JPS58113335A - Wear resistant sintered copper alloy with self-lubricity and its manufacture - Google Patents

Wear resistant sintered copper alloy with self-lubricity and its manufacture

Info

Publication number
JPS58113335A
JPS58113335A JP21479881A JP21479881A JPS58113335A JP S58113335 A JPS58113335 A JP S58113335A JP 21479881 A JP21479881 A JP 21479881A JP 21479881 A JP21479881 A JP 21479881A JP S58113335 A JPS58113335 A JP S58113335A
Authority
JP
Japan
Prior art keywords
graphite
alloy
sintered
particles
graphite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21479881A
Other languages
Japanese (ja)
Inventor
Tetsuya Suganuma
菅沼 徹哉
Kouji Kazuoka
数岡 幸治
Makoto Nakamura
真 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FUNMATSU GOKIN KK
Toyota Motor Corp
Original Assignee
NIPPON FUNMATSU GOKIN KK
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FUNMATSU GOKIN KK, Toyota Motor Corp filed Critical NIPPON FUNMATSU GOKIN KK
Priority to JP21479881A priority Critical patent/JPS58113335A/en
Publication of JPS58113335A publication Critical patent/JPS58113335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a sintered Cu alloy with self-lubricity, superior workability and wear resistance by using graphite particles coated with Cu so as to provide a specified composition contg. graphite and Pb dispersed uniformly and finely in the Cu-Sn alloy matrix. CONSTITUTION:A sintered Cu alloy consisting of, by weight, 6-10% Sn, 4-11% Pb, 0.3-4% graphite and the balance essentially Cu is manufactured. At this time, in order to increase the bonding strength of graphite particles in the sintered alloy to the peripheral Cu-Sn alloy matrix, graphite particles coated with Cu are well mixed with other powdered starting materials. The powdered mixture is compacted to a prescribed shape and sintered. Thus, the sintered Cu alloy contg. graphite and Pb dispersed uniformly and finely in the Cu-Sn alloy matrix is manufactured.

Description

【発明の詳細な説明】 こO発明は、原動機用ターボチャージャーのタービンシ
ャフトの高速回転およびそれによるスラスト力を受ける
ためのスラスト軸受等に使用される銅系の軸受材料に関
し、特に自己潤滑性を付与し丸軸受用の耐摩耗焼結鋼合
金およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copper-based bearing material used in a thrust bearing for receiving the high-speed rotation of a turbine shaft of a turbocharger for a prime mover and the resulting thrust force. The present invention relates to a wear-resistant sintered steel alloy for round bearings and a method for producing the same.

従来から銅系の軸受材料としてはCu −S!1合金(
青銅)やCo −Sss −Pb合金(鉛青銅)が広く
使用されておに、またその銅系軸受材料は、溶解鋳、造
法によって製璋されるものと、粉末冶金法によって製造
される焼結含油軸受とに大別される。
Traditionally, Cu-S! has been used as a copper-based bearing material. 1 alloy (
Bronze) and Co-Sss-Pb alloys (lead bronze) are widely used, and copper-based bearing materials include those manufactured by melt casting and casting methods, and those manufactured by powder metallurgy methods. It is broadly classified into oil-impregnated bearings.

しかしながら従来のこの種の軸受材料は、いずれも潤滑
油もしくは潤滑剤による潤滑効果を伴った状態で使用す
る必要があり、潤滑油もしくは潤滑剤が存在しない場合
や存在してもそれらによる潤滑効果が期待できない場合
には異常摩耗や焼付きが生じて使用に耐えなくなる問題
がある。したがって軸受部分の機構上の問題やその他の
理由で潤滑油や潤滑剤全使用できない場合、あるいは使
用中の異常な温度上昇等により一時的に潤滑効果が失な
われるような場合には好ましい結果が得られない。特に
焼結含油軸受の場合には温度による制約が厳しく、高銀
となった場合には潤滑油にょる潤滑効果が期待できなく
なって異常摩耗や焼付きが生じ易い欠点がある。
However, all conventional bearing materials of this type must be used with the lubrication effect of lubricating oil or lubricant, and even if lubricating oil or lubricant is not present, the lubrication effect of the lubricant may not be effective. If these expectations are not met, there is a problem that abnormal wear or seizure may occur, making the product unusable. Therefore, if the lubricating oil or lubricant cannot be fully used due to mechanical problems with the bearing part or other reasons, or if the lubricating effect is temporarily lost due to abnormal temperature rise during use, favorable results may not be obtained. I can't get it. Particularly in the case of sintered oil-impregnated bearings, there are severe temperature restrictions, and if the silver content is high, the lubricating effect of the lubricating oil cannot be expected, and abnormal wear and seizure are likely to occur.

この発明は以上の事情に鑑みてなされたもので、潤滑油
や潤滑剤が使用できない場合あるいはそれらの潤滑効果
が期待できない場合や潤滑効果が一時的に失なわれてし
まうような場合に使用しても、摩耗が少なくしかも焼付
き現iが生じないようにし友軸受材料およびその製造方
法を提供することを目的とするものである。
This invention was made in view of the above circumstances, and can be used when lubricating oil or lubricant cannot be used, or when their lubrication effect cannot be expected, or when their lubrication effect is temporarily lost. It is an object of the present invention to provide a bearing material and a method for manufacturing the same, which cause less wear and prevent the occurrence of seizure.

すなわちこの発明の軸受材料は、基本的にはCu −S
n合金基地中にpbおよび黒鉛を粉末冶金法により均一
かつ微細に分散させて、Pb粒子および黒鉛粒子により
自己潤滑性を持たせた焼結鋼合金であり、またこの発明
の製造方法は、焼結原料として添加するだめの黒鉛粉末
粒子を予めCuによって被覆させておき、銅被覆黒鉛粒
子として添加して、Cu −Sn合金基地に対する黒鉛
粒子の保持力を高め、耐摩耗性および加工性を向上させ
るようにしたものである。
That is, the bearing material of this invention is basically Cu-S.
This is a sintered steel alloy in which Pb and graphite are uniformly and finely dispersed in an alloy base using a powder metallurgy method, and the Pb particles and graphite particles provide self-lubricating properties. Graphite powder particles that are not added as a coalescing material are coated with Cu in advance, and added as copper-coated graphite particles to increase the holding power of the graphite particles to the Cu-Sn alloy base and improve wear resistance and workability. It was designed so that

具体的にはこの発明の焼結鋼ぜ金は、Sn6〜1096
、Pb 4〜11チ、黒鉛03〜3%、残部実質的にC
uからなる焼結鋼合金であって、Cu ’Sn合金基地
中にpbおよび黒鉛が微細かつ均一に分散していること
を特徴とするものである。またこの発明の製造方法は、
So 6〜10 %、Pb4〜11−1愚鉛0.3〜3
Is1残部実質的にCuからなる焼結鋼合金を製造する
Kあたり、前記添加元素のうち黒鉛として、黴細な黒鉛
粒子の表面をCUにょシ被覆してなる銅被覆黒鉛粒子に
て添加して、Pbおよび黒鉛が均一かつ微細に分散した
情緒銅合金を得ることを特徴とするものである。
Specifically, the sintered steel metal of this invention has a Sn6 to 1096
, Pb 4-11%, graphite 03-3%, balance substantially C
It is a sintered steel alloy consisting of u, and is characterized by finely and uniformly dispersing PB and graphite in the Cu'Sn alloy matrix. Furthermore, the manufacturing method of this invention includes:
So 6-10%, Pb4-11-1 lead 0.3-3
The remainder of Is1 is used to manufacture a sintered steel alloy consisting essentially of Cu. Among the above additive elements, graphite is added in the form of copper-coated graphite particles formed by coating the surface of fine graphite particles with CU. This method is characterized by obtaining an emotional copper alloy in which Pb and graphite are uniformly and finely dispersed.

以下この発明の焼結鋼合金およびその製造方法について
さらに詳細に説明する。
The sintered steel alloy of the present invention and its manufacturing method will be explained in more detail below.

先ずこや発明の焼結鋼合金の成分限定理由について説明
す4と、SfiはCuに固溶してマトリックスの硬さを
増力すさせ、耐摩耗性および機械的性質を向上させるが
、6−未満ではその効果は少なく、また10%を越えれ
ばその流出孔が大きくなり、機械的強さの低下を招く°
。そこでSmは6〜10mの範囲とした。
First, we will explain the reasons for limiting the ingredients of the sintered steel alloy of Koya's invention. 4. Sfi dissolves in Cu to increase the hardness of the matrix and improve wear resistance and mechanical properties, but 6. If it is less than 10%, the effect will be small, and if it exceeds 10%, the outflow pores will become large, leading to a decrease in mechanical strength.
. Therefore, Sm was set in the range of 6 to 10 m.

pbは微細な粒子として分散することにより潤滑効果を
与えるが%4’lb、未満ではその効果が少なく、一方
11チを越えて添加してもそれ以上潤滑効果は向上せず
1、逆に機械的性質を劣化させ、また加工性を低下させ
るから、4〜11チの範囲とした。
Pb provides a lubricating effect by dispersing it as fine particles, but its effect is small below 4'lb%.On the other hand, if it is added in excess of 11 cm, the lubricating effect does not improve any further1, and on the contrary, it The thickness was set in the range of 4 to 11 inches because it deteriorates the mechanical properties and the workability.

黒鉛も微細な次子として分散するととにょシ潤滑性を向
上させる顕著な効果を有するが、0.31未満ではその
効果は少なく、一方3%を越えればそれ以上潤滑性が向
上しないばかりでなく、かえって機械的強度を低下させ
るとともに加工性を悪化させるから、0.3〜3−の範
囲とじ九。
Graphite also has a remarkable effect of improving lubricity when dispersed in the form of fine particles, but if it is less than 0.3%, the effect is small, and on the other hand, if it exceeds 3%, not only will the lubricity not improve any further. However, it should be kept in the range of 0.3 to 3-3, since it would rather reduce the mechanical strength and worsen the workability.

上述のような組成のこの発明の焼結鋼合金においては、
SfiはCuに固溶してCm −8n合金基地を形成し
、またpbはCuに対する固溶限が著しく小さいから、
Cuに固溶せずにPb粒子としてCu −Sn合金基地
中に分散し、また黒鉛も同様に黒鉛粒子としてCm −
Sn合金基地中に分散する。ここで黒鉛粒子はその粒径
が大きくなれば加工性が低下するばか)でな(、Cu−
8ta合金基地との保持力が小さくなって軸受としての
使用時、すなわち摺動時において耐摩耗性を低下させる
おそれがある。
In the sintered steel alloy of this invention having the composition as described above,
Sfi dissolves in Cu to form a Cm-8n alloy base, and Pb has an extremely small solid solubility limit in Cu.
It is dispersed in the Cu-Sn alloy matrix as Pb particles without solid solution in Cu, and Cm-
Dispersed in the Sn alloy base. Here, as the particle size of graphite particles increases, the workability decreases (Cu-
There is a risk that the holding force with the 8ta alloy base will be reduced and the wear resistance will be reduced during use as a bearing, that is, during sliding.

そこで黒鉛粒子は可及的に微細なものであることが望ま
しく、具体的には粒径8μmの黒鉛粒子が断面の面積率
で2−以上均一に分散していることが望ましい、そして
黒鉛粒子のCu −Sn合金基地に対する保持力をよシ
一層高めるためには、後に詳細に説明するように表面を
予めCuによって被覆した銅被覆黒鉛粒子にて焼結原料
の黒鉛成分を添加することが望ましい。またpbもその
粒子が粗い場合にはpbの偏析の原因となり、加工性の
劣化および耐摩耗性の低下を招くから、Pb粒子を可及
的に微細にすることが望ましく、具体的には3〜8μm
のPb粒子が断面の面積率で3s以上均一に分散してい
ることが望ましめ。
Therefore, it is desirable that graphite particles be as fine as possible, and specifically, it is desirable that graphite particles with a particle size of 8 μm be uniformly dispersed in a cross-sectional area ratio of 2 or more. In order to further increase the holding power to the Cu--Sn alloy matrix, it is desirable to add the graphite component of the sintering raw material in the form of copper-coated graphite particles whose surfaces are coated with Cu in advance, as will be explained in detail later. In addition, if the Pb particles are coarse, it will cause Pb segregation, leading to deterioration of workability and wear resistance, so it is desirable to make the Pb particles as fine as possible. ~8μm
It is desirable that the Pb particles are uniformly dispersed with a cross-sectional area ratio of 3s or more.

次に上述のような焼結鋼合金の製造方法について説明す
る。
Next, a method for producing the above-mentioned sintered steel alloy will be explained.

先ず原料粉末について説明すると、前記各添加元素のう
ち8m FiCu −8m合金粉末として添加するのが
通常であるが、SKIを単体金属粉末として添加しても
焼結時におけるSrrのCuへの合金化は速やかに行な
われるから、単体金属粉末として別に添加しても良い。
First, to explain the raw material powder, among the above-mentioned additional elements, it is usually added as 8m FiCu -8m alloy powder, but even if SKI is added as a single metal powder, Srr will not be alloyed with Cu during sintering. Since this is done quickly, it may be added separately as a single metal powder.

pbはCuKはとんど固溶しないから、Co−8n−P
b合金粉末(但し合金粒子中にPb粒子が分散している
)として添加しても、あるいは別にpb粉末を添加して
も同効である。但しいずれの場合もPb粒子が前述のよ
うに微細である必要がある。黒鉛は別に黒鉛粒子として
添加するのが通常であるが、この場合焼結体中における
黒鉛粒子とその周囲のCu −8m合金基地との結合力
(粒子保持力)を高めるため、黒鉛粉末粒子の表面を予
め銅によって被嶺して鋼被覆黒鉛粒子としておき、これ
を他の原料粉末と混合して用いることが望ましい、斯く
すれば焼結工程において鋼被覆黒鉛粒子表面の銅層がそ
の周囲のCu −E1m1m合金粉末等と一体化してマ
トリックスとなり、シ九がって黒鉛粒子と周囲のマトリ
ックス(Cm −am合金基地)とが密に結合した状態
となるから、軸受としての摺動時において黒鉛粒子が剥
離することが可及的に防止され、耐摩耗性が著しく向上
するとともに加工性も向上する。なおこの場合も黒鉛粒
子は添加時から前述のような微細なものとしておく必要
がある。
pb is Co-8n-P since CuK hardly dissolves in solid solution.
The same effect can be obtained even if it is added as b alloy powder (however, Pb particles are dispersed in the alloy particles) or if Pb powder is added separately. However, in either case, the Pb particles need to be fine as described above. Graphite is usually added separately as graphite particles, but in this case, in order to increase the bonding force (particle retention force) between the graphite particles and the surrounding Cu-8m alloy base in the sintered body, graphite powder particles are added. It is preferable to cover the surface with copper in advance to form steel-coated graphite particles, and then use this by mixing it with other raw material powders.In this way, during the sintering process, the copper layer on the surface of the steel-coated graphite particles will spread over the surrounding area. The graphite particles are integrated with the Cu-E1m1m alloy powder, etc. to form a matrix, and the graphite particles and the surrounding matrix (Cm-am alloy base) are tightly bonded, so when sliding as a bearing, the graphite particles Peeling of particles is prevented as much as possible, and wear resistance and workability are significantly improved. In this case as well, the graphite particles need to be as fine as mentioned above from the time of addition.

上述のような原料粉末はこれを最終的に得るべき焼結体
の組成に対応する配合比で混合し、常法にし九がワて圧
粉成形および焼結すれば、Pb粒子および黒鉛粒子がC
m −Pb合金基地中に微細かつ均一に分散した、目的
とする焼結鋼合金が得られる。なお焼結温度は700〜
850℃程度とすることが望ましい。
When the above-mentioned raw material powders are mixed in a blending ratio corresponding to the composition of the sintered body to be finally obtained, and then compacted and sintered using a conventional method, Pb particles and graphite particles are formed. C
The desired sintered steel alloy is obtained which is finely and uniformly dispersed in the m-Pb alloy matrix. The sintering temperature is 700~
The temperature is preferably about 850°C.

以下この発明の実施例および比較例を記す。Examples and comparative examples of this invention will be described below.

実施例1 組成がC%M−10% Sn −10To Pbであっ
て粒度が一100メツシーの鉛青銅合金粉44重量部と
、Cu−10% 8nの組成で粒径が一100メツシュ
の青銅合金粉50重量部と、粒径が8μm以下の黒鉛粉
末粒子を重敏比で50%のCuで被覆してなる銅被覆黒
鉛粉末粒子6%とを混合し、所定の形状に圧粉成形した
後、アンモニア分解ガス雰囲気中にて800℃で30分
間焼結した。得られた焼結体の密度は7.8シーであり
、また焼結体の組成は、Cu −9,4To 8n −
4,4% Pb −3%黒鉛となった。
Example 1 44 parts by weight of a lead bronze alloy powder having a composition of C%M-10% Sn-10To Pb and a particle size of 1100 mesh, and a bronze alloy having a composition of Cu-10% 8n and a particle size of 1100 mesh. After mixing 50 parts by weight of powder and 6% of copper-coated graphite powder particles formed by coating graphite powder particles with a particle size of 8 μm or less with Cu at a gravity ratio of 50%, and compacting into a predetermined shape, Sintering was performed at 800° C. for 30 minutes in an ammonia decomposition gas atmosphere. The density of the obtained sintered body was 7.8c, and the composition of the sintered body was Cu-9,4To8n-
The result was 4.4% Pb-3% graphite.

なおこの焼結体中においては、粒径8μm以下の黒鉛粒
子が断面の面積率で2−以上均一に分散しており、また
粒径8μm以下のPb粒子が断面の面積率で3−以上均
一に分散していることが確認され丸。
In this sintered body, graphite particles with a particle size of 8 μm or less are uniformly dispersed in a cross-sectional area ratio of 2 or more, and Pb particles with a particle size of 8 μm or less are uniformly dispersed in a cross-sectional area of 3 or more. It has been confirmed that they are distributed in circles.

実施例2 組成がCu −10’lk Soであって粒度が一10
0メツシーの青銅合金組成プレミックス粉末89.5重
量部と、粒径が15μm以下でかつ8μm以下のものが
少くとも50s以上を占める噴sPb粉lO重量部と、
粒径が8μm以下の黒鉛0.5重量部とを混合し、所定
の形状に圧粉成形した後、プロパン変成ガス雰囲気にて
750℃で30分間焼結した。
Example 2 The composition is Cu-10'lk So and the particle size is 110
89.5 parts by weight of bronze alloy composition premix powder of 0 mesh, and 10 parts by weight of sPb powder having a particle size of 15 μm or less and having a particle size of 8 μm or less for at least 50 seconds;
The mixture was mixed with 0.5 parts by weight of graphite having a particle size of 8 μm or less, compacted into a predetermined shape, and then sintered at 750° C. for 30 minutes in a propane converted gas atmosphere.

得られ丸焼給体の密度は7.5か−であり、4!九焼結
体の組成tfcts−8,95*St+−101Pb−
0,5−黒鉛てありた。なおこの焼結体中においては、
粒径が8μm以下の黒鉛粒子が断面の面積率で04慢以
上均−に分散しており、また粒径8μI以下のPb粒子
が断面の面積率で3s以上均一に分散していえ。
The density of the obtained burnt body was 7.5 -, which was 4! Composition of nine sintered body tfcts-8,95*St+-101Pb-
There was 0,5-graphite. In this sintered body,
Graphite particles with a particle size of 8 μm or less are uniformly dispersed in a cross-sectional area ratio of 04 µm or more, and Pb particles with a particle size of 8 μl or less are uniformly dispersed in a cross-sectional area ratio of 3 s or more.

比較例1 実施例1で使用した鉛青銅合金粉と同一の組成、粒度の
鉛青銅合金粉を所定の形状に成形し死後、アン毛ニア分
解ガス中にて800℃で30分間焼結し丸、得られた焼
結体の密度は7.8 i/dであった。なお上述の鉛青
銅合金粉は成形性が悪いため予め造粒して使用した。
Comparative Example 1 A lead bronze alloy powder having the same composition and particle size as the lead bronze alloy powder used in Example 1 was molded into a predetermined shape, and after death, it was sintered at 800°C for 30 minutes in an ancholynia decomposition gas to form a round shape. The density of the obtained sintered body was 7.8 i/d. Note that the lead bronze alloy powder described above had poor formability, so it was granulated in advance before use.

比験例2 組成がCu −10% amであって粒径が−100メ
ツシーの青銅合金粉90重蓋都と、実施例2で用いた噴
gPb粉9重量部と、粒径−150メツシ、(0,10
4fi以下)の粗大な黒鉛粉末1重量部とを混合し、所
定の形状に圧粉成形した後、プロパン変成ガス雰囲気中
にて75L1℃で30分間焼結した。得られた焼結体の
密度は7.59/dであり、また焼結体の組成はCu 
−9チSn −9チPb−1チ黒鉛であった。
Comparative Example 2 90 parts by weight of bronze alloy powder with a composition of Cu-10% am and a particle size of -100 metric, 9 parts by weight of the powdered lead powder used in Example 2, and a particle size of -150 metric, (0,10
4fi or less) was mixed with 1 part by weight of coarse graphite powder, compacted into a predetermined shape, and then sintered at 75L1°C for 30 minutes in a propane modified gas atmosphere. The density of the obtained sintered body was 7.59/d, and the composition of the sintered body was Cu.
-9T Sn -9T Pb -1T graphite.

比較例3 組成がCu −10チSnであって粒径が一100メツ
シーの青銅合金粉90重量部と、実施例2で用いた噴霧
pb粉10重量部とを混合し、所定の形状に圧粉成形し
た後、プロパン変成ガス雰囲気にて750℃で30分間
焼結した。得られた焼結体の密度は7.5 y/cdで
あり、またその組成はCu −9% Sn −10% 
Pbで1>ッた。
Comparative Example 3 90 parts by weight of a bronze alloy powder having a composition of Cu-10% Sn and a particle size of 1100 mesh and 10 parts by weight of the atomized PB powder used in Example 2 were mixed and pressed into a predetermined shape. After powder molding, it was sintered at 750° C. for 30 minutes in a propane converted gas atmosphere. The density of the obtained sintered body was 7.5 y/cd, and its composition was Cu -9% Sn -10%
Pb gave 1>.

上記各実施例および各比較例における原料粉末の配合を
第1表にまとめて示す。また各実施例および各比較例に
より得られた焼結体の強度、被剛性および耐摩耗性を調
べたところ、第2表に示す結果が得られた。但し被剛性
試験はF記の条件で焼結体にドリル加工を施し、カケの
有無で被剛性を評価した。
The formulations of the raw material powders in each of the above Examples and Comparative Examples are summarized in Table 1. In addition, the strength, stiffness, and wear resistance of the sintered bodies obtained in each Example and each Comparative Example were examined, and the results shown in Table 2 were obtained. However, for the rigidity test, the sintered body was drilled under the conditions described in F, and the rigidity was evaluated based on the presence or absence of chips.

試料形状:25X25XlO−の直方体ドリル : S
KH−9、φ2.5N 回転数 : 1200 rpm 送り速度: 1 m%’sec また摩耗試験は焼結体に含有させた状態および含油させ
ない状態の両者について、大越式摩耗試験装置を用いて
次の条件で行った。
Sample shape: 25X25XlO- rectangular parallelepiped Drill: S
KH-9, φ2.5N Rotation speed: 1200 rpm Feed rate: 1 m%'sec In addition, the wear test was carried out using an Okoshi type wear tester for both the state in which the sintered body was impregnated with oil and the state in which it was not impregnated. I went with the conditions.

試料形状:25X25XlOsgの直方体摺動速度: 
4.26 m/sec 荷  重  :  2.1 kg 摺動距111:600■ 相手材 : SUJ −2 含油オイル:モビール30番(商品名)弔1衣:原料初
木の配合(単位w1チ)jA2衣 第2表に示すように、この発明の実施例による焼結体は
、比較例のものと比較して含油した場合の摩耗量が少な
いばかシでなく、無含油の場合でも摩耗量が少なく焼付
きも生じないことから、自己潤滑性に優れていΣことが
明らかである。そしてまた強度が高くしかも加工性(被
剛性)に優れていることが明らかである。特に実施例1
け黒鉛を銅被覆黒鉛粒子として添加したものであるが、
この場合耐摩耗性が著しく優れていることが明らかであ
る。なお比較例2は焼結体の組成はこの発明の範囲内で
あるが、黒鉛粒子が−15”0メツ/、 (0,104
−以下)と著しく粗大であり、この場合には実施例と比
較して摩耗量が犬きくなっておシ、このことから黒鉛粒
子が微細である必要があることが明゛らがである。
Sample shape: 25X25XlOsg rectangular parallelepiped Sliding speed:
4.26 m/sec Load: 2.1 kg Sliding distance 111:600■ Compatible material: SUJ-2 Oil-impregnated oil: Mobile No. 30 (product name) Mouth 1: Mixture of raw material first wood (unit w1 inch) jA2 As shown in Table 2, the sintered bodies according to the examples of the present invention did not exhibit a small amount of wear when impregnated with oil, compared to those of comparative examples, but also exhibited a decrease in the amount of wear even when not impregnated with oil. It is clear that it has excellent self-lubricating properties, as there is little seizure or seizure. It is also clear that it has high strength and excellent workability (rigidity). Especially Example 1
Graphite is added as copper-coated graphite particles,
It is clear that in this case the wear resistance is significantly superior. In Comparative Example 2, the composition of the sintered body is within the scope of the present invention, but the graphite particles are -15"0mets/, (0,104
- and below), and in this case, the amount of wear is much greater than in the example, and from this it is clear that the graphite particles need to be fine.

以上の説明で明らかなようにこの発明の焼結鋼合金は、
Cu −So基地中に適正蓋の黒鉛粒子およびpb粒子
を微細かつ均一に分散させたものであるから、自己潤滑
性に優れており、したがって軸受として潤滑油や潤滑材
が機構上その他の理由にょり使用できない場合あるいは
それらによる潤滑効果が期待できない場合や一時的に潤
滑効果が失なわれるような場合に使用しても、異常卑耗
や焼付きが生じたりする危険性が少なく、またもちろん
―m油や側嘴材を併用しかつそれらによる潤滑効果が期
待できるような場合でも摩耗量が従来のものより格段に
少なくなって耐久性が向上し、さらには従来のものと比
較L−で強度および加工性も優れる等、各棟の長FgT
を有するものである。
As is clear from the above explanation, the sintered steel alloy of this invention is
Since the graphite particles and PB particles of the proper cover are finely and uniformly dispersed in the Cu-So base, it has excellent self-lubricating properties, and therefore, it is possible to use lubricating oil or lubricant as a bearing for mechanical or other reasons. Even when used in cases where the lubricating effect cannot be expected, or where the lubricating effect is temporarily lost, there is little risk of abnormal wear or seizure, and of course... Even when using lubricant and side beak material in combination, and the lubrication effect of these can be expected, the amount of wear is significantly lower than that of conventional products, improving durability, and the strength is lower than that of conventional products. The length of each building is FgT, which has excellent workability.
It has the following.

またこの発明の焼結銅合金の製1一方法は、原料の黒鉛
成分を銅板−黒鉛粒子として添加するものであるから、
黒鉛粒子と基地との結合力(粒子保持力)が大きくなり
、その粘果耐皐耗性および加工性がより一層同上する効
果が得られる。
In addition, in the method for producing the sintered copper alloy of the present invention, the graphite component of the raw material is added as copper plate-graphite particles.
The bonding force (particle retention force) between the graphite particles and the base is increased, and the effect of further improving the viscous abrasion resistance and processability is obtained.

出願人 トヨタ自動東工業株式会社 〃  日本粉末合金株式会社Applicant: Toyota Automobile East Kogyo Co., Ltd. Nippon Powder Alloy Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)  So 6〜10 % (重量%、以下同じ)
、pb4〜115G、黒鉛0.3〜31残部実質的にC
uからなる焼結銅合金であって、しかもCu −Sn合
金基地中にpbおよび黒鉛が均一かつ微細に分散してい
ることを特徴とする自己潤滑性耐摩耗焼結鋼合金。
(1) So 6-10% (weight%, same below)
, pb4-115G, graphite 0.3-31 balance substantially C
A self-lubricating, wear-resistant sintered steel alloy, which is a sintered copper alloy consisting of u, characterized in that PB and graphite are uniformly and finely dispersed in the Cu--Sn alloy matrix.
(2)前記Cu −Sn合金基地中のpbとして、粒径
3〜8μmのPb粒子が断面の面積率で3−以上均一に
分散している特許請求の範囲第1項記載の焼結鋼合金。
(2) The sintered steel alloy according to claim 1, wherein Pb particles having a particle size of 3 to 8 μm are uniformly dispersed in a cross-sectional area ratio of 3 or more as Pb in the Cu-Sn alloy matrix. .
(3)  前記Cu −8t*合金基地中の黒鉛として
、粒径8μm以下の黒鉛粒子が断−0面積率で2−以上
均一に分散している特許請求の範囲第1項記載の焼結鋼
合金。
(3) The sintered steel according to claim 1, wherein graphite particles having a grain size of 8 μm or less are uniformly dispersed at a cross-sectional area ratio of 2 or more as the graphite in the Cu-8t* alloy matrix. alloy.
(4) Sn6〜10チ、Pb4〜11−1黒鉛0.3
〜3−1残部実質的にCuからなる焼結鋼合金を製造す
るにあ九〉、前記添加元素のうち黒鉛を、微細な黒鉛粒
子表面にCIを被覆してなる鋼被覆黒鉛粒子として添加
して、Pbおよび黒鉛が均一かつ微細に分散し九焼結鋼
合金を得ることを特徴とする自己潤滑性耐摩耗焼結鋼合
金の製造方法。
(4) Sn6~10chi, Pb4~11-1 graphite 0.3
~3-1 To produce a sintered steel alloy with the remainder substantially consisting of Cu, graphite among the above-mentioned additive elements is added as steel-coated graphite particles formed by coating CI on the surface of fine graphite particles. A method for producing a self-lubricating wear-resistant sintered steel alloy, characterized in that Pb and graphite are uniformly and finely dispersed to obtain a sintered steel alloy.
JP21479881A 1981-12-25 1981-12-25 Wear resistant sintered copper alloy with self-lubricity and its manufacture Pending JPS58113335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21479881A JPS58113335A (en) 1981-12-25 1981-12-25 Wear resistant sintered copper alloy with self-lubricity and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21479881A JPS58113335A (en) 1981-12-25 1981-12-25 Wear resistant sintered copper alloy with self-lubricity and its manufacture

Publications (1)

Publication Number Publication Date
JPS58113335A true JPS58113335A (en) 1983-07-06

Family

ID=16661694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21479881A Pending JPS58113335A (en) 1981-12-25 1981-12-25 Wear resistant sintered copper alloy with self-lubricity and its manufacture

Country Status (1)

Country Link
JP (1) JPS58113335A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151539A (en) * 1985-12-25 1987-07-06 Hitachi Powdered Metals Co Ltd Element for roll bearing
US5041339A (en) * 1988-09-06 1991-08-20 Daido Metal Company Multilayered sliding material of lead bronze containing graphite and method of manufacturing the same
JPH07138681A (en) * 1993-11-18 1995-05-30 Ndc Co Ltd Double layer coppery sintered sliding member
JP2002060870A (en) * 2000-08-24 2002-02-28 Taiho Kogyo Co Ltd Cu-Pb BASED COPPER ALLOY HAVING FINE LEAD STRUCTURE AND PLAIN BEARING FOR INTERNAL COMBUSTION ENGINE
CN104451224A (en) * 2014-11-06 2015-03-25 北矿新材科技有限公司 Preparation method of self-lubricating composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151539A (en) * 1985-12-25 1987-07-06 Hitachi Powdered Metals Co Ltd Element for roll bearing
US5041339A (en) * 1988-09-06 1991-08-20 Daido Metal Company Multilayered sliding material of lead bronze containing graphite and method of manufacturing the same
JPH07138681A (en) * 1993-11-18 1995-05-30 Ndc Co Ltd Double layer coppery sintered sliding member
JP2002060870A (en) * 2000-08-24 2002-02-28 Taiho Kogyo Co Ltd Cu-Pb BASED COPPER ALLOY HAVING FINE LEAD STRUCTURE AND PLAIN BEARING FOR INTERNAL COMBUSTION ENGINE
CN104451224A (en) * 2014-11-06 2015-03-25 北矿新材科技有限公司 Preparation method of self-lubricating composite material

Similar Documents

Publication Publication Date Title
JP3939931B2 (en) Copper-based multi-layer sliding material
JP4675563B2 (en) Bearing and manufacturing method thereof
JP3298634B2 (en) Sliding material
US5346668A (en) Copper based alloy for wear resistant sliding layer and sliding member
JP2918292B2 (en) Sliding material
US5665480A (en) Copper-lead alloy bearing
JPH02107731A (en) Wear-resistant copper-series sintered oiless bearing material
JPH0151532B2 (en)
JP3292445B2 (en) Sliding material with excellent wear resistance
JPS58113335A (en) Wear resistant sintered copper alloy with self-lubricity and its manufacture
EP0163937B1 (en) Bearing material and method of making the said bearing material
JP2553374B2 (en) Sintered alloy material for oil-impregnated bearing and manufacturing method thereof
JP2001107106A (en) Coppery sintered sliding material
JP3042539B2 (en) Sliding material
JP3298636B2 (en) Sliding material
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
JP4427410B2 (en) Pb-free copper alloy sliding material with excellent seizure resistance
JPH06145845A (en) Sintered friction material
JP2006037180A (en) COMPOSITE SLIDING MATERIAL SUPERIOR IN SEIZURE RESISTANCE MADE OF Pb-FREE COPPER ALLOY
JP2505632B2 (en) Sliding material
JP3838833B2 (en) Al-Bi based sintered bearing alloy and method for producing the same
JPH04254556A (en) Self-lubricated sliding material and oilless bearing formed by using this material
JP2006037179A (en) Pb-FREE COPPER-ALLOY-BASED COMPOSITE SLIDING MATERIAL SUPERIOR IN SEIZURE RESISTANCE
JPH0121222B2 (en)
JPS61210155A (en) Iron-brass sintered sliding material