JPH06145845A - Sintered friction material - Google Patents

Sintered friction material

Info

Publication number
JPH06145845A
JPH06145845A JP4317756A JP31775692A JPH06145845A JP H06145845 A JPH06145845 A JP H06145845A JP 4317756 A JP4317756 A JP 4317756A JP 31775692 A JP31775692 A JP 31775692A JP H06145845 A JPH06145845 A JP H06145845A
Authority
JP
Japan
Prior art keywords
alloy
friction material
sintered
friction
hard particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4317756A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Kondo
勝義 近藤
Yoshinobu Takeda
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4317756A priority Critical patent/JPH06145845A/en
Publication of JPH06145845A publication Critical patent/JPH06145845A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a bronze-base dry sintered friction material to be used for the clutch, brake, etc., capable of stably securing a high friction coefficient, without attacking the counterpart, reduced in friction amt. and without causing seizure with the counterpart. CONSTITUTION:This sintered friction material consists of a Cu-Sn alloy and a solid lubricating component with a bronze-base sintered alloy as a mother alloy. The Cu-Sn alloy contains 3-20wt.% Sn and the balance Cu with inevitable impurities, and 3-20wt.% of hard particles having 1080mum average diameter are uniformly dispersed in the Cu alloy base. Further, the seizing resistance is improved by controlling the pore having <=30mum size to 1-30vol.%, a relatively high friction coefficient is stably secured, the counterpart attacking property is minimized, and hence the material can be applied to the dry friction material such as clutch and brake.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、青銅系乾式焼結摩擦材
に関するものであり、耐焼付き性に優れており、比較的
高い摩擦係数を安定して確保することができ、しかも相
手材に対する攻撃性が極めて少ないため、クラッチやブ
レーキ等の乾式摩擦材料へ適用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bronze-based dry-sintered friction material, which has excellent seizure resistance, can stably secure a relatively high coefficient of friction, and is superior to the counterpart material. Since it has extremely low aggressiveness, it can be applied to dry friction materials such as clutches and brakes.

【0002】[0002]

【従来の技術】近年、乾式下で使用される摩擦クラッチ
およびブレーキ用材料としてアスベスト系摩擦材料に代
わり青銅系焼結合金が開発されており、例えば特開昭5
8−157928号「乾式焼結摩擦材料」においては青
銅系焼結合金で高い摩擦係数を得るために硬質粒子を添
加している。
2. Description of the Related Art In recent years, bronze-based sintered alloys have been developed in place of asbestos-based friction materials as materials for dry friction type friction clutches and brakes.
In No. 8-157928 "Dry Sintered Friction Material", hard particles are added in order to obtain a high friction coefficient with a bronze-based sintered alloy.

【0003】しかしながら、これらの焼結材料では合金
中に分散している硬質粒子と素地との間には反応層がな
く、隙間が存在する。そのため、高速・高荷重の摺動条
件下では摩擦時に素地から硬質粒子が脱落するために高
い摩擦係数を安定して確保することができなくなり、ま
た脱落部を起点として相手材と焼付きを生じ、さらには
脱落粒子のかみ込みや相手材を攻撃するといった問題が
ある。
However, in these sintered materials, there is no reaction layer between the hard particles dispersed in the alloy and the matrix, and a gap exists. Therefore, under high-speed, high-load sliding conditions, hard particles fall off from the base material during friction, making it impossible to secure a high coefficient of friction in a stable manner. Moreover, there is a problem that the fallen particles are caught and the opponent material is attacked.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の問題点
を克服するため、摩擦係数を向上させることを目的に添
加する硬質粒子をCu−Sn系合金中に均一に分散さ
せ、且つ分散硬質粒子と素地の界面に反応層を形成する
ことにより摺動時に素地から硬質粒子が脱落することを
抑制することが課題である。
In order to overcome the above-mentioned problems, the present invention uniformly disperses hard particles added for the purpose of improving the coefficient of friction in a Cu-Sn alloy, and disperses hard particles. The problem is to prevent the hard particles from falling off from the substrate during sliding by forming a reaction layer at the interface between the particles and the substrate.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者らは、
上述の問題を解決するために種々の実験・検討を行った
結果、乾式摺動摩擦条件下において高い摩擦係数を安定
して確保できるため、相手材を攻撃することが無く、し
かも摩耗量も少なく、更に相手材と焼付きを生じないよ
うな焼結摩擦材を開発した。
Therefore, the present inventors have
As a result of various experiments and studies to solve the above problems, a high friction coefficient can be stably ensured under dry sliding friction conditions, so that the mating material is not attacked and the wear amount is small. Furthermore, we have developed a sintered friction material that does not cause seizure with the mating material.

【0006】その具体的な合金組成および空孔量は本発
明によれば以下のとおりである。
According to the present invention, the specific alloy composition and the amount of vacancies are as follows.

【0007】本発明の焼結摩擦材は、青銅(ブロンズ)
系焼結合金を母合金とする焼結摩擦材料において、重量
比率でSn:3〜20%を含有し、残部が実質的にCu
および不可避的不純物からなる組成のCu合金素地中に
平均粒径1〜80μmの硬質粒子が重量比率で3〜20
%均一に分散されたCu−Sn系合金と固体潤滑成分か
らなることを特徴とする焼結摩擦材である。
The sintered friction material of the present invention is bronze.
In a sintered friction material containing a system sintered alloy as a master alloy, Sn: 3 to 20% by weight is contained, and the balance is substantially Cu.
And hard particles having an average particle size of 1 to 80 μm in the Cu alloy base having a composition of unavoidable impurities in a weight ratio of 3 to 20.
% A sintered friction material comprising a Cu—Sn alloy uniformly dispersed and a solid lubricating component.

【0008】上記硬質粒子は、Cu−Sn系合金粉末を
水アトマイズ法によって作る場合には窒化物もしくはF
e系金属間化合物の少なくとも1種または2種以上で構
成し市販粉末をメカニカルアロイング法,メカニカルグ
ランディング法または造粒法で作る場合は酸化物、窒化
物、炭化物、ほう化物およびFe系金属間化合物のうち
少なくとも1種または2種以上からなる構成とする。
The above hard particles are nitrides or F when Cu--Sn alloy powder is produced by the water atomizing method.
An oxide, a nitride, a carbide, a boride and an Fe-based metal when a commercially available powder composed of at least one or two or more e-type intermetallic compounds is produced by a mechanical alloying method, mechanical grounding method or granulation method It is composed of at least one or two or more of the intercalation compounds.

【0009】またCu−Sn系合金は水アトマイズ法の
場合、平均粒径100μm以下とし急冷凝固噴霧によっ
て硬質粒子を均一に分散させ合金化する。メカニカルア
ロイング法、メカニカルグランディング法または造粒法
等によって粉末を作る場合、硬質粒子をCu−Sn系合
金粉末もしくはCuとSnの混合粉末と機械的に合金化
することでそれら硬質粒子がCu−Sn系合金素地中に
均一に分散させる。これらの粉末に固体潤滑成分を加え
る。この固体潤滑成分は黒鉛、MoS2 またはCaF2
のうち少なくとも1種以上からなり全体の1〜5重量%
を構成するようにする。このような組成からなるCu−
Sn系焼結合金は30μm以下の大きさの空孔が1〜3
0容量%均一に分布した組織を有する。
In the case of the water atomizing method, the Cu-Sn alloy has an average particle size of 100 μm or less and is hard alloy particles are uniformly dispersed by rapid solidification spraying to form an alloy. When powder is produced by a mechanical alloying method, a mechanical grounding method, a granulation method, or the like, the hard particles are mechanically alloyed with a Cu—Sn alloy powder or a mixed powder of Cu and Sn to form Cu particles. -Disperse uniformly in the Sn-based alloy substrate. Solid lubricant components are added to these powders. This solid lubricating component is graphite, MoS 2 or CaF 2
1 to 5% by weight of the whole consisting of at least one of
To configure. Cu-having such a composition
The Sn-based sintered alloy has 1 to 3 pores with a size of 30 μm or less.
0% by volume has a uniformly distributed structure.

【0010】次に、合金組成および空孔量を上記の如く
設定した理由について説明する。
Next, the reason why the alloy composition and the amount of holes are set as described above will be explained.

【0011】Sn SnはCuと共に本合金の素地を形成し、合金の高温強
度および靭性を向上させる作用があり、また、高温での
相手材との耐焼付き性を向上させる作用がある。添加量
が3重量%未満ではそれらの効果がなく、また20重量
%を越えて添加すると硬くて脆い相が析出するために強
度、靭性を低下させる。そこでSnの含有量は3〜20
重量%と設定した。
Sn Sn forms the base material of the present alloy together with Cu, has the effect of improving the high temperature strength and toughness of the alloy, and also has the effect of improving the seizure resistance with the mating material at high temperatures. If the addition amount is less than 3% by weight, these effects are not exerted, and if the addition amount exceeds 20% by weight, a hard and brittle phase precipitates, so that the strength and toughness are lowered. Therefore, the Sn content is 3 to 20.
Weight% was set.

【0012】硬質粒子 硬質粒子は本焼結合金の素地中に均一に分散して乾式摩
擦条件下において常温および高温での相手材との凝着発
生を抑制して耐焼付き性を向上させると共に相手材素地
表面と直接接触して摩擦係数を大きくし、耐摩耗性を向
上させる効果を有する。
Hard Particles Hard particles are uniformly dispersed in the base material of the present sintered alloy and suppress the occurrence of adhesion with the mating material at normal temperature and high temperature under dry friction conditions to improve seizure resistance and to prevent mating. It has the effect of increasing the friction coefficient by directly contacting the surface of the material and improving the wear resistance.

【0013】その大きさおよび添加量の影響に関しては
次に示すとおりである。平均粒径が1μm未満および含
有量3重量%未満ではその効果はなく、また平均粒径が
80μmを越えるか、またはその含有量が20重量%を
越えると硬質粒子が亀裂発生の起点となりやすく、その
結果、合金の強度・靭性を低下させ、また、相手攻撃性
の観点からもこのような範囲での窒化物の添加は相手材
を激しく摩耗させるため、好ましくない。
The influence of the size and the addition amount is as follows. If the average particle size is less than 1 μm and the content is less than 3% by weight, the effect is not obtained. If the average particle size exceeds 80 μm or the content exceeds 20% by weight, the hard particles are apt to be a starting point of cracking, As a result, the strength and toughness of the alloy are lowered, and also from the viewpoint of opponent attacking property, addition of a nitride in such a range causes severe abrasion of the opponent material, which is not preferable.

【0014】そこで合金中の硬質粒子は平均粒径;1〜
80μmとし、且つ合計含有量は3〜20重量%が適切
である。尚、本発明の合金素地中に均一に分散する硬質
粒子である酸化物、窒化物、炭化物、ほう化物およびF
e系金属間化合物の具体的な成分は以下の通りである。
Therefore, the hard particles in the alloy have an average particle size of 1 to
It is appropriate that the total content is 80 μm and the total content is 3 to 20% by weight. The oxides, nitrides, carbides, borides and F that are hard particles that are uniformly dispersed in the alloy base of the present invention.
The specific components of the e-based intermetallic compound are as follows.

【0015】酸化物;Al23 ,MgO,ZrO2
SiO2 窒化物;Si34 ,TiN,CrN,AlN,WN 炭化物;SiC,TiC,CrC,ZrC,WC ほう化物;TiB,ZrB,CrB Fe系金属間化合物;Fe−Mo,Fe−Cr,Fe−
W,Fe−Ti
Oxide: Al 2 O 3 , MgO, ZrO 2 ,
SiO 2 nitride; Si 3 N 4 , TiN, CrN, AlN, WN carbide; SiC, TiC, CrC, ZrC, WC boride; TiB, ZrB, CrB Fe-based intermetallic compound; Fe-Mo, Fe-Cr, Fe-
W, Fe-Ti

【0016】ただし水アトマイズによって噴霧急冷凝固
させる場合にはCu−Sn母材溶湯と硬質粒子との界面
の反応層を形成しうる窒化物およびFe系金属間化合物
から硬質粒子成分を選ぶ。これら硬質粒子が摺動時に素
地から脱落するとその脱落部を起点として相手材と移着
・凝着をおこして焼付きが発生したり、また脱落粒子が
相手材にかみ込むことで相手材を摩耗・損傷させる。よ
って、このような現象を抑えて、安定して高い摩擦係数
を確保するには硬質粒子を素地中に均一に分散させて且
つそれら粒子の脱落を抑制する必要がある。
However, in the case of spray quench solidification by water atomization, the hard particle component is selected from nitrides and Fe-based intermetallic compounds that can form a reaction layer at the interface between the molten Cu--Sn base material and the hard particles. When these hard particles fall off the base material during sliding, seizure occurs due to transfer and adhesion with the mating material starting from the falling part, and the mating of the fallen particles into the mating material causes the mating material to wear.・ Damage. Therefore, in order to suppress such a phenomenon and ensure a stable high friction coefficient, it is necessary to uniformly disperse the hard particles in the matrix and suppress the falling of these particles.

【0017】そこで、上記の硬質粒子をCu−Sn系合
金の溶湯中に均一に分散させ、Cu−Sn合金との界面
に反応層を形成させたCu−Sn母合金を水アトマイズ
するかまたは硬質粒子をCu−Sn系合金粉末もしくは
CuとSnの混合粉末と機械的に合金化することで硬質
粒子をCu−Sn系合金素地中に均一に分散させること
ができ、且つ素地のCu−Sn合金と硬質粒子の界面に
反応層を形成させることで硬質粒子を素地中に強固に固
定できる。
Therefore, the above-mentioned hard particles are uniformly dispersed in a molten Cu-Sn alloy, and a Cu-Sn mother alloy having a reaction layer formed at the interface with the Cu-Sn alloy is water-atomized or hard atomized. By mechanically alloying the particles with a Cu-Sn alloy powder or a mixed powder of Cu and Sn, the hard particles can be uniformly dispersed in the Cu-Sn alloy base, and the Cu-Sn alloy of the base can be dispersed. By forming a reaction layer at the interface between the hard particles and the hard particles, the hard particles can be firmly fixed in the matrix.

【0018】水アトマイズ合金粉末の場合には平均粒径
が100μmを越えると溶湯からの冷却速度が103
/秒よりも小さくなるため、アトマイズ粉が凝固する際
に素地中のα相の外周にSnが偏析し、その結果焼結後
の合金の耐焼き付き性および強度・靭性が低下する。従
って100μm以下とする必要がある。
In the case of water atomized alloy powder, when the average particle size exceeds 100 μm, the cooling rate from the molten metal is 10 3 ° C.
Since it is smaller than / sec, Sn segregates around the outer periphery of the α phase in the base material when the atomized powder solidifies, and as a result, the seizure resistance and strength / toughness of the alloy after sintering deteriorate. Therefore, it should be 100 μm or less.

【0019】機械的合金化法の場合、具体的にはメカニ
カルアロイング法やメカニカルグランディング法更には
造粒法等の機械的合金化手法を適用することにより初め
て硬質粒子が素地中に均一に分散し、しかも摺動時にそ
れら粒子が脱落しないようなCu−Sn合金粉末が得ら
れる。
In the case of the mechanical alloying method, concretely, the mechanical alloying method, the mechanical grounding method, and further the mechanical alloying method such as the granulation method are applied to make the hard particles uniform in the matrix. A Cu—Sn alloy powder that is dispersed and does not fall off during sliding is obtained.

【0020】固体潤滑成分 固体潤滑成分は乾式摩擦条件下において相手材に対する
攻撃性を改善すると共に高温状態での摩擦係数を安定さ
せる効果があり、これにより摺動面間の潤滑性を改善す
ることができ、また摺動時の鳴き発生が抑制できる。
Solid Lubrication Component The solid lubrication component has the effects of improving the aggressiveness to the mating material under dry friction conditions and stabilizing the friction coefficient at high temperatures, thereby improving the lubricity between sliding surfaces. It is also possible to suppress the generation of squeal when sliding.

【0021】Cu−Sn系焼結合金においてこれらの効
果を有する固体潤滑成分は黒鉛、MoS2 およびCaF
2 である。これらは粉末として混合しやすくまた経済的
にも問題がなく、一方、他の潤滑成分では例えば、Pb
はCu−Sn合金製軸受けにおいて使用されるが、素地
と化合物を生成せずに微粒子としてα相のデンドライト
間に存在するため、摩擦材に適用すると摺動時に脱落す
る可能性がある。
Solid lubricant components having these effects in the Cu--Sn system sintered alloy are graphite, MoS 2 and CaF.
Is 2 . These are easily mixed as powders and have no economical problem. On the other hand, for other lubricating components, for example, Pb is used.
Is used in a Cu-Sn alloy bearing, but since it exists as fine particles between α-phase dendrites without forming a compound with the base material, it may fall off during sliding when applied to a friction material.

【0022】そこで、固体潤滑成分は黒鉛、MoS2
よびCaF2 を選択した。その含有量は黒鉛、MoS
2 、またはCaF2 のうち少なくとも1種以上で1〜5
重量%が適量である。含有量が1重量%未満では上記の
効果は得られず、また5重量%を越えて添加してもその
効果は向上せず、逆に焼結体の強度・靭性が低下するの
で好ましくない。
Therefore, graphite, MoS 2 and CaF 2 were selected as the solid lubricating components. Its content is graphite, MoS
2 or at least one of CaF 2 and 1 to 5
Weight percent is a suitable amount. If the content is less than 1% by weight, the above effect is not obtained, and if it is added in excess of 5% by weight, the effect is not improved and, conversely, the strength and toughness of the sintered body are deteriorated, which is not preferable.

【0023】空孔量 空孔は30μm以下の大きさであり、焼結合金の摺動摩
擦面に均一に分布することで、摺動の際に空孔が変形す
ることにより耐焼付き性および相手材とのなじみ性を改
善する効果がある。空孔の大きさが30μmを越えると
これが亀裂発生の起点となり、焼結体の強度・靭性が著
しく低下する。また、その量が1容量%未満では上記の
効果は少なく、30容量%を越えて分布すると焼結合金
の強度・靭性が低下する。更に空孔が不均一に分布する
と摺動時における相手材とのなじみ性が局所的に低下す
るため、安定した摩擦係数が得られない。従って、本焼
結摩擦材において、空孔は大きさが30μm以下であ
り、且つ摩擦材中に均一に1〜30容量%分布すること
が適切である。
Amount of Voids The size of the voids is 30 μm or less, and by being evenly distributed on the sliding friction surface of the sintered alloy, the voids are deformed during sliding and seizure resistance and the mating material. It has the effect of improving the compatibility with. If the size of the pores exceeds 30 μm, this becomes the starting point of crack generation, and the strength and toughness of the sintered body are significantly reduced. Further, if the amount is less than 1% by volume, the above effect is small, and if it exceeds 30% by volume, the strength and toughness of the sintered alloy deteriorate. Further, if the pores are unevenly distributed, the conformability with the mating material during sliding is locally reduced, so that a stable friction coefficient cannot be obtained. Therefore, in the present sintered friction material, it is appropriate that the pores have a size of 30 μm or less and that the pores are uniformly distributed in the friction material in an amount of 1 to 30% by volume.

【0024】以上のような合金組成・空孔量を有する焼
結摩擦材は、十分な強度・靭性と耐摩耗性および自己潤
滑性を有している。また、乾式摩擦摺動条件下において
通常のCu−Sn系合金では摺動初期の摩擦係数は約
0.2〜0.3程度であり、摩擦進行と共に摩擦係数は
増加・変動し、最終的には相手材と焼付きを生じるのに
対して、本焼結摩擦材は約0.5〜0.7の比較的高い
摩擦係数を安定して保持でき、しかも同一材料や鉄・銅
合金等を相手材とした場合においてもそれらを攻撃する
ことなく、更に相手材と焼付きを生じることがない。
The sintered friction material having the alloy composition and the porosity as described above has sufficient strength / toughness, wear resistance and self-lubricity. Further, under dry friction-sliding conditions, a normal Cu-Sn alloy has a friction coefficient of about 0.2 to 0.3 at the initial stage of sliding, and the friction coefficient increases and fluctuates as the friction progresses, and finally Causes seizure with the mating material, whereas this sintered friction material can stably maintain a relatively high coefficient of friction of about 0.5 to 0.7, and the same material or iron / copper alloy is used. Even when it is used as a mating material, it does not attack them and does not cause seizure with the mating material.

【0025】[0025]

【実施例】 (実施例1)本発明の焼結摩擦材(硬質粒子が窒化物で
ある場合)および比較材料の合金組成を表1に示す。
尚、(1)〜(9)が本発明の摩擦材料、(10)〜
(20)が比較材料である(空孔量以外は全て重量%で
記す)。その焼結摩擦材料の機械的特性および摩擦試験
結果(摩擦係数、摩擦材および相手材S10C材の摩耗
量)を表2に示す。尚、摩擦試験は図1に示す乾式摩擦
試験機により実施した。
Example 1 Table 1 shows alloy compositions of the sintered friction material of the present invention (when hard particles are nitrides) and a comparative material.
Incidentally, (1) to (9) are friction materials of the present invention, and (10) to
(20) is a comparative material (all are expressed in weight% except for the amount of voids). Table 2 shows the mechanical characteristics of the sintered friction material and the friction test results (friction coefficient, wear amount of friction material and mating material S10C material). The friction test was carried out by the dry friction tester shown in FIG.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】材料(1)〜(9)は本発明の合金であ
り、その機械的特性および摩擦試験結果は良好である。
一方、比較材での試験結果は以下のようである。
Materials (1) to (9) are the alloys of the present invention and have good mechanical properties and friction test results.
On the other hand, the test results for the comparative material are as follows.

【0029】(10) Sn量が1%と少ない為に素地
の強度不足により摩擦材が摩耗してμ値が増加。 (11) Sn量が25%と多い為に素地が著しく硬化
して相手材を攻撃してμ値が増加。 (12) 窒化物の平均粒径が90μmと大きい為に靭
性不足および相手材を攻撃する。 (13) 窒化物の添加量が2%と少ない為に十分なμ
値が得られない。 (14) 窒化物の添加量が30%と多い為に靭性不足
および相手材を攻撃する。 (15) 窒化物の合計添加量が30%と多い為に靭性
不足および相手材を攻撃する。 (16) 固体潤滑剤を含まない為に潤滑不良を生じて
相手材と焼付きを発生する。 (17) 空孔量が0%である為に耐焼付き性が低下し
て相手材と焼付きを生じる。 (18) 空孔量が35%と大きい為に強度靭性が不足
して摩擦材が摩耗する。 (19) 空孔の大きさが平均45μmと大きい為に強
度・靭性が不足して摩擦材が摩耗する。 (20) 窒化物が摺動の際に素地から脱落して相手材
と焼付きを生じる。
(10) Since the Sn content is as small as 1%, the friction material wears due to insufficient strength of the base material, and the μ value increases. (11) Since the Sn content is as large as 25%, the base material significantly hardens and attacks the mating material, increasing the μ value. (12) Since the average grain size of the nitride is as large as 90 μm, it lacks toughness and attacks the partner material. (13) Sufficient μ because the added amount of nitride is as small as 2%.
I can't get the value. (14) Since the amount of nitride added is as large as 30%, the toughness is insufficient and the opponent material is attacked. (15) Since the total amount of nitride added is as large as 30%, the toughness is insufficient and the other material is attacked. (16) Since no solid lubricant is contained, poor lubrication occurs and seizure occurs with the mating material. (17) Since the amount of pores is 0%, seizure resistance is reduced and seizure occurs with the mating material. (18) Since the porosity is as large as 35%, the strength and toughness are insufficient and the friction material is worn. (19) Since the size of the pores is as large as 45 μm on average, the strength and toughness are insufficient and the friction material wears. (20) When the nitride slides, it falls off from the base material and seizes with the mating material.

【0030】(実施例2)本発明の焼結摩擦材(硬質粒
子がFe系化合物である場合)および比較材料の合金組
成を表3に示す。尚、(1)〜(9)が本発明の摩擦材
料、(10)〜(20)が比較材料である(空孔量以外
は全て重量%で記す)。その焼結摩擦材料の機械的特性
および摩擦試験結果(摩擦係数、摩擦材および相手材S
10C材の摩耗量)を表4に示す。尚、摩擦試験は図1
に示す乾式摩擦試験機により実施した。
Example 2 Table 3 shows the alloy compositions of the sintered friction material of the present invention (when the hard particles are Fe-based compounds) and the comparative material. In addition, (1) to (9) are friction materials of the present invention, and (10) to (20) are comparative materials (all are shown by weight% except for the amount of pores). Mechanical properties and friction test results of the sintered friction material (friction coefficient, friction material and mating material S
Table 4 shows the amount of wear of the 10C material). The friction test is shown in Fig. 1.
The dry friction tester shown in FIG.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】材料(1)〜(9)は本発明の合金であ
り、その機械的特性および摩擦試験結果は良好である。
一方、比較材での試験結果は以下のようである。
Materials (1) to (9) are the alloys of the present invention and have good mechanical properties and friction test results.
On the other hand, the test results for the comparative material are as follows.

【0034】(10) Sn量が1%と少ない為に素地
の強度不足により摩擦材が摩耗してμ値が増加。 (11) Sn量が25%と多い為に素地が著しく硬化
して相手材を攻撃してμ値が増加。 (12) 硬質粒子の平均粒径が90μmと大きい為に
靭性不足および相手材を攻撃する。 (13) 硬質粒子の添加量が2%と少ない為に十分な
μ値が得られない。 (14) 硬質粒子の添加量が30%と多い為に靭性不
足および相手材を攻撃する。 (15) 硬質粒子の合計添加量が30%と多い為に靭
性不足および相手材を攻撃する。 (16) 固体潤滑剤を含まない為に潤滑不良を生じて
相手材と焼付きを発生する。 (17) 空孔量が0%である為に耐焼付き性が低下し
て相手材と焼付きを生じる。 (18) 空孔量が25%と大きい為に強度靭性が不足
して摩擦材が摩耗する。 (19) 空孔の大きさが平均45μmと大きい為に強
度・靭性が不足して摩擦材が摩耗する。 (20) 窒化物が摺動の際に素地から脱落して相手材
と焼付きを生じる。
(10) Since the Sn content is as small as 1%, the friction material wears due to insufficient strength of the base material and the μ value increases. (11) Since the Sn content is as large as 25%, the base material significantly hardens and attacks the mating material, increasing the μ value. (12) Since the hard particles have a large average particle size of 90 μm, they lack in toughness and attack the mating material. (13) A sufficient μ value cannot be obtained because the amount of hard particles added is as small as 2%. (14) Since the amount of hard particles added is as large as 30%, the toughness is insufficient and the partner material is attacked. (15) Since the total amount of hard particles added is as large as 30%, the toughness is insufficient and the mating material is attacked. (16) Since no solid lubricant is contained, poor lubrication occurs and seizure occurs with the mating material. (17) Since the amount of pores is 0%, seizure resistance is reduced and seizure occurs with the mating material. (18) Since the porosity is as large as 25%, the strength and toughness are insufficient and the friction material is worn. (19) Since the size of the pores is as large as 45 μm on average, the strength and toughness are insufficient and the friction material wears. (20) When the nitride slides, it falls off from the base material and seizes with the mating material.

【0035】(実施例3)本発明の焼結摩擦材および比
較材料の合金組成を表5及び表6に示す。尚、表5の1
〜17が本発明の摩擦材料、表6の18〜28が比較材
料である(空孔量以外は全て重量%で記す)。その焼結
摩擦材料の機械的特性および摩擦試験結果(摩擦係数、
摩擦材および相手材S10C材の摩耗量)を表7に示
す。尚、摩擦試験は図1に示す乾式摩擦試験機により実
施した。
Example 3 Tables 5 and 6 show alloy compositions of the sintered friction material of the present invention and the comparative material. In addition, 1 in Table 5
Nos. 17 to 17 are friction materials of the present invention, and Nos. 18 to 28 in Table 6 are comparative materials (all are expressed by weight% except for the amount of pores). Mechanical properties of the sintered friction material and friction test results (friction coefficient,
Table 7 shows the wear amounts of the friction material and the mating material S10C. The friction test was carried out by the dry friction tester shown in FIG.

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】[0038]

【表7】 [Table 7]

【0039】材料1〜17は本発明の合金であり、その
機械的特性および摩擦試験結果は良好である。一方、比
較材での試験結果は以下のようである。
Materials 1 to 17 are the alloys according to the invention and have good mechanical properties and friction test results. On the other hand, the test results for the comparative material are as follows.

【0040】18:Sn量が1%と少ないために素地の
強度不足により摩擦材が摩耗してμ値が増加。 19:Sn量が30%と多いために素地が著しく硬化し
て相手材を攻撃してμ値が増加。 20:硬質粒子の平均粒径が100μmと大きいために
靭性不足および相手材を攻撃する。 21:硬質粒子が含まれていないために十分なμ値が得
られない。 22・23:硬質粒子が35%と多いために靭性不足お
よび相手材を攻撃する。 24:固体潤滑剤を含まないために潤滑不良を生じて相
手材と焼付きを発生する。 25:空孔量が0%であるために耐焼付き性が低下して
相手材と焼付きを生じる。 26:空孔量が35%と大きいために強度靭性が不足し
て摩擦材が摩耗する。 27:空孔の大きさが平均45μmと大きいために強度
・靭性が不足して摩擦材が摩耗する。 28:機械的合金化手法を行わず、単に所定成分を有す
る各粉末を混合のみした後、焼結したために硬質粒子と
素地との反応層が形成されずに摺動の際に硬質粒子が素
地から脱落して相手材と焼付きを生じる。
18: Since the Sn content was as small as 1%, the friction material was abraded due to insufficient strength of the base material, and the μ value increased. 19: Since the Sn content is as large as 30%, the base material is significantly hardened and attacks the mating material to increase the μ value. 20: Since the hard particles have a large average particle size of 100 μm, the toughness is insufficient and the mating material is attacked. 21: A sufficient μ value cannot be obtained because no hard particles are contained. 22 ・ 23: Due to a large amount of hard particles of 35%, the toughness is insufficient and the opponent material is attacked. 24: Since solid lubricant is not included, poor lubrication occurs and seizure occurs with the mating material. 25: Since the amount of voids is 0%, seizure resistance is lowered and seizure occurs with the mating material. 26: Since the porosity is as large as 35%, the strength and toughness are insufficient and the friction material is worn. 27: Since the size of the pores is as large as 45 μm on average, the strength and toughness are insufficient and the friction material wears. 28: No mechanical alloying method was performed, only the powders each having a predetermined component were simply mixed, and then sintered, so that a reaction layer between the hard particles and the base material was not formed, and the hard particles did not form a base material during sliding. Will fall off and cause seizure with the mating material.

【0041】[0041]

【発明の効果】本発明の青銅基焼結摩擦材においては乾
式摩擦摺動条件において約0.5〜0.7の比較的高い
摩擦係数を安定して保持でき、しかも同一材料や鉄・銅
合金等を相手材とした場合においてもそれらを攻撃する
ことなく、更に相手材と焼付きを生じることがない。ま
た、十分な強度・靭性を有している。そのため、コンプ
レッサー用クラッチ材や自動車・バイク等のブレーキ摩
擦材として使用できる。
The bronze-based sintered friction material of the present invention can stably maintain a relatively high coefficient of friction of about 0.5 to 0.7 under dry friction sliding conditions, and the same material or iron / copper can be used. Even when an alloy or the like is used as a mating material, it does not attack them and seizure with the mating material does not occur. It also has sufficient strength and toughness. Therefore, it can be used as a clutch material for compressors and a brake friction material for automobiles and motorcycles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の摩擦試験を実施する乾式摩擦試験機の
説明図である。
FIG. 1 is an explanatory diagram of a dry friction tester for carrying out a friction test of the present invention.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 青銅(ブロンズ)系焼結合金を母合金と
する焼結摩擦材料において、重量比率でSn:3〜20
%を含有し、残部が実質的にCuおよび不可避的不純物
からなる組成のCu合金素地中に平均粒径1〜80μm
の硬質粒子が重量比率で3〜20%均一に分散されたC
u−Sn系合金と固体潤滑成分からなることを特徴とす
る焼結摩擦材。
1. A sintered friction material comprising a bronze-based sintered alloy as a master alloy, wherein Sn: 3 to 20 in weight ratio.
%, With the balance substantially consisting of Cu and unavoidable impurities in a Cu alloy matrix having an average particle size of 1 to 80 μm.
Hard particles of 3 to 20% by weight in a uniform dispersion of C
A sintered friction material comprising a u-Sn alloy and a solid lubricating component.
【請求項2】 平均粒径100μm以下の水アトマイズ
法によって急冷凝固合金化されたCu−Sn系合金粉末
を原料粉末とすることを特徴とする請求項1記載の焼結
摩擦材。
2. The sintered friction material according to claim 1, wherein Cu-Sn alloy powder having an average particle diameter of 100 μm or less and which is rapidly solidified and alloyed by a water atomizing method is used as a raw material powder.
【請求項3】 硬質粒子がSi窒化物、Ti窒化物、C
r窒化物、W窒化物、Al窒化物およびFe系金属間化
合物のうち少なくとも1種または2種以上からなること
を特徴とする請求項2記載の焼結摩擦材。
3. The hard particles are Si nitride, Ti nitride, C
The sintered friction material according to claim 2, wherein the sintered friction material comprises at least one kind or two or more kinds of r nitride, W nitride, Al nitride, and Fe-based intermetallic compound.
【請求項4】 Cu−Sn系合金はメカニカルアロイン
グ法、メカニカルグランディング法または造粒法等によ
り硬質粒子をCu−Sn系合金粉末もしくはCuとSn
の混合粉末と機械的に合金化することでそれら硬質粒子
がCu−Sn系合金素地中に均一に分散していることを
特徴とする請求項1記載の焼結摩擦材。
4. The Cu—Sn alloy is made of Cu—Sn alloy powder or Cu and Sn which are hard particles formed by a mechanical alloying method, a mechanical grounding method, or a granulation method.
The sintered friction material according to claim 1, wherein the hard particles are uniformly dispersed in the Cu-Sn alloy base material by mechanically alloying with the mixed powder of.
【請求項5】 硬質粒子が酸化物、窒化物、炭化物、ほ
う化物およびFe系金属間化合物のうち少なくとも1種
または2種以上からなることを特徴とする請求項4記載
の焼結摩擦材。
5. The sintered friction material according to claim 4, wherein the hard particles are made of at least one kind or two or more kinds of oxides, nitrides, carbides, borides and Fe-based intermetallic compounds.
【請求項6】 固体潤滑成分は黒鉛、MoS2 またはC
aF2 のうち少なくとも1種以上の1〜5重量%を含む
ことを特徴とする請求項1記載の焼結摩擦材。
6. The solid lubricating component is graphite, MoS 2 or C
The sintered friction material according to claim 1, which contains 1 to 5% by weight of at least one of aF 2 .
【請求項7】 Cu−Sn系焼結合金は30μm以下の
大きさの空孔が1〜30容量%均一に分布した組織を有
することを特徴とする請求項1記載の焼結摩擦材。
7. The sintered friction material according to claim 1, wherein the Cu—Sn based sintered alloy has a structure in which pores having a size of 30 μm or less are uniformly distributed in an amount of 1 to 30% by volume.
JP4317756A 1992-11-02 1992-11-02 Sintered friction material Pending JPH06145845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4317756A JPH06145845A (en) 1992-11-02 1992-11-02 Sintered friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4317756A JPH06145845A (en) 1992-11-02 1992-11-02 Sintered friction material

Publications (1)

Publication Number Publication Date
JPH06145845A true JPH06145845A (en) 1994-05-27

Family

ID=18091693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4317756A Pending JPH06145845A (en) 1992-11-02 1992-11-02 Sintered friction material

Country Status (1)

Country Link
JP (1) JPH06145845A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004756A1 (en) * 1996-07-30 1998-02-05 Ndc Company, Ltd. Sliding material having excellent abrasion resistance
US5753725A (en) * 1995-03-08 1998-05-19 Sumitomo Electric Industries, Ltd. Dry friction material and method of preparing the same
KR20010061913A (en) * 1999-12-30 2001-07-07 이계안 Highly abrasion-resistant antifriction material's manufacturing
WO2010050326A1 (en) * 2008-10-29 2010-05-06 Ntn株式会社 Sintered bearing
WO2015141807A1 (en) * 2014-03-20 2015-09-24 Ntn株式会社 Bearing ring and roller bearing having said bearing ring
JP2016222964A (en) * 2015-05-28 2016-12-28 曙ブレーキ工業株式会社 Sintered friction material for high speed railway vehicle and manufacturing method therefor
CN114561567A (en) * 2022-03-17 2022-05-31 山东百德瑞轨道交通科技有限公司 Friction material for emergency braking of mining monorail crane equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753725A (en) * 1995-03-08 1998-05-19 Sumitomo Electric Industries, Ltd. Dry friction material and method of preparing the same
WO1998004756A1 (en) * 1996-07-30 1998-02-05 Ndc Company, Ltd. Sliding material having excellent abrasion resistance
US6197432B1 (en) 1996-07-30 2001-03-06 Ndc Company, Ltd. Sliding material having excellent abrasion resistance
KR20010061913A (en) * 1999-12-30 2001-07-07 이계안 Highly abrasion-resistant antifriction material's manufacturing
WO2010050326A1 (en) * 2008-10-29 2010-05-06 Ntn株式会社 Sintered bearing
JP2010106306A (en) * 2008-10-29 2010-05-13 Ntn Corp Sintered bearing
WO2015141807A1 (en) * 2014-03-20 2015-09-24 Ntn株式会社 Bearing ring and roller bearing having said bearing ring
JP2016222964A (en) * 2015-05-28 2016-12-28 曙ブレーキ工業株式会社 Sintered friction material for high speed railway vehicle and manufacturing method therefor
CN114561567A (en) * 2022-03-17 2022-05-31 山东百德瑞轨道交通科技有限公司 Friction material for emergency braking of mining monorail crane equipment

Similar Documents

Publication Publication Date Title
EP0703382B1 (en) Sintered contact component
KR102309320B1 (en) Copper alloy, use of a copper alloy, bearing having a copper alloy, and method for producing a bearing composed of a copper alloy
JP2003089831A (en) Copper-based sintered sliding material and multi-layer sintered sliding member
JP2008280613A (en) Copper based sintered contact material and double-layered sintered contact member
JP2795374B2 (en) Sliding material
KR0149739B1 (en) Sintered contact component
JPH11293368A (en) Copper sliding alloy
JP3484444B2 (en) Sliding member
JPH06145845A (en) Sintered friction material
JPH05179232A (en) Sintered metallic friction material for brake
JPH08245949A (en) Dry-type friction material and its production
JP3042539B2 (en) Sliding material
JP2535649B2 (en) Self-lubricating sliding material
JP2006037180A (en) COMPOSITE SLIDING MATERIAL SUPERIOR IN SEIZURE RESISTANCE MADE OF Pb-FREE COPPER ALLOY
JP2974738B2 (en) Sintered copper sliding material
JP3753981B2 (en) Aluminum alloy sprayed layer and sliding material with excellent sliding properties
JP2004018941A (en) Copper-based sintered sliding member
JPH07102335A (en) Sintered sliding member
JPH0727156A (en) Sintered friction material
JPS58113335A (en) Wear resistant sintered copper alloy with self-lubricity and its manufacture
JP2006037179A (en) Pb-FREE COPPER-ALLOY-BASED COMPOSITE SLIDING MATERIAL SUPERIOR IN SEIZURE RESISTANCE
JPH0835026A (en) Coppery sintered sliding material
JPS6335692B2 (en)
JPH11158568A (en) Copper alloy excellent in wear resistance and slidability and its production
KR0118771B1 (en) Sintered copper alloy for friction material