating spherical or rounded 31 particles in the matrix as described above, a bearing surface that is suitable for high temperature and high load conditions and has significantly improved surface performance can be obtained. .

−膜内に、焼付現象はそれに達する過程が複雑で多(の
条件が相乗的に作用して達するため、一義的に把握する
ことは困難であると云われている。しかし、表面にPb
−8n合金のオーバーレイメツキにより表面層を具える
Cu −Pb系合金の軸受は高荷重運転下ではこのメツ
キの表面層がII!滅し焼付きに至る。これに対し、s
l、Cuを含むAl −Sn−Pb系合金から成って、
表面にオーバーレイメツキによる表面層が形成されてい
ない軸受においては焼付きに至らない。
- It is said that it is difficult to unambiguously understand the phenomenon of seizure within the film because the process that leads to it is complex and is achieved through the synergistic action of multiple conditions.
Bearings made of Cu-Pb alloys have a surface layer formed by overlay plating of -8n alloy. Under high load operation, the surface layer of this plating becomes hard! This results in burn-in. On the other hand, s
Consisting of an Al-Sn-Pb alloy containing l, Cu,
Seizing does not occur in bearings that do not have a surface layer formed by overlay plating on the surface.

このところを本発明者等は看目し、両軸受を構造的に比
較検8寸した。すなわち、第3図は表面にオーバーレイ
メツキによる表面層(以下、単にオーバーレイメツキ園
という。)を有する軸受の−・部の拡大断面図であり、
第4図はへl−Sn−Pb台金であって、表面にオーバ
ーレイメツキ層がな(、しかも、Sl、CU等を含む軸
受の一部の拡大断面図である。第3図から明らかな如(
、この軸受は表面のオーバーレイメツキII4、合金層
5ならびに裏金6から成って、このオーバーレイメツキ
冒4の全表面によって軸rtI重が支持される。これに
対し、第4図に示す如<、Al−Sn −Pb系合金で
Si、Cu等を含む軸受は合金層5と裏金6とから成っ
て、この合金層5のマトリックス中に棒状や片状の81
粒子2が析出している。
The inventors of the present invention took note of this and conducted a comparative structural inspection of both bearings. That is, FIG. 3 is an enlarged sectional view of the - section of a bearing having a surface layer formed by overlay plating (hereinafter simply referred to as overlay plating) on the surface,
FIG. 4 is an enlarged cross-sectional view of a part of the bearing which is made of a l-Sn-Pb base metal and has no overlay plating layer on the surface (and also contains Sl, CU, etc.). Like (
, this bearing consists of a surface overlay plating II 4, an alloy layer 5 and a back metal 6, and the entire surface of this overlay plating 4 supports the shaft rtI weight. On the other hand, as shown in FIG. 4, a bearing made of an Al-Sn-Pb alloy containing Si, Cu, etc. consists of an alloy layer 5 and a backing metal 6, and the matrix of this alloy layer 5 has a rod-like or piece-like shape. 81 of
Particle 2 is precipitated.

従って、この軸受では相手軸の荷重は硬いSi粒子2支
えられ、しかも、Si粒子が上記の如く切削力を待って
いる。
Therefore, in this bearing, the load of the mating shaft is supported by the hard Si particles 2, and moreover, the Si particles are waiting for the cutting force as described above.

要するに、両者の差は面接触と点接触であり、この差に
よって潤滑、摩擦面の温度上昇において決定的な相違と
なっている。つまり、第3図に示す軸受のように、面接
触では、高速、高負荷条件下で摩擦面の温度は急速に上
昇するのに対し、第4図に示す軸受のように点接触では
、合金層5の表面と相手軸表面との間に間隙が形成され
、この間隙の油膜にはあまり大きな荷重がかからないた
め、十分なyJ屑が保持され、摩擦面の温度上昇はおさ
えられる。
In short, the difference between the two is surface contact and point contact, and this difference makes a decisive difference in lubrication and temperature rise of the friction surface. In other words, in surface contact, as in the bearing shown in Figure 3, the temperature of the friction surface rises rapidly under high speed and high load conditions, whereas in point contact, as in the bearing shown in Figure 4, the temperature of the friction surface increases rapidly under high speed and high load conditions. A gap is formed between the surface of layer 5 and the surface of the mating shaft, and since a very large load is not applied to the oil film in this gap, sufficient yJ debris is retained and temperature rise on the friction surface is suppressed.

更に進んで、本発明者等は、第4図に示す如き点接触に
よる軸荷重の支持が高荷重下のrA滑にきわめて有効で
あるという基本的見地に立って、その効果を最大限に生
かすための組成ならびに構造について研究し、本発明に
係る軸受台金を完成するに至ったのである。
Proceeding further, the present inventors took the basic viewpoint that supporting the shaft load by point contact as shown in Fig. 4 is extremely effective for rA slippage under high loads, and made the most of its effect. Through research on the composition and structure of the bearing base metal according to the present invention, they were able to complete the bearing base metal according to the present invention.

具体的に示すと、本発明者等はA I −Sn −1’
b系合金であって、SiやCU等を含む軸受台金におけ
るSlの析出形態に着目し、その形態の潤滑面におよぼ
す効果について調査研究を進めたところ、 第1に、Slはm点が高い安定物質であり、かつ、非金
属的性質が強く、相手軸の主成分のFeに200℃〜5
00℃程度の高温状態で接触しても、全く拡散若しくは
溶解を起さないことから、軸荷重の点支持手段はSiが
きわめて好適であることがわかった。
Specifically, the present inventors A I -Sn -1'
We focused on the precipitation form of Sl in the bearing base metal, which is a b-based alloy and contains Si, CU, etc., and conducted research on the effect of this form on the lubricating surface. First, we found that the m point of Sl is It is a highly stable substance and has strong non-metallic properties, and has a temperature of 200°C to 5°C compared to Fe, the main component of the mating shaft.
It has been found that Si is extremely suitable as a point support means for the axial load because it does not cause any diffusion or dissolution even when it comes into contact at a high temperature of about 00°C.

第2に相手材を油膜を介し点支持する場合、Si粒子は
そのビッカース硬さが599にも達するほど硬く、しか
も、Si粒子は化合物でないためもろさがなく、弾性に
冨み、急激な変vJ荷重に耐えられることがわかった。
Second, when supporting a mating material at a point via an oil film, Si particles are so hard that their Vickers hardness reaches 599, and since they are not compounds, they are not brittle, have high elasticity, and exhibit rapid changes in vJ. It was found that it could withstand the load.

しかしながら、Siは上記の如き性質を持っているのに
も拘らず、結晶性が強<、Atとの共晶析出形態でも、
板状若しくは棒状を呈し、その後の圧延や熱処理を経て
も、その形状はわずか変化する程度である。このため、
Si粒子の析出形態の制御を鋳造時から行なわない場合
は、第5図に示す如(、合金−でマトリックス1中に5
i−Pb合金粒子とともに析出する81粒子2は根状若
しくは棒状化する一方、これら81粒子2かう離れてS
ロールb合金粒子3が存在することになる。この状態で
あると、硬いSi粒子2のエツジによって相手軸が削ら
れてきずつけられ易く、かえって、潤滑性が低下し、焼
付きが起こる。
However, although Si has the above properties, it has strong crystallinity, and even in the form of eutectic precipitation with At,
It has a plate-like or rod-like shape, and its shape changes only slightly even after subsequent rolling and heat treatment. For this reason,
If the precipitation form of Si particles is not controlled from the time of casting, as shown in FIG.
The 81 particles 2 precipitated together with the i-Pb alloy particles become root-shaped or rod-shaped, while the S
Roll b alloy particles 3 will be present. In this state, the mating shaft is likely to be scraped and scratched by the edges of the hard Si particles 2, and on the contrary, the lubricity is reduced and seizure occurs.

この点から、本発明において潤滑性の飛躍的向上のため
に、81粒子から切削力を除去する上から、球状化の如
くエツジ部に丸味をおびさせるような形態に制御する。
From this point of view, in the present invention, in order to dramatically improve the lubricity, the cutting force is removed from the 81 particles, and the edges are controlled to have a rounded shape, such as spheroidization.

すなわち、第1図は本発明の一つの実施例に係る軸受台
金の一部の拡大断面図であって、第1図に示す如く、合
金層において、そのマトリックス1中に分散析出するS
i粒子2は球状化し、この球状81粒子2によって点接
触の理想に近づけ、より潤滑性を高め且つ耐摩耗性を高
めることができる。また、高速かつ急激な高荷重がかけ
られても、相手軸をきずつけることがない。また、Sl
が球状化しでいるため、マトリックス中の切欠効果がな
く、強度的にも安定したマトリックスを得ることができ
、耐摩耗性にも潰れる。
That is, FIG. 1 is an enlarged cross-sectional view of a part of a bearing base metal according to one embodiment of the present invention, and as shown in FIG.
The i-particles 2 are spherical, and the spherical 81-particles 2 bring the contact closer to the ideal point contact, making it possible to further improve lubricity and wear resistance. Furthermore, even if a high load is suddenly applied at high speed, the mating shaft will not be damaged. Also, Sl
Since the particles are spherical, there is no notch effect in the matrix, and a matrix with stable strength and wear resistance can be obtained.

このSi粒子の球状化は、Srの添加によって31が析
出する共晶点のA1合金液相の性質を改善することによ
って達成でき、更に、その後の熱処理において、その条
件が通常条件であってもSrによって球状化が高められ
る。
This spheroidization of Si particles can be achieved by improving the properties of the A1 alloy liquid phase at the eutectic point where 31 precipitates by adding Sr, and furthermore, even if the conditions are normal in the subsequent heat treatment, Spheronization is enhanced by Sr.

更に、srの添加によってSn−Pb合愈粒子3の析出
形態が変化し、第1図に示すようにStの球状化粒子2
にSn−Pb合金3がより隣接して存在するようになる
。この構造は、従来例のもの(例えば、第5図参照)に
比して、潤滑性能を飛躍的に向上させる。
Furthermore, the addition of sr changes the precipitation form of the Sn-Pb agglomerated particles 3, and as shown in FIG.
The Sn--Pb alloy 3 is present more adjacent to the surface. This structure dramatically improves the lubrication performance compared to the conventional structure (see, for example, FIG. 5).

また、以上のように表面性能を構造的に解決するほか、
Atは熱に対して感受性が強<、150℃をすぎると、
1Ivlo以下まで軟化して強度が失なわれるため、マ
トリックスの高温での強化をはかる必要があり、このと
ころから、Cuを添加する。
In addition to solving the surface performance structurally as described above,
At is highly sensitive to heat <, when the temperature exceeds 150℃,
Since it softens to below 1 Ivlo and loses its strength, it is necessary to strengthen the matrix at high temperatures, and from this point Cu is added.

すなわら、ellはAlと固溶してAllマトリックス
企硬化させる。Cuが0.1〜4%の範囲であると、一
部が固溶し残部が析出し、そのバランスによってAlマ
トリックスが強化される強度が向上する。
In other words, ELL is solid-dissolved with Al to temporarily harden the All matrix. When Cu is in the range of 0.1 to 4%, a portion of the Cu is dissolved in solid solution and the remainder is precipitated, and the balance improves the strength with which the Al matrix is strengthened.

以上の通り、本発明においては、単に従来のように素地
強化元素を添加するのでなく、強化元素のCUとともに
Srを添加し、硬さのみでなく、引張強度、伸びを従来
より向上ざゼ、耐疲労性を高め、高荷重運転下での軸受
性能の向上をはかるものであるが、そのは構とともに各
成分組成について説明すると、次の通りである。
As described above, in the present invention, instead of simply adding a base strengthening element as in the conventional case, Sr is added together with the reinforcing element CU to improve not only the hardness but also the tensile strength and elongation compared to the conventional method. The purpose is to increase fatigue resistance and improve bearing performance under high load operation.The structure and composition of each component are explained as follows.

第1図に示す構成の軸受では、軸荷重をささえる潤滑面
はマトリックス1の表面から突出する31粒子2の先端
部であり、しかも、81粒子と相手軸との間に油膜が介
在し、流体潤滑が保たれている。しかし、急激な変動荷
重を受け、この油膜が破れ、局部的に境界潤滑に達し、
この時に、81粒子2の上面にSn−Pb合金のフィル
ムが介在すれば、焼付きを防止でき、しかも、正常に′
a膜が再生されて流体潤滑の状態にすみやかに復帰する
ことができる。このときにも、第1図に示す構造である
と、81粒子2の近傍にSn −pb合金粒子3が存在
し、この合金は溶融状態でも潤滑面と親和性ffあり、
このため、油切れを起こしにくい。また、相手軸とSi
粒子とのFJ[で、Si粒子が高温になっても、5i−
Pbの融解熱で熱吸収され、近傍のマトリックスのA/
の合金と相手軸との焼付きが起こりに(くなる。又、こ
の時にも第2図に示す如く、81粒子2に隣接するSn
 −Pb合金粒子3の少なくとも一部が液相化しており
、この液相3affSi粒子2の突出面に供給される。
In the bearing configured as shown in Fig. 1, the lubricating surface that supports the shaft load is the tip of the 31 particles 2 protruding from the surface of the matrix 1, and an oil film is interposed between the 81 particles and the mating shaft, and the lubricating surface that supports the shaft load is Maintains lubrication. However, this oil film ruptures when subjected to rapidly fluctuating loads, reaching local boundary lubrication.
At this time, if a Sn-Pb alloy film is interposed on the upper surface of the 81 grain 2, it is possible to prevent seizure and to ensure normal
The a-film is regenerated and the state of fluid lubrication can be quickly restored. In this case, too, in the structure shown in FIG. 1, Sn-pb alloy particles 3 exist near the 81 particles 2, and this alloy has affinity ff with the lubricated surface even in the molten state.
Therefore, it is difficult to run out of oil. Also, the mating shaft and Si
With FJ [with particles, even if the Si particles become high temperature, 5i-
Heat is absorbed by the heat of fusion of Pb, and A/
Seizing occurs between the alloy and the mating shaft.Also, at this time, as shown in Figure 2, the Sn
At least a portion of the -Pb alloy particles 3 are in a liquid phase, and this liquid phase 3 is supplied to the protruding surfaces of the Si particles 2.

この供給量は温度の上昇とともに・S・えて、31粒子
2の潤滑面には常にSn −Pbの液相3aが介在する
ため、オーバーヒートを未然に防止できる。要するに、
31粒子2が球状化し、これにSn−1)b合金粒子3
が隣接する構造は、境界潤滑状態(油膜が切れた)で非
常に有効であり、また、普通の流体潤滑状態でも、硬い
Si粒子2が相手軸に適切になじみ、かつ、やわらかい
Sn−1lb園におおわれ、これがショックアブソーバ
−的な働きをする。
This supply amount increases as the temperature increases, and since the Sn--Pb liquid phase 3a is always present on the lubricated surface of the 31 particles 2, overheating can be prevented. in short,
31 particles 2 are spheroidized, and Sn-1)b alloy particles 3 are added to this.
The structure in which the two are adjacent to each other is very effective in the boundary lubrication state (the oil film has broken), and even in the normal fluid lubrication state, the hard Si particles 2 are properly adapted to the mating shaft, and the soft Sn-1lb garden is very effective. This acts as a shock absorber.

なお、上記の通りの各元素の限定理由を示すと、次の通
りである。
The reasons for limiting each element as described above are as follows.

まず、強靭なAlマトリックスを形成する元素のうちで
CUの範囲を0.1〜4%とするのは、4%を越える添
加であると、析出間が多くなって、かえってもろ(なる
からである。
First of all, among the elements that form a strong Al matrix, the range of CU is set at 0.1 to 4% because if the addition exceeds 4%, the number of inter-precipitates increases, and it becomes brittle. be.

更に、Snも3〜35%、pbも0.1〜10%の範囲
で適切な潤滑面が形成できる。また、Siは耐焼付性、
耐摩耗性の向上に有効で0.1〜11%まで添加するこ
とで十分この潤滑構造を維持できる。
Further, an appropriate lubricating surface can be formed with Sn in the range of 3 to 35% and Pb in the range of 0.1 to 10%. In addition, Si has seizure resistance,
It is effective in improving wear resistance, and adding up to 0.1 to 11% can sufficiently maintain this lubricating structure.

また、SrはSiの形状を球状に制御し、更に、Sr+
−Pb粒子をS1粒子近傍に析出させるもので、きわめ
て有効な元素である。しかし、S「が0.01%未満で
あると、このような添加効果がなく、0.3%超の添加
は、鋳造時に巣を発生しやすくなりかえって問題をおこ
す。
In addition, Sr controls the shape of Si to be spherical, and furthermore, Sr+
-Pb particles are precipitated near the S1 particles, and it is an extremely effective element. However, if the amount of S is less than 0.01%, there will be no such addition effect, and if it is more than 0.3%, cavities are likely to occur during casting, which may even cause problems.

実施例 次に、本発明の実施例について説明する。Example Next, examples of the present invention will be described.

実施例1゜ まず、第1図に示す組成のAl −Sn系軸受合金を連
続鋳造により厚さ20mの板状材として鋳造し、各鋳造
ビレットの上下面をi、omm面削し続いて冷間圧延に
より2IIII11の厚さまで圧下した。
Example 1 First, an Al-Sn bearing alloy having the composition shown in Fig. 1 was cast as a plate material with a thickness of 20 m by continuous casting, and the upper and lower surfaces of each cast billet were milled by i, om, and then cooled. It was rolled down to a thickness of 2III11 by inter-rolling.

この状態で300〜350℃の熱処理を行なってひずみ
を除去し、その俄、純A/の薄い板を介して裏金の鉄板
に圧着させて厚み1.501111の軸受を得た。
In this state, heat treatment was performed at 300 to 350° C. to remove strain, and during this time, the bearing was crimped to a steel backing plate via a thin plate of pure A/ to obtain a bearing having a thickness of 1.501111 mm.

これらの軸受のうちで、供試材NL1〜5はS「を含ま
ない従来例の供試材であり、Ni6〜10は本発明に係
るもので、この中で、供試材&、6〜10はCuを添加
したものである。
Among these bearings, test materials NL1-5 are conventional test materials that do not contain S, and Ni6-10 are related to the present invention. No. 10 is one to which Cu is added.

これらの各供試材は、軸受として使用される常温及び2
00℃の機械的性質を見るために、引張強度、伸びなら
びに硬さの試験を行ない、これを第2表に示した。なお
、各供試材は裏当金を機械加工により削除してAX−8
n合金部分のみとし、K鱗片の形状はJIS z 22
01の5号に示すものとした。
Each of these test materials was used as a bearing at normal temperature and
To examine the mechanical properties at 00°C, tensile strength, elongation and hardness tests were carried out and are shown in Table 2. In addition, the backing metal of each sample material was removed by machining and AX-8
N alloy part only, K scale shape is JIS z 22
01 No. 5.

ごれらの結果から、供試材Nt6〜10は従来材に比べ
、高温(200℃)における強度低下が少な(、Cu添
加効果がうかがえる。すなわら、Siの球状化及びマト
リックス強化が相刺されて強度や伸びが改善されたもの
と考えられる。又、伸びも従来例に比べて向上しており
、高温での総合的なti械的性質は向上したと言える。
From these results, the test materials Nt 6 to 10 show less strength loss at high temperatures (200°C) than conventional materials, indicating the effect of Cu addition. It is thought that the strength and elongation were improved due to the puncture.The elongation was also improved compared to the conventional example, and it can be said that the overall mechanical properties at high temperatures were improved.

次に、供試材のll14焼付性と耐摩耗性を知るために
、鈴木式摩原厚耗試Mlを用いて試験し、その試験条件
は次の通りであった。
Next, in order to find out the 114 seizing property and wear resistance of the sample materials, a test was conducted using the Suzuki type Mahara wear test M1, and the test conditions were as follows.

マサツ速度  4叱/sec 相手材 345G、硬さH,C=55 而アラサ0.8〜1、O3 使用オイル  SAE、201−40 油    温   150±5℃ 焼付荷1 100kg/CI2から10kq/[)’ 
5tepで焼付きに至るまで15分毎に血圧を上げ てゆき、焼付きをおこした血圧を 焼付vJ重とする。
Massage speed 4/sec Mating material 345G, hardness H, C=55 roughness 0.8~1, O3 Oil used SAE, 201-40 Oil temperature 150±5℃ Seizure load 1 100kg/CI2 to 10kq/[) '
The blood pressure is increased every 15 minutes until burn-in occurs in 5 steps, and the blood pressure at which burn-in occurs is defined as the burn-in vJ weight.

11i4摩耗性 一方、耐摩耗性をみるために100k
g7/[1l12一定で6時間試験し、その後の重機変
化をみる。
11i4 abrasion resistance On the other hand, to check the abrasion resistance, 100k
Test at a constant g7/[1l12 for 6 hours and observe changes in heavy equipment after that.

この結果を第2表に示す。The results are shown in Table 2.

これによれば、供試材No、 6〜10の何れも従来材
に比べ良好な耐焼付性、耐摩耗性を示しており、Sr及
びマトリックス強化元素添加により表面性能も向上して
いることがわかる。すなわら、本発明に係る合金はすぐ
れた潤滑機構を有していることを示している。
According to this, all of sample materials No. 6 to 10 showed better seizure resistance and wear resistance than conventional materials, and the surface performance was also improved by adding Sr and matrix-strengthening elements. Recognize. This indicates that the alloy according to the present invention has an excellent lubrication mechanism.

次に、実際に、各供試材をベアリング形状に加工し、@
経内なベアリングの疲労テストを行なったところ、第2
表に示す結果を得た。これは実際のエンジンの条件とほ
ぼ同じようにベアリングをコンロッドに固定し、軸に偏
心荷重をかけて、以下の条件で耐久テストを行ない、焼
付きや破損を起さず、その性能を維持した時間の長さで
評価するテストである。
Next, we actually processed each sample material into a bearing shape and @
When we conducted an internal bearing fatigue test, we found that
The results shown in the table were obtained. This test was conducted under the following conditions, with the bearing fixed to the connecting rod and an eccentric load applied to the shaft, almost the same as in an actual engine, and the performance was maintained without seizure or damage. This is a test that evaluates the length of time.

面     圧   600kgr/cy’回  転 
 数   400Or、 l)、 DI相手材料 FC
ロア0、アラサ0.8〜1.5S使用オイル  SAE
 201−40 油     温   150℃±5℃ なお、このテスト時間の上限は300時間とし、N=5
の平均値を第2表に示した。この結果、何れも比較例の
従来材に比べ長い耐久時間を示しており、本発明に係る
白金はすぐれた耐疲労性一方、従来例に・2の合金と史
にSrを0.03%添加した場合(供試材k 81にお
けるSiの形態の変化をそれぞれの試料を用いて31粒
の形状がわかるように深くエツチングし、電子顕微鏡に
より調べたところ、供試材Ns、 8のものはsrの添
加によりSiが球状化しているのがわかった。
Surface pressure 600kgr/cy' rotation
Number 400Or, l), DI mating material FC
Lower 0, roughness 0.8-1.5S oil used SAE
201-40 Oil temperature 150℃±5℃ The upper limit of this test time is 300 hours, N=5
The average values are shown in Table 2. As a result, the platinum of the present invention has a longer durability time than the conventional materials of comparative examples, and the platinum of the present invention has excellent fatigue resistance. (The changes in the Si morphology in sample material k81 were examined by deep etching using each sample so that the shape of 31 grains could be seen, and examined using an electron microscope. It was found that Si was spheroidized by the addition of .

実施例2゜ 本発明に係る軸受台金が高融点金属等をAtマトリック
スの強化剤として添加して、合金の脆弱化を改善する効
果があるか否かを確認するため、代用特性として衝撃値
を測定し、Srの添加作用により改善効果を実験によっ
て求めた。
Example 2 In order to confirm whether the bearing base metal according to the present invention has the effect of improving the brittleness of the alloy by adding a high melting point metal etc. as a reinforcing agent of the At matrix, impact value was measured as a substitute property. was measured, and the improvement effect of the addition of Sr was determined through experiments.

実験の供試材として、実施例1の第1表に示す従来材で
あるSrを含まないH・5と本発明に係るものである供
試材&8にて比較実験を行なった。
A comparative experiment was conducted using H.5, which is a conventional material not containing Sr, shown in Table 1 of Example 1, and sample material &8, which is a material according to the present invention, as test materials.

実験は月S z 2242、シャルピー衝撃試験方法に
て3号試験片1n=5)を作成して行なった。
The experiment was conducted using a No. 3 test piece (1n=5) prepared using the Charpy impact test method using Moon S z 2242.

実験の結果従来材は平均[10,84kg −ml’で
あったが、本発明に係るものは平均[3,00kg ・
l/CI2であり、明らかに本発明に係る軸受台金はS
r添加による改善効果が認められた。
As a result of the experiment, the conventional material had an average of [10,84 kg -ml', but the material according to the present invention had an average of [3,00 kg -ml']
l/CI2, and obviously the bearing base metal according to the present invention is S
An improvement effect due to the addition of r was observed.

〈発明の効果〉 以上詳しく説明した通り、本発明は、重量%で、3〜3
59’、Sn、0.1〜11%S1ならびに0.1〜1
0%Pl)、0.01〜0,3%srを含むとともにC
ub、 1〜4%を含有し、残余が実質的にAlから成
って、しかも、このマトリックス中に81粒子を、球状
、だ円状若しくは先@が丸味をおびた形状に析出させて
成るものである。
<Effects of the Invention> As explained in detail above, the present invention has an effect of 3 to 3% by weight.
59', Sn, 0.1-11% S1 and 0.1-1
0% Pl), 0.01-0.3% sr and C
ub, 1 to 4%, the remainder substantially consists of Al, and 81 particles are precipitated in this matrix in the shape of a sphere, an ellipse, or a shape with a rounded tip. It is.

この構成による本発明軸受合金は極めて潤滑性に優れ、
かつ、100〜250℃の高ン門における礪械的性質が
極めて良好であり、高負荷運転による使用条件の苛酷さ
に十分に耐える軸受台金である。
The bearing alloy of the present invention with this configuration has extremely excellent lubricity,
In addition, the bearing base metal has extremely good mechanical properties at high temperatures of 100 to 250°C, and can sufficiently withstand the harsh conditions of use due to high-load operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一つの実施例に係る軸受台金の一部の
拡大断面図、第2図は第1図に示す軸受台金の潤′IR
機構の説明図、第3図ならびに第4図は従来例の軸受の
一部の各拡大断面図、第5図は第4図の軸受台金の一部
の拡大断面図である。 符号1・・・・・・マトリックス 2・・・・・・31
粒子3・・・・・・Sn−1’l+合金粒子3a・・・
・・・Sn−Pb液相 4・・・・・・オーバーレイメツキ目 5・・・・・・軸受合金lI6・・・・・・裏金特許出
願人 工ヌデーシー株式会社 代 理 人 弁理士 松 下 義 勝 弁護士  副  島  文  雄 第1図 3Sn−Pb付軒 第2図
FIG. 1 is an enlarged sectional view of a part of a bearing base metal according to an embodiment of the present invention, and FIG.
An explanatory diagram of the mechanism, FIGS. 3 and 4 are enlarged sectional views of a part of a conventional bearing, and FIG. 5 is an enlarged sectional view of a part of the bearing base metal of FIG. 4. Code 1...Matrix 2...31
Particle 3...Sn-1'l+alloy particle 3a...
...Sn-Pb liquid phase 4 ...Overlay plating 5 ...Bearing alloy lI6 ... Back metal patent applicant KoNDC Co., Ltd. Agent Patent attorney Yoshi Matsushita Katsu Attorney Fumihiro Soejima Figure 1 Figure 2 Eaves with 3Sn-Pb

Claims (1)

【特許請求の範囲】[Claims] 1)重量%で、3〜35%Sn、0.1〜11%Siな
らびに0.1〜10%Pbを含むほか、0.1〜4%C
uを含有し、残余が実質的にAlから成るAl−Sn系
軸受合金において、0.01〜0.3%のSrを添加し
て、Alマトリックス中に、球状、だ円状若しくは先端
が丸味をおびた形状のSi粒子を分散、析出させること
を特徴とするAl−Sn−Pb系軸受合金。
1) Contains 3-35% Sn, 0.1-11% Si and 0.1-10% Pb, as well as 0.1-4% C
In an Al-Sn bearing alloy containing U and the remainder being substantially Al, 0.01 to 0.3% of Sr is added to form a spherical, elliptical or rounded tip in the Al matrix. An Al-Sn-Pb-based bearing alloy characterized by dispersing and precipitating Si particles having a shape of .
JP8844589A 1989-04-07 1989-04-07 Al-sn-pb bearing alloy Pending JPH01301832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8844589A JPH01301832A (en) 1989-04-07 1989-04-07 Al-sn-pb bearing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8844589A JPH01301832A (en) 1989-04-07 1989-04-07 Al-sn-pb bearing alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20294285A Division JPH0235020B2 (en) 1985-09-13 1985-09-13 ALLSNNPBKEIJIKUKEGOKIN

Publications (1)

Publication Number Publication Date
JPH01301832A true JPH01301832A (en) 1989-12-06

Family

ID=13943002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8844589A Pending JPH01301832A (en) 1989-04-07 1989-04-07 Al-sn-pb bearing alloy

Country Status (1)

Country Link
JP (1) JPH01301832A (en)

Similar Documents

Publication Publication Date Title
US4789607A (en) Aluminum bearing alloy and two-layer bearing material having bearing layer of aluminum bearing alloy therein
JP3373709B2 (en) Copper-based sliding bearing materials and sliding bearings for internal combustion engines
JP3472284B2 (en) Aluminum bearing alloy
EP0846058A1 (en) Aluminum alloy bearing and method of making same
JPS6245302B2 (en)
JPH0235020B2 (en) ALLSNNPBKEIJIKUKEGOKIN
JP2000017363A (en) Aluminum alloy for plain bearing and plain bearing
JPS6160906B2 (en)
JPS6156305B2 (en)
JPH01301832A (en) Al-sn-pb bearing alloy
JPS6144140B2 (en)
JPS61153255A (en) Al-sn bearing alloy
JPS5867841A (en) Aluminum alloy bearing
JPH0717980B2 (en) Al-Sn bearing alloy
JPH0711046B2 (en) Al-Sn bearing alloy
JPH0277541A (en) Al-sn bearing alloy
JPH0347934A (en) Al-sn-pb series bearing alloy
JPH0277548A (en) Al-sn-pb bearing alloy
JPS6212298B2 (en)
JPH0257654A (en) Al-sn-pb bearing alloy
JPH0347936A (en) Al-sn-pb series bearing alloy
JPH0277546A (en) Al-sn-pb bearing alloy
JPH0277542A (en) Al-sn bearing alloy
JPH0277543A (en) Al-sn-pb bearing alloy
JPH0277545A (en) Al-sn-pb bearing alloy