JP2535649B2 - Self-lubricating sliding material - Google Patents

Self-lubricating sliding material

Info

Publication number
JP2535649B2
JP2535649B2 JP2179800A JP17980090A JP2535649B2 JP 2535649 B2 JP2535649 B2 JP 2535649B2 JP 2179800 A JP2179800 A JP 2179800A JP 17980090 A JP17980090 A JP 17980090A JP 2535649 B2 JP2535649 B2 JP 2535649B2
Authority
JP
Japan
Prior art keywords
sintered body
self
solid lubricant
infiltrant
sliding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2179800A
Other languages
Japanese (ja)
Other versions
JPH04191343A (en
Inventor
武盛 高山
博哉 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2179800A priority Critical patent/JP2535649B2/en
Publication of JPH04191343A publication Critical patent/JPH04191343A/en
Application granted granted Critical
Publication of JP2535649B2 publication Critical patent/JP2535649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/12Alloys based on copper with tin as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、無給油でも潤滑性を有する自己潤滑摺動材
料に関するものである。
TECHNICAL FIELD The present invention relates to a self-lubricating sliding material having lubricity even without oil supply.

〔従来の技術〕[Conventional technology]

Cu、Fe、W等の金属粉末の焼結体に黒鉛、MoS2、BN等
の固体潤滑剤を分散させた摺動材料は、無給油でも潤滑
性を有する自己潤滑摺動材料として知られている。この
自己潤滑のメカニズムは、次のように説明される。
Sliding materials in which a solid lubricant such as graphite, MoS 2 or BN is dispersed in a sintered body of metal powder such as Cu, Fe or W is known as a self-lubricating sliding material that has lubricity even without lubrication. There is. The mechanism of this self-lubrication is explained as follows.

摺動時に摺動面がある程度摩耗すると、固体潤滑剤が
摺動面上に表出供給され、この固体潤滑剤が延展されて
固体潤滑剤の膜が形成される。
When the sliding surface is worn to some extent during sliding, the solid lubricant is exposed and supplied onto the sliding surface, and the solid lubricant is spread to form a film of the solid lubricant.

しかしながら、この摺動材料が焼結体で得られる場合
には、焼結体の金属組織は一般に多孔性であって内部に
10〜25%程度の空孔を有し、この空孔が強度低下の大き
な原因となっている。また、成形工程において、金属粉
末と固体潤滑剤とのスプリングバック量のちがい、ある
いは固体潤滑剤自体のスプリングバックにより固体潤滑
剤と焼結体のマトリックスとの間にすきまが生ずるいわ
ゆる切欠き現象が発生して、耐面圧性が低下することが
避けられなかった。そこで、本発明者等は先に、このす
きまおよび焼結耐の空孔にCu−Co系,Cu−Mo系等の溶浸
剤を溶浸することにより強度を増大させる技術を開発
し、前述した傾向の解消を図った。
However, when this sliding material is obtained as a sintered body, the metallographic structure of the sintered body is generally porous and
It has about 10 to 25% pores, and these pores are a major cause of strength reduction. Further, in the molding process, there is a so-called notch phenomenon in which a difference in springback amount between the metal powder and the solid lubricant or a springback of the solid lubricant itself causes a gap between the solid lubricant and the matrix of the sintered body. It is unavoidable that the surface pressure resistance is deteriorated. Therefore, the present inventors previously developed a technique for increasing the strength by infiltrating Cu-Co-based and Cu-Mo-based infiltrants into the voids and the sintering resistance holes, and described above. The tendency was canceled.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、前述したような溶浸剤は比較的に柔か
いために高面圧下での摺動時に前記溶浸剤が摺動面に表
出して延展し、ついには焼き付いて摺動面に凝着してし
まうことがわかった。このような状態になると固体潤滑
剤から摺動面上への、この固体潤滑剤の供給が阻害され
て補給バランスが悪くなり、潤滑機能が不均一となるこ
とから異音を発生する等の現象を伴なった。言い換えれ
ば、高面圧下での摺動特性に問題を生じていた。また、
溶浸温度が約1100℃と比較的高いために、焼結体中のFe
と固体潤滑剤、特に黒鉛との反応性が大きくなり、セメ
ンタイト相が黒鉛粒子の周囲に生成しがちであった。こ
のセメンタイト相は非常に硬いためにシャフト等の相手
材に損傷を与えることが危惧されていた。この対策とし
て、固体潤滑剤に黒鉛の代わりにMoS2、WS2、BN等が使
用されることもあった。しかし、これらMoS2、WS2、BN
等はいずれも黒鉛に比べて非常に高価である上に、MoS2
とWS2とについては高温になるとSがやはりFeと反応し
易いという問題点があり、BNについては潤滑材として用
いるのに造粒しにくいという問題点があった。
However, since the infiltrant as described above is relatively soft, the infiltrant appears and spreads on the sliding surface when sliding under a high surface pressure, and finally seizes and adheres to the sliding surface. I understand. In such a state, the supply of this solid lubricant from the solid lubricant to the sliding surface is obstructed, the replenishment balance becomes unbalanced, and the lubrication function becomes uneven, causing abnormal noise. Was accompanied. In other words, there was a problem with the sliding characteristics under high surface pressure. Also,
Since the infiltration temperature is relatively high at about 1100 ℃, Fe in the sintered body
The reactivity with solid lubricants, especially graphite, increased, and cementite phases tended to form around graphite particles. Since this cementite phase is extremely hard, it was feared that the mating material such as the shaft would be damaged. As a countermeasure against this, MoS 2 , WS 2 , BN, etc. were sometimes used instead of graphite for the solid lubricant. But these MoS 2 , WS 2 , BN
In addition to being much more expensive than graphite, MoS 2
There was a problem that S still easily reacts with Fe at high temperatures with respect to WS 2 and WS 2, and it was difficult to granulate S used as a lubricant for BN.

本発明は、このような問題点を解決することを目的と
して、高面圧下における摺動時においても固体潤滑剤の
摺動面への表出供給が円滑に行われて自己潤滑性に優れ
た自己潤滑摺動材料を提供することにある。
In order to solve such a problem, the present invention has excellent self-lubricating property because the solid lubricant can be smoothly supplied to the sliding surface even during sliding under high surface pressure. It is to provide a self-lubricating sliding material.

〔発明を解決するための手段〕[Means for Solving the Invention]

本発明による自己潤滑摺動材料では、前述した点に鑑
みて溶浸剤を改良し、比較的硬質でFe系焼結体との濡れ
性が良好なβあるいはγ相のCu−Snの金属間化合物を主
体とするとともに、軟質で潤滑性に富むPbを配合した溶
浸剤を使用することとした。
In the self-lubricating sliding material according to the present invention, the infiltrant is improved in view of the above-mentioned point, and a relatively hard β- or γ-phase Cu-Sn intermetallic compound having good wettability with the Fe-based sintered body is used. In addition to this, it was decided to use an infiltrant containing Pb which is soft and rich in lubricity.

要するに、本発明による自己潤滑摺動材料は、固体潤
滑剤が10〜50vol%分散含有されるFe系焼結体に、15〜4
0wt%のSnを含むβあるいはγ相のCu−Snの金属間化合
物を主体として、更にPbが3〜40wt%配合されるCu系合
金材料の溶浸剤が溶浸されることを特徴とするものであ
る。
In short, the self-lubricating sliding material according to the present invention has an Fe-based sintered body containing a solid lubricant dispersed in an amount of 10 to 50 vol% in an amount of 15 to 4
Characterized by infiltrating an infiltrant of a Cu-based alloy material mainly containing a β- or γ-phase Cu-Sn intermetallic compound containing 0 wt% Sn and further containing 3 to 40 wt% Pb. Is.

本発明において使用されるFe系焼結体は、Fe,Fe系合
金等の金属粉末と、固体潤滑剤、および目的に応じて炭
素等の添加物とを通常の方法によって混合、成形および
焼結することによって得られる。この固体潤滑剤として
は、黒鉛、MoS2、WS2、BN等がいずれも使用可能であ
り、好ましくは30μm〜1000μm程度に造粒したものが
用いられる。また、水ガラスコートした黒鉛も使用可能
である。この固体潤滑剤の量は焼結体の10〜50vol%が
適当であって、10vol%より少ないと無給油の摺動材と
して安定した潤滑性が得られず、また50vol%より多す
ぎると強度が確保できない。
The Fe-based sintered body used in the present invention, Fe, a metal powder such as an Fe-based alloy, a solid lubricant, and an additive such as carbon according to the purpose are mixed, molded and sintered by a usual method. It is obtained by doing. As the solid lubricant, graphite, MoS 2, WS 2, a BN or the like are all usable, preferably is used which was granulated to about 30Myuemu~1000myuemu. Also, graphite coated with water glass can be used. The appropriate amount of this solid lubricant is 10 to 50 vol% of the sintered body. If it is less than 10 vol%, stable lubricity cannot be obtained as an oil-free sliding material. Cannot be secured.

前述した範囲内に固体潤滑剤の量があっても、固体潤
滑剤が分散した焼結体は、固体潤滑剤を有さない焼結体
に比べて、やはり強度が劣る。したがって、より高強度
の自己潤滑摺動性を有する機械部材を得たい場合には摺
動面に近い部域を二層構造にして、摺動面となる側の層
(ブッシュの場合には内径層)を固体潤滑剤を分散させ
た焼結体で構成し、この焼結体を被って補強する裏打ち
層(ブッシュの場合は外径層)を、潤滑材を有さない高
強度焼結体で構成することもできる。この場合、焼結時
の収縮等を考慮すれば裏打ち層、例えば外径層もまたFe
系粉末等を焼結して形成することが好ましい。
Even if the amount of the solid lubricant is within the above range, the strength of the sintered body in which the solid lubricant is dispersed is still inferior to that of the sintered body without the solid lubricant. Therefore, in order to obtain a mechanical member with higher strength self-lubricating slidability, the area near the sliding surface should have a two-layer structure, and the layer on the sliding surface side (in the case of bushing, the inner diameter Layer) composed of a sintered body in which a solid lubricant is dispersed, and a backing layer (outer diameter layer in the case of a bush) for covering and reinforcing the sintered body is a high-strength sintered body having no lubricant. It can also be configured with. In this case, if the shrinkage during sintering is taken into consideration, the backing layer, for example, the outer diameter layer, is also made of Fe.
It is preferably formed by sintering a system powder or the like.

さらに、このようなFe系焼結体の耐摩耗性を向上させ
るに、Al2O3、コランダム、ムライト、SiO2等の酸化物
系セラミックス粒子を分散させることは効果的である。
この酸化物系セラミックスの量はFe系焼結体の0.5vol%
以上で有効であり、また焼結体の強度または相手材に対
するアタック性を考慮して5vol%以下が適当である。
Furthermore, in order to improve the wear resistance of such a Fe-based sintered body, it is effective to disperse oxide-based ceramic particles such as Al 2 O 3 , corundum, mullite, and SiO 2 .
The amount of this oxide ceramic is 0.5 vol% of the Fe sintered body.
The above is effective, and 5 vol% or less is appropriate in consideration of the strength of the sintered body or the attackability against the mating material.

本発明で使用される溶浸剤は、βあるいはγ相のCu−
Snの金属間化合物を主体とするCu系合金材料である。こ
のCu系合金材料にあっては、CuとSnとの組成はSnが全体
の15〜40wt%の範囲内にある組成において硬くてもろい
βあるいはγ相の金属間化合物を形成する。したがっ
て、本発明では、このβあるいはγ相のCu−Snの金属間
化合物とともに軟質で潤滑性に富むPbを配合して溶浸剤
を構成する。このPbの量は焼結体に空孔が10〜25vol%
存在することを考慮して、溶浸剤全体の3〜40wt%に選
ばれる。この範囲より少ないと安定した潤滑性が得られ
ず、また多いと焼結体のマトリックスの強度が低下す
る。
The infiltrant used in the present invention is a β- or γ-phase Cu-
It is a Cu-based alloy material mainly composed of an intermetallic compound of Sn. In this Cu-based alloy material, the composition of Cu and Sn forms a hard and brittle β- or γ-phase intermetallic compound in the composition in which Sn is in the range of 15 to 40 wt%. Therefore, in the present invention, the infiltrant is formed by blending Pb, which is soft and rich in lubricity, with the β- or γ-phase Cu-Sn intermetallic compound. The amount of Pb is 10 to 25 vol% in the sintered body.
Considering its presence, it is selected to be 3-40 wt% of the total infiltrant. If it is less than this range, stable lubricity cannot be obtained, and if it is more than this range, the strength of the matrix of the sintered body decreases.

このような溶浸剤を前述したFe系焼結体に溶浸する方
法は、次のようにして行うことができる。
The method of infiltrating such an infiltrant into the Fe-based sintered body described above can be performed as follows.

まず、Cu−Sn粉とPb粉とを混合し、加圧成形する。続
いて、前述したような方法で作製したFe系焼結体の上に
溶浸剤を層重し、溶浸剤の融点以上の温度にて不活性あ
るいは還元雰囲気中で加熱する。この際、焼結体が前述
したような二重構造から成る、例えばブッシュの場合に
は、内径層と同時に外径層の溶浸も行なってよい。
First, Cu-Sn powder and Pb powder are mixed and pressure-molded. Subsequently, an infiltrant is layered on the Fe-based sintered body produced by the method described above, and heated at a temperature equal to or higher than the melting point of the infiltrant in an inert or reducing atmosphere. At this time, when the sintered body has a double structure as described above, for example, a bush, the outer diameter layer may be infiltrated simultaneously with the inner diameter layer.

〔作 用〕[Work]

本発明において用いられるCu系合金材料の溶浸剤はβ
あるいはγ相のCu−Snの金属間化合物を主体とするため
に硬くてもろい性質を有する。したがって、摺動時に面
圧がかかっても摺動面上に延展し凝着することがないの
で、固体潤滑剤の摺動面上への供給が安定して円滑に行
われる。このβあるいはγ相のCu−Snの金属間化合物と
ともに溶浸剤に含まれるPbは、このCu−Snの金属間化合
物にはほとんど固溶しない。さらに、Pbは軟質で延展性
に富む性質により摺動時には摺動面上に延びだすがFeと
反応しないので焼き付いて凝着してしまうことがない。
しかも、それ自体潤滑性を有するから溶浸剤中によく拡
散し、焼結材のマトリックスに浸透して摺動材料全体の
潤滑性をも良好なものとする。
The Cu-based alloy infiltrant used in the present invention is β
Alternatively, it is hard and brittle because it is mainly composed of a γ-phase Cu-Sn intermetallic compound. Therefore, even if a surface pressure is applied during sliding, the solid lubricant does not spread and adhere, so that the solid lubricant can be stably and smoothly supplied onto the sliding surface. Pb contained in the infiltrant together with the β- or γ-phase Cu-Sn intermetallic compound is hardly solid-dissolved in the Cu-Sn intermetallic compound. Furthermore, Pb is soft and has a high spreadability, so that it spreads on the sliding surface during sliding, but does not react with Fe, so it does not seize and stick.
Moreover, since it has lubricity by itself, it diffuses well into the infiltrant and penetrates into the matrix of the sintered material to improve the lubricity of the entire sliding material.

このような溶浸剤はSnおよびPbを含むために、前述し
たCu−Co系、Cu−Mn系の溶浸剤よりも低融点であってFe
系焼結材に対する濡れ性も大きいから、溶浸性が非常に
よい。しかも、900℃程度の低温で溶浸可能となるため
に、Feと固体潤滑剤、特に黒鉛との反応性が抑えられ
る。換言すれば、硬いセメンタイト相の生成が防止され
るので、摺動材として使用時に相手材に損傷を与える心
配がない。したがって、このような観点においては黒鉛
の代わりにMoS2、WS2、BNあるいは水ガラスコートした
黒鉛等を使用する必要性がなくなる。この黒鉛の適用範
囲が広がることは価格や造粒のしやすさ等で工業的利点
が大きい。
Since such an infiltrant contains Sn and Pb, it has a melting point lower than that of the Cu-Co-based or Cu-Mn-based infiltrant described above,
Since the wettability to the system sintered material is also great, the infiltration property is very good. In addition, since it becomes possible to infiltrate at a low temperature of about 900 ° C., the reactivity between Fe and the solid lubricant, especially graphite is suppressed. In other words, since the generation of a hard cementite phase is prevented, there is no fear of damaging the mating material when used as a sliding material. Therefore, from this point of view, it is not necessary to use MoS 2 , WS 2 , BN, water glass-coated graphite or the like instead of graphite. Widening the range of application of this graphite has great industrial advantages in terms of price, easiness of granulation and the like.

また、Fe系焼結体に前述したような酸化物系セラミッ
クスを分散させることにより、焼結体のマトリックスの
耐摩耗性が向上する。そして、マトリックスの過度の摩
耗が防止されることにより固体潤滑剤の補給効率が高め
られ、安定した自己潤滑性を維持できる。
Further, by dispersing the oxide-based ceramics as described above in the Fe-based sintered body, the wear resistance of the matrix of the sintered body is improved. Then, by preventing excessive wear of the matrix, the replenishment efficiency of the solid lubricant can be enhanced, and stable self-lubricating property can be maintained.

〔実施例〕〔Example〕

次に、本発明による自己潤滑摺動材料を軸受のブッシ
ュに適用した場合の実施例を説明する。なお、この実施
例のブッシュでは二層成形により外径層を高強度焼結
材、内径層を固体潤滑剤を分散させた本発明による自己
潤滑摺動材料で構成することとした。この実施例のブッ
シュは、次の工程により得られた。
Next, an example in which the self-lubricating sliding material according to the present invention is applied to a bush of a bearing will be described. In the bush of this embodiment, the outer diameter layer is made of a high-strength sintered material and the inner diameter layer is made of the self-lubricating sliding material according to the present invention in which a solid lubricant is dispersed by double-layer molding. The bush of this example was obtained by the following steps.

粉末混合 外径層の粉末成分としてFe粉(アトマイズ粉)と炭素
(平均粒径:10μm)とを表1の組成で用いた。
Powder Mixing Fe powder (atomized powder) and carbon (average particle diameter: 10 μm) were used as the powder components of the outer diameter layer in the composition shown in Table 1.

内径層の粉末成分としては、Fe−Ni−Mo合金(アトマ
イズ合金粉)、炭素(同上)、黒鉛およびSiO2を表1の
組成で用いた。
As the powder component of the inner diameter layer, Fe-Ni-Mo alloy (atomized alloy powder), carbon (same as above), graphite and SiO 2 were used in the composition shown in Table 1.

これら外径層用および内径層用の粉末をそれぞれV型
混合機にて混合偏差のないように30分間混合した。
The powders for the outer diameter layer and the inner diameter layer were mixed with a V-type mixer for 30 minutes so that there was no mixing deviation.

成 形 まず、二層給粉治具により二層給粉を行なった。この
二層給粉は、成形型を仕切り板により外径部と内径部と
に仕切り、外径部に外径層用粉末を、内径部に内径層用
粉末をそれぞれ充填した。この充填後に仕切り板を引上
げ、CIPにより加圧成形を実施した。この成形圧力は4t/
cm2であった。
Forming First, two-layer powder feeding was performed using a two-layer powder feeding jig. In this two-layer powder feeding, the molding die was divided into an outer diameter portion and an inner diameter portion by a partition plate, and the outer diameter portion was filled with the outer diameter layer powder and the inner diameter portion was filled with the inner diameter layer powder. After this filling, the partition plate was pulled up and pressure molding was performed by CIP. This molding pressure is 4t /
It was cm 2 .

焼 結 で得られた成形体を真空雰囲気中で1100℃の焼結温
度にて1時間保持することにより焼結を行なった。
Sintering was carried out by holding the molded body obtained by firing at a sintering temperature of 1100 ° C. for 1 hour in a vacuum atmosphere.

溶 浸 溶浸剤の成分として、Cu−Snの金属間化合物とPbとを
表2の組成で用いた。(なお、Cu−Snの金属間化合物、
Pbとも水アトマイズ粉を使用した。) これらの溶浸剤用粉末をと同様の方法で混合した
後、と同じ型に充填し、二層給粉治具(仕切り板)を
用いないことを除いてはと同様の方法で成形した。こ
の溶浸剤の成形体をの焼結体の上に重ねて置き、アン
モニア分解ガスからなる還元雰囲気中に、1050℃の溶浸
温度にて1時間保持することにより、溶浸を行なった。
Infiltration The Cu—Sn intermetallic compound and Pb were used in the composition shown in Table 2 as components of the infiltration agent. (In addition, Cu-Sn intermetallic compound,
Water atomized powder was used as Pb. ) These infiltrant powders were mixed in the same manner as in the above, then filled in the same mold as in, and molded in the same manner as in except that the two-layer powder feeding jig (partition plate) was not used. Infiltration was carried out by placing a compact of this infiltrant on top of the sintered body and holding it at a infiltration temperature of 1050 ° C. for 1 hour in a reducing atmosphere consisting of ammonia decomposition gas.

荒加工、熱処理および仕上加工 通常の方法により荒加工を行なった後、850℃で1時
間保持、水冷、180℃で3時間保持した焼戻しを行な
い、最後に仕上加工を行なってブッシュを完成させた。
Roughing, heat treatment and finishing After the roughing was done by the usual method, it was held at 850 ° C for 1 hour, water-cooled, tempered at 180 ° C for 3 hours, and finally finished to complete the bush. .

摩耗試験 実施例により得られたブッシュを軸受試験機に取付け
て摩耗試験を行なった。この試験条件を第1図に示す。
この試験ではシャフトの揺動(揺動角:180゜)によりブ
ッシュに生じた摩擦熱を熱電対にて検出するとともに、
トルクを測定することにより摩耗係数を算出した。この
結果を比較例ブッシュの場合とともに第2図に示す。な
お、比較例のブッシュは焼結体および溶浸剤の組成をそ
れぞれ表1および表2に示すものを用いた以外は実施例
と同様にして製作したものである。
Abrasion test The bushes obtained in the examples were attached to a bearing tester to perform an abrasion test. This test condition is shown in FIG.
In this test, the friction heat generated in the bush due to the swing of the shaft (swing angle: 180 °) was detected with a thermocouple.
The wear coefficient was calculated by measuring the torque. The results are shown in FIG. 2 together with the case of the comparative bush. The bush of the comparative example is manufactured in the same manner as in the example except that the compositions of the sintered body and the infiltrant are shown in Table 1 and Table 2, respectively.

第2図に示す摩耗試験結果から、実施例のブッシュは
比較例のブッシュの約2倍の寿命があることが確認でき
た。
From the wear test results shown in FIG. 2, it was confirmed that the bush of the example has a life approximately twice that of the bush of the comparative example.

〔発明の効果〕 本発明による自己潤滑摺動材料によれば、Fe系焼結体
にβあるいはγ相のCu−Snの金属間化合物とPbとを含む
Cu系合金材料の溶浸剤を溶浸する構成としたために、 (a) 焼結体の強度が増大する、 (b) 固体潤滑剤が摺動面上に円滑に供給されて、長
時間に亘って自己潤滑性が安定に持続する、 (c) 溶浸剤および焼結体のマトリックスとがそれぞ
れ潤滑性を有するようになり、自己潤滑性が向上する、 (d) 相手材の損傷を招くセメンタイト相がマトリッ
クスに生成するのを防止できる、 等の効果を奏する。したがって、従来の乾式軸受部材と
比較して非常に高面圧下においても無給油で安定性能を
発揮し、機械構造品のメンテナンスフリー化が実現可能
となる。
[Advantages of the Invention] According to the self-lubricating sliding material of the present invention, the Fe-based sintered body contains the β- or γ-phase Cu-Sn intermetallic compound and Pb.
Since the infiltrating agent of the Cu-based alloy material is infiltrated, (a) the strength of the sintered body is increased, and (b) the solid lubricant is smoothly supplied to the sliding surface for a long time. Self-lubricating property is stably maintained, (c) The infiltrant and the matrix of the sintered body each have lubricity, and the self-lubricating property is improved. (D) Cementite phase causing damage to the mating material Can be prevented from being generated in the matrix. Therefore, compared to the conventional dry bearing member, stable performance can be achieved without lubrication even under a very high surface pressure, and maintenance-free mechanical components can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による自己潤滑摺動材料を軸受のブッシ
ュに適用した場合の実施例と比較例との摩耗試験条件を
説明するためのグラフ、第2図はその試験結果を示すグ
ラフである。
FIG. 1 is a graph for explaining wear test conditions of an example and a comparative example when a self-lubricating sliding material according to the present invention is applied to a bush of a bearing, and FIG. 2 is a graph showing the test result. .

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固体潤滑剤が10〜50vol%分散含有されるF
e系焼結体に、15〜40wt%のSnを含むβあるいはγ相のC
u−Snの金属間化合物を主体として、更にPbが3〜40wt
%配合されるCu系合金材料の溶浸剤が溶浸されることを
特徴とする自己潤滑摺動材料。
1. A F containing 10 to 50 vol% of a solid lubricant dispersed therein.
e-sintered body containing 15-40 wt% Sn, β or γ phase C
u-Sn intermetallic compound as the main component, and Pb content of 3-40wt%
% Self-lubricating sliding material, characterized in that the infiltrant of a Cu-based alloy material to be blended is infiltrated.
【請求項2】固体潤滑剤が10〜50vol%分散含有される
とともに、0.5〜5vol%の酸化物系セラミック粒子が分
散されるFe系焼結体に、15〜40wt%のSnを含むβあるい
はγ相のCu−Snの金属間化合物を主体として、更にPbが
3〜40wt%配合されるCu系合金材料の溶浸剤が溶浸され
ることを特徴とする自己潤滑摺動材料。
2. A Fe-based sintered body in which a solid lubricant is dispersedly contained in an amount of 10 to 50 vol% and 0.5 to 5 vol% of oxide ceramic particles are dispersed, and β containing 15 to 40 wt% of Sn or A self-lubricating sliding material comprising a Cu-Sn intermetallic compound in the γ phase as a main component and further infiltrated with an infiltrant of a Cu-based alloy material containing 3 to 40 wt% of Pb.
JP2179800A 1990-07-06 1990-07-06 Self-lubricating sliding material Expired - Lifetime JP2535649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2179800A JP2535649B2 (en) 1990-07-06 1990-07-06 Self-lubricating sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2179800A JP2535649B2 (en) 1990-07-06 1990-07-06 Self-lubricating sliding material

Publications (2)

Publication Number Publication Date
JPH04191343A JPH04191343A (en) 1992-07-09
JP2535649B2 true JP2535649B2 (en) 1996-09-18

Family

ID=16072118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2179800A Expired - Lifetime JP2535649B2 (en) 1990-07-06 1990-07-06 Self-lubricating sliding material

Country Status (1)

Country Link
JP (1) JP2535649B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3340908B2 (en) * 1996-02-29 2002-11-05 大同メタル工業株式会社 Sintered sliding member and manufacturing method thereof
JP4326216B2 (en) 2002-12-27 2009-09-02 株式会社小松製作所 Wear-resistant sintered sliding material and wear-resistant sintered sliding composite member
CN103468992B (en) * 2013-08-02 2015-04-08 北京科技大学 Continuous air pressure sintering method for copper-based composite material friction block
CN106282634B (en) * 2016-08-05 2017-12-26 宁波金特信钢铁科技有限公司 A kind of preparation method of metal-based self-lubricating material
CN110394444A (en) * 2019-07-10 2019-11-01 济南钢城科力新材料股份有限公司 A kind of PM self lubricated bearings and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122053A (en) * 1988-10-31 1990-05-09 Sumitomo Electric Ind Ltd Wear-resistant sintered alloy

Also Published As

Publication number Publication date
JPH04191343A (en) 1992-07-09

Similar Documents

Publication Publication Date Title
EP0872296B1 (en) Self-lubricating sintered sliding material and method for manufacturing the same
JP5085040B2 (en) Sintered sliding material, sliding member, coupling device and apparatus to which sliding member is applied
JP3939931B2 (en) Copper-based multi-layer sliding material
JP3298634B2 (en) Sliding material
JP2003089831A (en) Copper-based sintered sliding material and multi-layer sintered sliding member
JP2012506494A (en) Sliding bearing with improved wear resistance and method for manufacturing the same
JP4823183B2 (en) Copper-based sintered sliding material and sintered sliding member using the same
JP2008280613A (en) Copper based sintered contact material and double-layered sintered contact member
JP3274261B2 (en) Copper-based sliding material
US20030209103A1 (en) Cooper-based sintering sliding material and multi-layered sintered sliding member
JP3484444B2 (en) Sliding member
JP2535649B2 (en) Self-lubricating sliding material
JPS6038461B2 (en) Sintered alloy with excellent wear resistance
JP2003342700A (en) Sintered sliding material, sintered sliding member, and production method thereof
JPH05179232A (en) Sintered metallic friction material for brake
JP4236665B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
JPH11293305A (en) Slide material and double layered sintered slide member
JP3340908B2 (en) Sintered sliding member and manufacturing method thereof
JP3298636B2 (en) Sliding material
JPH06145845A (en) Sintered friction material
JP3214862B2 (en) Self-lubricating sliding material and lubrication-free bearing using the same
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
JPS58113335A (en) Wear resistant sintered copper alloy with self-lubricity and its manufacture
JP3803947B2 (en) Copper-based sintered bearing material and manufacturing method thereof
JPS61210155A (en) Iron-brass sintered sliding material