JPH07102335A - Sintered sliding member - Google Patents

Sintered sliding member

Info

Publication number
JPH07102335A
JPH07102335A JP6197985A JP19798594A JPH07102335A JP H07102335 A JPH07102335 A JP H07102335A JP 6197985 A JP6197985 A JP 6197985A JP 19798594 A JP19798594 A JP 19798594A JP H07102335 A JPH07102335 A JP H07102335A
Authority
JP
Japan
Prior art keywords
alloy
powder
sintered
less
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6197985A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Kondo
勝義 近藤
Yoshie Kouno
由重 高ノ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6197985A priority Critical patent/JPH07102335A/en
Publication of JPH07102335A publication Critical patent/JPH07102335A/en
Priority to JP7191311A priority patent/JPH08100227A/en
Priority to US08/506,566 priority patent/US5518519A/en
Priority to DE69519009T priority patent/DE69519009T2/en
Priority to EP95305276A priority patent/EP0703382B1/en
Priority to CN95108696A priority patent/CN1121117A/en
Priority to KR1019950023073A priority patent/KR100193606B1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Braking Arrangements (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a coppery sintered sliding member, free from the problems of vibration, chattering, screeching, and strange noise, causing no seizure to a mating material, and having sufficient mechanical properties, by specifying the grain size and content of hard grains, respectively. CONSTITUTION:This coppery sintered alloy has a structure in which hard grains of <=15mum maximum grain diameter and <=5mum average grain diameter are uniformly dispersed by 15-25wt.% in the inner part of original powder grains in an alloy matrix, and further, this sintered alloy has >=0.4 friction coefficient when slid with a steel material under a dry environment and also has >=0.1 friction coefficient when slid with a steel material in lubricating oil. Moreover, the matrix of this alloy has a composition consisting of 3-20% Sn and the balance essentially Cu. By this method, the sintered sliding member, improved in friction coefficient and excellent in mechanical properties, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は銅系焼結摺動部材に関す
るものであり、耐摩耗性・耐焼付き性に優れ、乾式摺動
条件下においては、約0.4〜0.6といった比較的高
い摩擦係数を安定して確保でき、しかもその際、静止摩
擦係数と動摩擦係数の差を0.1以下に抑えることがで
きるため、摺動時の振動・びびり・鳴き・異音等の問題
が解消できる。また、潤滑油中においては、0.1を越
える摩擦係数を安定して確保することができ、更に、相
手材に対する攻撃性が極めて少なく、しかも高強度・高
靭度・高硬度を有することから乾式および湿式クラッチ
板やブレーキ材等の摺動部材へ適用できるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper-based sintered sliding member, which is excellent in wear resistance and seizure resistance, and is about 0.4 to 0.6 under dry sliding conditions. It is possible to stably secure a relatively high friction coefficient, and at that time, since the difference between the static friction coefficient and the dynamic friction coefficient can be suppressed to 0.1 or less, there is a problem such as vibration, chatter, squeal, and abnormal noise during sliding. Can be resolved. Further, in the lubricating oil, a coefficient of friction of more than 0.1 can be stably ensured, and further, the aggressiveness against the mating material is extremely small, and further, high strength, high toughness and high hardness are obtained. It is applicable to sliding members such as dry and wet clutch plates and brake materials.

【0002】[0002]

【従来の技術】近年、乾式下で使用される摩擦クラッチ
およびブレーキ用材料としてアスベスト系摩擦材料に代
わり青銅系焼結合金が開発されており、例えば特開昭5
8−126948号「乾式焼結摩擦材料」においては青
銅系焼結合金で高い摩擦係数を得るために硬質粒子を添
加している。
2. Description of the Related Art In recent years, bronze-based sintered alloys have been developed in place of asbestos-based friction materials as materials for dry friction type friction clutches and brakes.
In No. 8-126948 "Dry Sintered Friction Material", hard particles are added in order to obtain a high friction coefficient with a bronze-based sintered alloy.

【0003】しかしながら、これらの焼結材料では合金
中に分散している硬質粒子と素地との間には反応層がな
く、隙間が存在する。そのため、高速・高荷重の摺動条
件下では摩擦時に素地から硬質粒子が脱落するために高
い摩擦係数を安定して確保することができなくなり、ま
た脱落部を起点として相手材と焼付きを生じ、さらには
脱落粒子のかみ込みや相手材を攻撃するといった問題が
ある。また、これらの焼結材料では、素地の強度が小さ
く、且つ上述したような粗大な硬質粒子が素地中に不均
一に分散するために、摺動時に振動・びびり等が発生
し、特にクラッチ材のように滑り速度が変動する場合
は、鳴き・異音等の摩擦摺動材特有の問題が生じ、使用
に耐えるものではない。
However, in these sintered materials, there is no reaction layer between the hard particles dispersed in the alloy and the matrix, and a gap exists. Therefore, under high-speed, high-load sliding conditions, hard particles fall off from the base material during friction, making it impossible to secure a high coefficient of friction in a stable manner. Moreover, there is a problem that the fallen particles are caught and the opponent material is attacked. Further, in these sintered materials, the strength of the base material is low, and since the coarse hard particles as described above are unevenly dispersed in the base material, vibration and chatter etc. occur during sliding, and especially the clutch material. When the sliding speed fluctuates as described above, a problem peculiar to the friction sliding material such as squeal and abnormal noise occurs, and it cannot be used.

【0004】一方、摩擦材の機械的特性の観点から上記
の隙間は焼結体の強度・靭性さらに硬度等の機械的特性
を低下させるといった問題がある。また、分散する硬質
粒子は粒径が約30〜80μmと大きく、これが破壊の
起点となることから強度・靭性の低下を誘発するといっ
た問題が生じる。
On the other hand, from the viewpoint of mechanical properties of the friction material, the above-mentioned gap has a problem that mechanical properties such as strength and toughness of the sintered body and hardness are deteriorated. Further, the dispersed hard particles have a large particle size of about 30 to 80 μm, which becomes a starting point of fracture, which causes a problem of inducing a decrease in strength and toughness.

【0005】一方、従来の湿式摩擦材に関しては、一般
に多孔質な紙製摩擦材料もしくは炭素焼結材料が用いら
れている。例えば、前者に関して、特開平6−2565
3号「ペーパー摩擦材」はフェノール樹脂等の熱硬化性
樹脂と黒鉛粉、有機ダスト等の摩擦調整剤を主成分に、
有機繊維や炭素繊維等の補強材とする、摩擦材を提案し
ている。一方、後者に関して、特開平4−76086号
「湿式摩擦材」は未炭化炭素質繊維と炭素質粉末からな
る複合体を焼結して得られる炭素繊維強化炭素焼結体を
提案している。両者の材料は共に、弾性変形可能である
為、偏った係合力が該摩擦材側で吸収することができる
といった特徴を有する。
On the other hand, as for the conventional wet friction material, generally, a porous paper friction material or carbon sintered material is used. For example, regarding the former, JP-A-6-2565
No. 3 "paper friction material" is mainly composed of thermosetting resin such as phenol resin and friction modifier such as graphite powder and organic dust.
A friction material is proposed as a reinforcing material such as organic fiber or carbon fiber. On the other hand, regarding the latter, JP-A-4-76086 "Wet friction material" proposes a carbon fiber reinforced carbon sintered body obtained by sintering a composite body of uncarbonized carbonaceous fiber and carbonaceous powder. Both materials are elastically deformable, so that the uneven engaging force can be absorbed on the friction material side.

【0006】しかしながら、このような摩擦材では、オ
イル中での摩擦係数は一般に0.05〜0.1と小さ
く、そのため、例えば、クラッチにおいて十分な伝達ト
ルクを得るには、摩擦材の大径化・大面積化が必要とな
り、その結果、現状の小型・軽量化のニーズには応えら
れない。更に、紙製摩擦材に関しては耐熱性に欠けるこ
とから、高温下で摩擦摺動の際において、摩擦材が摩耗
損傷したり、また特性が劣化することで摩擦係数が低下
するといった問題がある。
However, in such a friction material, the coefficient of friction in oil is generally as small as 0.05 to 0.1. Therefore, for example, in order to obtain a sufficient transmission torque in the clutch, the friction material has a large diameter. As a result, it is necessary to reduce the size and size of the area, and as a result, it is not possible to meet the current needs for size and weight reduction. Furthermore, since the friction material made of paper lacks heat resistance, there are problems that the friction material is worn and damaged during friction sliding at high temperature, and the friction coefficient is lowered due to deterioration of characteristics.

【0007】そこで、このような問題に対して、特開平
4−76086号「摩擦材」は2種類の金属からなる疑
似合金溶射皮膜を摩擦材(ガラス繊維やゴムバインダ)
の摺動面に形成することにより、0.25を越える高い
摩擦係数を確保できる摩擦材を提案している。
Therefore, in order to solve such a problem, Japanese Patent Laid-Open No. 4-76086 "Friction Material" provides a friction material (glass fiber or rubber binder) with a pseudo alloy spray coating made of two kinds of metals.
It proposes a friction material that can secure a high friction coefficient exceeding 0.25 by forming it on the sliding surface.

【0008】しかしながら、この製法によると、基板上
の摩擦材に加えて溶射皮膜処理が必要となるため、経済
性の面における問題や工程が複雑になるといった問題が
ある。また、溶射処理を必要とするために、優れた生産
性は期待できない。
However, according to this manufacturing method, the thermal spray coating treatment is required in addition to the friction material on the substrate, so that there is a problem in terms of economical efficiency and a complicated process. Further, since the thermal spraying treatment is required, excellent productivity cannot be expected.

【0009】一方で、従来から含油軸受材として使用さ
れている青銅(銅−錫)系焼結合金は、耐摩耗性および
耐焼付性に優れていることから、このような焼結合金に
硬質粒子を添加・分散した摩擦材では、摩耗損傷を生じ
ることなく、高い摩擦係数を得ることが予想できる。
On the other hand, bronze (copper-tin) type sintered alloys which have been conventionally used as oil-impregnated bearing materials are excellent in wear resistance and seizure resistance, so that they are hard against such sintered alloys. It is expected that a friction material having particles added and dispersed will obtain a high friction coefficient without causing wear damage.

【0010】しかしながら、上述したように、添加する
硬質粒子が素地の青銅粉末の粒界に存在するために摺動
時に脱落し、かえって相手材を攻撃したり、また、焼結
材自身も焼付きや摩耗といった問題が生じた。更に、軸
受け用焼結合金では、内部に分散する空孔が多いため、
例えば、20m/秒を越えるような高滑り速度域では、
焼結合金内に存在する潤滑油が内部から流出し、且つ、
摺動面の空孔に油溜まりを生じることで、摩擦材の摺動
面と相手鋼材との間で厚い油膜が形成され、その結果、
摩擦係数が0.01〜0.02に低下するといった問題
が生じた。
However, as described above, since the hard particles to be added are present at the grain boundaries of the bronze powder of the base material, they fall off during sliding, rather attacking the mating material, or seizing the sintered material itself. Problems such as wear and abrasion occurred. Furthermore, in sintered alloys for bearings, there are many pores dispersed inside, so
For example, in a high slip speed range exceeding 20 m / sec,
The lubricating oil present in the sintered alloy flows out from the inside, and
By forming an oil reservoir in the holes of the sliding surface, a thick oil film is formed between the sliding surface of the friction material and the mating steel material, and as a result,
There was a problem that the friction coefficient decreased to 0.01 to 0.02.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記の問題点
を克服するために、乾式および湿式摺動下において、摩
擦係数を向上させることを目的に添加する硬質粒子をC
u−Sn系合金素地中に微細且つ均一に分散させ、しか
もこの分散硬質粒子が摺動時にCu−Sn合金基地から
脱落することを抑制して優れた摩擦摺動特性を確保する
と共に機械的特性を改善した焼結部材を経済的に製造す
ることを課題とする。
SUMMARY OF THE INVENTION In order to overcome the above-mentioned problems, the present invention uses C as a hard particle added for the purpose of improving the coefficient of friction under dry and wet sliding.
Finely and uniformly dispersed in the u-Sn alloy matrix, and further, the dispersed hard particles are prevented from falling out of the Cu-Sn alloy matrix during sliding to ensure excellent friction-sliding characteristics and mechanical characteristics. It is an object of the present invention to economically manufacture a sintered member having improved temperature.

【0012】[0012]

【課題を解決するための手段】そこで、本発明者らは、
上述の問題を解決するために種々の実験・検討を行った
結果、乾式および湿式摺動摩擦条件下において高い摩擦
係数を安定して確保でき、且つ、相手材を攻撃すること
が無く、しかも摩耗量も少なく、さらに相手材と焼付き
を生じないような高強度焼結摺動部材を開発した。
Therefore, the present inventors have
As a result of various experiments and studies to solve the above problems, a high friction coefficient can be stably ensured under dry and wet sliding friction conditions, and the mating material is not attacked and the amount of wear is large. We have developed a high-strength sintered sliding member that does not cause seizure with the mating material.

【0013】その具体的な焼結摺動部材の合金組成およ
び製造方法は本発明によれば以下のとおりである。
According to the present invention, the specific alloy composition and manufacturing method of the sintered sliding member are as follows.

【0014】(1)銅系焼結合金において、最大粒径1
5μm以下、平均粒径5μm以下の硬質粒子が合金素地
の旧粉末粒内部に15〜25重量%均一に分散する組織
を有しており、乾式下にて鋼材と摺動した際、0.4以
上の摩擦係数を有し、且つ潤滑油中にて鋼材と摺動した
際、0.1以上の摩擦係数を有することを特徴とする焼
結摺動部材。
(1) In the copper-based sintered alloy, the maximum grain size is 1
Hard particles having an average particle size of 5 μm or less and an average particle size of 5 μm or less have a structure in which 15 to 25% by weight are uniformly dispersed inside the old powder particles of the alloy base, and when sliding on a steel material in a dry system, 0.4 A sintered sliding member having the above friction coefficient and having a friction coefficient of 0.1 or more when sliding on a steel material in a lubricating oil.

【0015】(2)乾式環境下にて鋼材と摺動した際
に、静止摩擦係数と動摩擦係数の差が0.1以下である
ことを特徴とする上記(1)項記載の焼結摺動部材。
(2) The sintered sliding according to the above item (1), wherein the difference between the static friction coefficient and the dynamic friction coefficient is 0.1 or less when sliding on a steel material in a dry environment. Element.

【0016】(3)前記銅系焼結合金において、平均径
が30μm以下である空孔が1容量%以上30容量%以
下均一に合金内部に分散することを特徴とする上記
(1)項記載の焼結摺動部材。
(3) In the above copper-based sintered alloy, the voids having an average diameter of 30 μm or less are uniformly dispersed in the alloy in an amount of 1% by volume or more and 30% by volume or less. Sintered sliding member.

【0017】(4)前記銅系焼結合金の素地の組成は、
Sn;3〜20重量%で、残部が実質的にCuおよび不
可避的不純物からなることを特徴とする上記(1)項記
載の焼結摺動部材。
(4) The composition of the base material of the copper-based sintered alloy is
Sn; 3 to 20% by weight, and the balance substantially consisting of Cu and unavoidable impurities, The sintered sliding member as described in (1) above.

【0018】(5)前記硬質粒子は、FeMo,FeC
r,FeTi,FeW,FeBの群からなる鉄系金属間
化合物のうち、少なくとも1種または2種以上からなる
ことを特徴とする上記(1)項記載の焼結摺動部材。
(5) The hard particles are FeMo, FeC.
The sintered sliding member according to (1) above, which is composed of at least one kind or two or more kinds among iron-based intermetallic compounds consisting of r, FeTi, FeW, and FeB.

【0019】(6)前記銅系焼結合金において、必要に
応じて固体潤滑剤を3重量%以下含有することを特徴と
する上記1項記載の焼結摺動部材。
(6) The sintered sliding member according to the above item 1, wherein the copper-based sintered alloy contains a solid lubricant in an amount of 3% by weight or less, if necessary.

【0020】(7)前記固体潤滑剤は黒鉛,MoS2
CaF2,BNのうち少なくとも1種または2種以上か
らなることを特徴とする上記(6)項記載の焼結摺動部
材。
(7) The solid lubricant is graphite, MoS 2 ,
The sintered sliding member according to (6) above, which is composed of at least one or two or more of CaF 2 and BN.

【0021】(8)前記銅系焼結合金は、Sn;3〜2
0重量%を含有し、残部が実質的にCuおよび不可避的
不純物からなる組成のCu−Sn合金粉末と15〜25
重量%の硬質粒子からなる混合粉末を、機械的合金化法
(メカニカルアロイング法)、機械的混合法(メカニカ
ルグラインディング法)、造粒法のいずれかの混合・粉
砕処理を施すことにより硬質粒子を最大粒径15μm以
下、平均粒径5μm以下に粉砕し、且つCu−Sn合金
素地中にこれを均一に分散させた合金粉末を原料粉末に
使用することを特徴とする上記(1)項記載の焼結摺動
部材。
(8) The copper-based sintered alloy is Sn; 3 to 2
15 to 25 Cu-Sn alloy powder having a composition of 0 wt% and the balance substantially Cu and inevitable impurities
Hardened by mixing and pulverizing the mixed powder consisting of hard particles of wt% by any one of mechanical alloying method (mechanical alloying method), mechanical mixing method (mechanical grinding method) and granulation method. The alloy powder obtained by pulverizing particles to a maximum particle size of 15 μm or less and an average particle size of 5 μm or less and uniformly dispersing the particles in a Cu—Sn alloy matrix is used as a raw material powder, (1) above. The sintered sliding member described.

【0022】(9)前記銅系焼結合金は、Sn;3〜2
0重量%を含有し、残部が実質的にCuおよび不可避的
不純物からなる組成のCu−Sn合金粉末と15〜25
重量%の硬質粒子、3重量%以下の固体潤滑剤からなる
混合粉末を、機械的合金化法、機械的混合法、造粒法の
いずれかの混合・粉砕処理を施すことにより硬質粒子を
最大粒径15μm以下、平均粒径5μm以下に粉砕し、
且つ固体潤滑剤と共にCu−Sn合金素地中に均一に分
散させた合金粉末を原料粉末に使用することを特徴とす
る上記(1)項記載の焼結摺動部材。
(9) The copper-based sintered alloy is Sn; 3 to 2
15 to 25 Cu-Sn alloy powder having a composition of 0 wt% and the balance substantially Cu and inevitable impurities
By mixing and pulverizing the mixed powder consisting of 3% by weight or less of solid particles and 3% by weight or less of the solid lubricant, the hard particles are maximized. Crushed to a particle size of 15 μm or less and an average particle size of 5 μm or less,
In addition, the sintered sliding member according to the above item (1), characterized in that an alloy powder uniformly dispersed in a Cu-Sn alloy base is used as a raw material powder together with a solid lubricant.

【0023】(10)前記銅系焼結合金は、Sn粉末;
3〜20重量%、硬質粒子;15〜25重量%、残部が
実質的にCu粉末および不可避不純物からなる混合粉末
を、機械的合金化法、機械的混合法、造粒法のいずれか
の混合・粉砕処理を施すことにより、硬質粒子を最大粒
径15μm以下、平均粒径5μm以下に粉砕し、且つC
u−Sn合金素地中にこれを均一に分散させた合金粉末
を原料粉末に使用することを特徴とする上記(1)項記
載の焼結摺動部材。
(10) The copper-based sintered alloy is Sn powder;
3 to 20% by weight, hard particles; 15 to 25% by weight, and a mixed powder consisting essentially of Cu powder and unavoidable impurities with the balance being mixed by any one of mechanical alloying method, mechanical mixing method and granulation method. -By crushing, hard particles are crushed to a maximum particle size of 15 μm or less and an average particle size of 5 μm or less, and C
The sintered sliding member according to the above item (1), wherein an alloy powder in which the u-Sn alloy base material is uniformly dispersed is used as a raw material powder.

【0024】(11)前記銅系焼結合金は、Sn粉末;
3〜20重量%、硬質粒子;15〜25重量%、固体潤
滑剤;3重量%以下、残部が実質的にCu粉末および不
可避的不純物からなる混合粉末を、機械的合金化法、機
械的混合法、造粒法のいずれかの混合・粉砕処理を施す
ことにより、硬質粒子を最大粒径15μm以下、平均粒
径5μm以下に粉砕し、且つCu−Sn合金素地中に硬
質粒子と固体潤滑剤を均一に分散させた合金粉末を原料
粉末に使用することを特徴とする上記(1)項記載の焼
結摺動部材。
(11) The copper-based sintered alloy is Sn powder;
3 to 20% by weight, hard particles; 15 to 25% by weight, solid lubricant; 3% by weight or less, and a mixed powder consisting essentially of Cu powder and unavoidable impurities, mechanical alloying method, mechanical mixing Hard particles are pulverized to a maximum particle size of 15 μm or less and an average particle size of 5 μm or less by performing a mixing / grinding method of either a powder method or a granulation method, and hard particles and a solid lubricant are contained in a Cu—Sn alloy matrix. The sintered sliding member according to (1) above, wherein an alloy powder in which is uniformly dispersed is used as a raw material powder.

【0025】(12)前記原料粉末において、必要に応
じて黒鉛,MoS2,CaF2,BNのうち少なくとも1
種または2種以上からなる固体潤滑剤を3重量%以下、
添加することを特徴とする上記(8)項もしくは(1
0)項記載の焼結摺動部材。
(12) In the raw material powder, if necessary, at least one of graphite, MoS 2 , CaF 2 , and BN is used.
3% by weight or less of a solid lubricant composed of two or more kinds,
The above item (8) or (1)
The sintered sliding member according to item 0).

【0026】次に、上述した銅系焼結合金において、合
金組成および空孔量を上記の如く設定した理由について
説明する。
Next, the reason why the alloy composition and the amount of voids are set as above in the above-mentioned copper-based sintered alloy will be explained.

【0027】Sn SnはCuと共に本合金の素地を形成し、合金の高温強
度および靭性を向上させる作用があり、また、高温での
相手材との耐焼付き性を向上させる作用がある。添加量
が3重量%未満ではそれらの効果がなく、また20重量
%を越えて添加すると硬くて脆い相が析出するために強
度、靭性を低下させる。そこで、Snの含有量は3〜2
0重量%と設定した。
Sn Sn forms the base material of the present alloy together with Cu, and has the action of improving the high temperature strength and toughness of the alloy, and also the action of improving seizure resistance with the mating material at high temperatures. If the addition amount is less than 3% by weight, these effects are not exerted, and if the addition amount exceeds 20% by weight, a hard and brittle phase precipitates, so that the strength and toughness are lowered. Therefore, the Sn content is 3 to 2
It was set to 0% by weight.

【0028】硬質粒子(鉄系金属間化合物) 硬質粒子は本焼結合金の素地中に、微細且つ均一に分散
して乾式および湿式摩擦条件下にて、常温および高温で
相手材との凝着発生を抑制し、耐焼付き性を向上させる
と共に相手材素地表面と直接接触して摩擦係数を大きく
し、耐摩耗性を向上させる効果がある。
Hard Particles (Ferrous Intermetallic Compounds) Hard particles are finely and uniformly dispersed in the base material of the present sintered alloy, and adhere to the mating material at room temperature and high temperature under dry and wet friction conditions. It has the effects of suppressing the occurrence of the heat, improving the seizure resistance, and directly contacting the surface of the base material of the mating material to increase the friction coefficient and improving the wear resistance.

【0029】更に、硬質粒子は相手材素地表面と直接接
触して摩擦係数を大きくする効果があるため、素地のC
u−Sn系旧粉末粒内部に微細且つ均一に分散すること
で、相手材との滑らかな摩擦摺動状態が得られる。つま
り、摺動速度の変化に対して摩擦係数の変化を抑えるこ
とができる。その結果、乾式摩擦条件下において、摺動
開始時もしくは、停止時における静止摩擦係数と動摩擦
係数の差を0.1以下に抑えることができ、振動・びび
り・鳴き・異音といった問題を解消できる効果がある。
Furthermore, since the hard particles have the effect of directly contacting the surface of the base material of the mating material to increase the friction coefficient, the C of the base material is increased.
By finely and uniformly dispersing inside the u-Sn-based old powder particles, a smooth friction sliding state with the mating material can be obtained. That is, it is possible to suppress the change in the friction coefficient with respect to the change in the sliding speed. As a result, under dry friction conditions, the difference between the coefficient of static friction and the coefficient of dynamic friction at the start or stop of sliding can be suppressed to 0.1 or less, and problems such as vibration, chatter, squeal, and abnormal noise can be solved. effective.

【0030】その大きさおよび添加量の影響に関しては
次に示すとおりである。含有量15重量%未満では焼結
材の摩擦係数は低下し、耐摩耗性を向上させる効果は得
られない。また最大粒径が15μmを越えるか、もしく
は平均粒径が5μmを越えるか、もしくはその含有量が
25重量%を越えると硬質粒子が亀裂発生の起点となり
やすく、その結果、焼結材の強度・靭性が低下し、また
相手攻撃性の観点からもこのような範囲での硬質粒子の
添加は相手材を激しく摩耗させるために好ましくない。
更には、上述したような振動・びびり・異音等の問題に
対してもその抑制効果を低減させるために好ましくな
い。
The influence of the size and the addition amount is as follows. If the content is less than 15% by weight, the coefficient of friction of the sintered material decreases, and the effect of improving wear resistance cannot be obtained. If the maximum particle size exceeds 15 μm, the average particle size exceeds 5 μm, or the content thereof exceeds 25% by weight, the hard particles are apt to be the starting point of cracking, resulting in the strength of the sintered material. It is not preferable to add the hard particles in such a range because the toughness is deteriorated, and also from the viewpoint of the attacking property of the other party, since the other party material is severely worn.
Furthermore, it is not preferable because the effect of suppressing the problems such as vibration, chatter, and abnormal noise described above is reduced.

【0031】さらに最大粒径15μm以下、平均粒径5
μm以下の硬質粒子を15〜25重量%含有した場合、
それらの粒子が微細且つ均一に素地中に分散すること
で、摩擦係数が安定するといった効果が得られる。そこ
で硬質粒子は最大粒径15μm以下、平均粒径5μm以
下とし、且つ合計含有量は15〜25重量%が適切であ
る。
Further, the maximum particle size is 15 μm or less, and the average particle size is 5
In the case of containing 15 to 25% by weight of hard particles having a size of μm or less,
By finely and uniformly dispersing the particles in the matrix, the effect of stabilizing the friction coefficient can be obtained. Therefore, it is appropriate that the hard particles have a maximum particle size of 15 μm or less and an average particle size of 5 μm or less, and the total content is 15 to 25% by weight.

【0032】尚、上記の鉄系金属間化合物としてはFe
Mo,FeCr,FeTi,FeW,FeBのうち少な
くとも1種または2種以上から構成されることが望まし
い。鉄系金属間化合物の他に、Al23,SiO2,Z
rO2等の金属酸化物やSiC,AlN等のセラミック
も摩擦係数を向上させる効果はあるが、これら粒子は鉄
系金属化合物に比べて被削性に劣るため、経済性の面に
おいて問題があることから、本摺動部材に対しては鉄系
金属化合物の適用が望ましい。
As the iron-based intermetallic compound, Fe is used.
It is desirable to be composed of at least one or more of Mo, FeCr, FeTi, FeW, and FeB. In addition to iron-based intermetallic compounds, Al 2 O 3 , SiO 2 , Z
Metal oxides such as rO 2 and ceramics such as SiC and AlN also have the effect of improving the friction coefficient, but since these particles are inferior in machinability to iron-based metal compounds, they pose a problem in terms of economy. Therefore, it is desirable to apply an iron-based metal compound to this sliding member.

【0033】しかしながら、これらの鉄系金属間化合物
が摺動時に素地から脱落するとその脱落部を起点として
相手材と移着・凝着をおこして焼付きが発生したり、ま
た脱落粒子が相手材にかみ込むことで相手材を摩耗・損
傷させるといった問題がある。よって、このような現象
を抑えて、安定して高い摩擦係数を確保するには微細な
金属間化合物をCu−Sn合金素地中に均一に分散させ
て且つそれら粒子の脱落を抑制する必要がある。
However, when these iron-based intermetallic compounds fall off from the base material during sliding, seizure occurs due to transfer / adhesion with the mating material starting from the falling part, and the fallen particles also cause the mating material. There is a problem that the mating material will wear or damage the mating material. Therefore, in order to suppress such a phenomenon and ensure a stable high friction coefficient, it is necessary to uniformly disperse the fine intermetallic compound in the Cu—Sn alloy base material and to prevent the particles from falling off. .

【0034】その具体的な方法としては、以下の通りで
ある。つまり、上記の金属間化合物をCu−Sn系合金
粉末もしくはCu粉末とSn粉末の混合粉末とを、機械
的に合金化することで最大粒径15μm以下、平均粒径
5μm以下に粉砕された金属間化合物をCu−Sn系合
金粉末粒内に微細且つ均一に分散ことができる。そし
て、この粉末を型押・成形し、焼結した後、素地のCu
−Sn系合金と金属間化合物の界面に反応層を形成させ
ることで金属間化合物を素地中に強固に固定できる。具
体的にはメカニカルアロイング法やメカニカルグライン
ディング法、造粒法といった機械的な粉末の混合・粉砕
処理法を適用することにより初めて金属間化合物がCu
−Sn系合金粉末粒内に微細且つ均一に分散し、しかも
摺動時にそれら粒子が焼結体素地から脱落することのな
いようなCu−Sn系合金粉末が得られることが判っ
た。
The specific method is as follows. That is, a metal pulverized into a maximum particle size of 15 μm or less and an average particle size of 5 μm or less by mechanically alloying the above intermetallic compound with Cu—Sn alloy powder or a mixed powder of Cu powder and Sn powder. The intermetallic compound can be finely and uniformly dispersed in the Cu-Sn alloy powder particles. Then, after the powder is embossed, molded, and sintered, Cu of the base material is formed.
By forming a reaction layer at the interface between the —Sn alloy and the intermetallic compound, the intermetallic compound can be firmly fixed in the matrix. Specifically, the intermetallic compound is not converted into Cu until the intermetallic compound is applied by applying a mechanical powder mixing / grinding method such as a mechanical alloying method, a mechanical grinding method, or a granulation method.
It was found that a Cu-Sn alloy powder was obtained which was finely and uniformly dispersed in the -Sn alloy powder particles and which did not fall off from the sintered body base during sliding.

【0035】尚、この機械的な粉末混合処理は従来のボ
ールミル粉砕や混合のような湿式法ではなく、乾式法で
行う。また、場合によってはPCA(Process
Control Agent)としてステアリン酸やア
ルコールなどを少量添加することで過度の凝集を防ぐこ
ともある。処理装置はアトライターやボールミルが適当
である。前者は粉砕効率に優れていることから高速処理
には適しており、また後者は長時間処理が必要となる雰
囲気制御が容易であり、投入エネルギーの設計さえ適切
に行えば比較的経済性に優れている。
Incidentally, this mechanical powder mixing treatment is carried out by a dry method instead of the conventional wet method such as ball milling and mixing. In some cases, PCA (Process)
Excessive aggregation may be prevented by adding a small amount of stearic acid, alcohol, or the like as Control Agent. An attritor or a ball mill is suitable as the processing device. The former is suitable for high-speed processing because it has excellent pulverization efficiency, and the latter is easy to control the atmosphere that requires long-time processing, and is relatively economical if the input energy is properly designed. ing.

【0036】固体潤滑剤 固体潤滑剤は乾式摩擦条件下において相手材に対する攻
撃性を改善すると共に高温状態での乾式摺動条件下で約
0.4〜0.6程度の比較的高い摩擦係数を安定させる
効果があり、これにより摺動面間の潤滑性を改善するこ
とができ、また摺動時の鳴きの問題や振動・ビビリ等の
発生が抑制できる。
Solid Lubricant The solid lubricant improves the aggressiveness to the mating material under dry friction conditions and has a relatively high friction coefficient of about 0.4 to 0.6 under dry sliding conditions at high temperature. It has a stabilizing effect, which can improve the lubricity between the sliding surfaces, and can suppress the problem of squeaking during sliding and the occurrence of vibration and chattering.

【0037】また、湿式摩擦条件下においては滑り速度
が大きくなると、摺動面に存在する空孔における楔効果
により、潤滑油が空孔内に取り込まれることで、焼結摩
擦材と相手鋼材との摺動面間に潤滑膜が形成する。特
に、20m/秒を越えるような高滑り速度域で使用する
場合、摩擦係数が変動・低下するといった問題がある。
しかし、このような問題に対して、固形潤滑剤を含有す
ることで滑り速度に対する摩擦係数の安定性を改善する
ことができる。
When the sliding speed increases under wet friction conditions, the lubricating oil is taken into the holes due to the wedge effect in the holes existing on the sliding surface, so that the sintered friction material and the mating steel material A lubricating film is formed between the sliding surfaces of. In particular, when used in a high sliding speed range exceeding 20 m / sec, there is a problem that the friction coefficient fluctuates / decreases.
However, with respect to such a problem, the inclusion of the solid lubricant can improve the stability of the friction coefficient with respect to the sliding speed.

【0038】Cu−Sn系焼結合金において、上記の効
果を有する固体潤滑成分は経済的にも問題の少ない黒
鉛,MoS 2,CaF2およびBNである。一方、他の潤
滑成分として例えば、PbはCu−Sn合金製軸受けに
おいて使用されるが、素地と化合物を生成せずに微粒子
としてα相のデンドライト間に存在するため、摺動部材
に適用すると摺動時に脱落する可能性がある。尚、黒
鉛,MoS2,CaF2,BNのうち少なくとも1種以上
で3重量%以下の添加が有効である。添加量が3重量%
を越えて添加すると焼結体の強度・靭性が著しく低下す
るので好ましくない。
In the Cu--Sn system sintered alloy, the above effect is obtained.
A solid lubricating component that has fruit is economically less black
Lead, MoS 2, CaF2And BN. Meanwhile, the other
As a sliding component, for example, Pb is used in Cu-Sn alloy bearings.
Used as a fine particle without forming a compound with the substrate
As it exists between the α-phase dendrites, the sliding member
When applied to, it may fall off during sliding. Incidentally, black
Lead, MoS2, CaF2, BN, at least one or more
It is effective to add 3% by weight or less. 3% by weight
If added over the range, the strength and toughness of the sintered body will be significantly reduced.
It is not preferable because

【0039】空孔量 空孔は30μm以下の大きさであり、焼結合金の摺動摩
擦面に均一に分布することで、摺動の際に空孔が変形す
ることと、摺動の際にくさび効果により空孔内に空気が
流れ込むことで浮力が発生し、乾式摺動下においては、
耐焼付き性および相手材とのなじみ性を改善する効果が
ある。また、湿式摺動下では、上述したような含油効果
により空孔部に油溜まり(油膜)が形成され、耐焼付き
性を改善する効果が得られる。
Amount of Voids Voids have a size of 30 μm or less, and are uniformly distributed on the sliding friction surface of the sintered alloy, so that the voids are deformed during sliding and that during sliding. Due to the wedge effect, air flows into the holes to generate buoyancy, and under dry sliding,
It has the effect of improving the seizure resistance and the compatibility with the mating material. Further, under wet sliding, an oil reservoir (oil film) is formed in the pores due to the oil impregnation effect as described above, and the effect of improving seizure resistance can be obtained.

【0040】空孔の大きさが30μmを越えるとこれが
亀裂発生の起点となり、焼結体の強度・靭性が著しく低
下する。また、その量が1容量%未満では上記の効果は
少なく、30容量%を越えて分布すると焼結合金の強度
・靭性が低下する。更に、空孔が不均一に分布すると摺
動時における相手材とのなじみ性が局所的に低下するた
め、安定した摩擦係数が得られず、また相手材との焼付
きを生じる。従って、本焼結摺動部材において、空孔は
大きさが30μm以下であり、且つ摺動部材中に均一に
1〜30容量%分布することが適切である。尚、本発明
においては上記のような空孔量の大きさ・量は粉末を型
押し・成形する際の圧力により制御することが可能であ
る。
When the size of the pores exceeds 30 μm, this becomes a starting point of crack generation, and the strength and toughness of the sintered body are significantly reduced. Further, if the amount is less than 1% by volume, the above effect is small, and if it exceeds 30% by volume, the strength and toughness of the sintered alloy deteriorate. Furthermore, if the pores are unevenly distributed, the conformability with the mating material during sliding is locally reduced, so that a stable coefficient of friction cannot be obtained and seizure with the mating material occurs. Therefore, in the present sintered sliding member, it is appropriate that the pores have a size of 30 μm or less and that the pores are evenly distributed in the sliding member at 1 to 30% by volume. In the present invention, the size and amount of the above-mentioned voids can be controlled by the pressure when the powder is pressed and molded.

【0041】以上のような合金組成を有し、且つ上記の
製造方法に基づいて作成した焼結摺動部材は、補強材無
しで単体で構造用部材として十分使用可能な強度・靭性
・硬度等の機械的特性と耐摩耗性および自己潤滑性を有
している。また、通常のCu−Sn系合金では、乾式摩
擦摺動条件下において摺動初期の摩擦係数は約0.2〜
0.3程度であり、また、湿式摩擦摺動条件下におい
て、摩擦係数は0.02〜0.05程度であり、且つ、
摩擦の進行と共に摩擦係数は変動・増加し、最終的には
相手材と焼付きを生じるかもしくは焼結材自身が摩耗す
る。
The sintered sliding member having the alloy composition as described above and prepared based on the above-mentioned manufacturing method has strength, toughness, hardness, etc. which can be sufficiently used as a structural member by itself without a reinforcing material. It has mechanical properties, wear resistance and self-lubricating property. In addition, in a normal Cu-Sn alloy, the friction coefficient at the initial stage of sliding under dry friction sliding conditions is about 0.2 to.
About 0.3, and the friction coefficient is about 0.02 to 0.05 under the wet friction sliding condition, and
As the friction progresses, the friction coefficient fluctuates and increases, and eventually seizure occurs with the mating material or the sintered material itself wears.

【0042】これに対して、本焼結摺動部材は乾式摺動
下で約0.4以上、湿式摺動下で約0.1以上の摩擦係
数を安定して保持でき、しかも乾式摺動条件下では静止
摩擦係数と動摩擦係数の差を0.1以下に抑えることが
できる。また、摺動時に相手材を攻撃すること無く、相
手材との焼付きや摩耗損傷も生じることがない。
On the other hand, the present sintered sliding member can stably maintain a friction coefficient of about 0.4 or more under dry sliding and about 0.1 or more under wet sliding, and further, dry sliding. Under the conditions, the difference between the static friction coefficient and the dynamic friction coefficient can be suppressed to 0.1 or less. In addition, seizure with the mating material and abrasion damage do not occur without attacking the mating material during sliding.

【0043】[0043]

【実施例】以下、この発明の実施例を添付図面に基づい
て説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0044】<実施例1>本発明の焼結摩擦材および比
較材料の合金組成を表1に、その焼結摩擦材料の機械的
特性および摩擦試験結果(摩擦係数、摩擦材および相手
材SS41材の摩擦量)を表2に示す。
Example 1 The alloy compositions of the sintered friction material of the present invention and the comparative material are shown in Table 1, and the mechanical properties and friction test results of the sintered friction material (friction coefficient, friction material and mating material SS41 material). The amount of friction) is shown in Table 2.

【0045】製造条件に関しては図1に示す工程に基づ
き、各粉末の成形・焼結を実施した。(図中の『機械的
粉砕・混合処理』は機械的合金化法、機械的混合法、造
粒法を意味する)尚、摩擦試験は図2に示す乾式摩擦試
験機により実施した。Δμは静止摩擦係数と動摩擦係数
の差を意味しており、ここでは、試料が摩擦摺動を開始
した瞬間の摩擦係数を静止摩擦係数とし、また、試験開
始2秒間の摩擦係数の平均値を動摩擦係数とした。
Regarding the manufacturing conditions, each powder was molded and sintered based on the process shown in FIG. ("Mechanical crushing / mixing treatment" in the figure means a mechanical alloying method, a mechanical mixing method, and a granulating method.) The friction test was carried out by the dry friction tester shown in FIG. Δμ means the difference between the static friction coefficient and the dynamic friction coefficient. Here, the friction coefficient at the moment when the sample starts frictional sliding is taken as the static friction coefficient, and the average value of the friction coefficient for 2 seconds from the start of the test is The dynamic friction coefficient was used.

【0046】本表においてNo.1〜17が本発明の焼
結部材、No.18〜28が比較材である。ここで、空
孔量のみ容積%で表示しており、他は全て重量%で表し
た数値である。また、固体潤滑剤の記号A,B,C,D
はそれぞれA;黒鉛、B;MoS2、C;CaF2、D;
BNを意味する。
In the table, No. 1 to 17 are the sintered members of the present invention, and No. 18 to 28 are comparative materials. Here, only the amount of voids is shown in volume%, and the other values are all in weight%. Also, the symbols A, B, C, D of solid lubricants
Are respectively A; graphite, B; MoS 2 , C; CaF 2 , D;
It means BN.

【0047】尚、表1備考欄の※1,※2,※3は以下
の通りである。 ※1)図1の製造工程(a)に基づいて混合粉末を機械
的粉砕・混合処理を施すが、粉砕条件を変更することで
分散硬質粒子であるFe系金属化合物の平均粒径を15
μmとし、これを成形・焼結した合金。 ※2)図1の製造工程(a)に基づいて混合粉末に機械
的粉砕・混合処理を施すが、粉末成形時の面圧条件を変
更することで粉末成形体中に分布する空孔径を平均45
μmとし、これを焼結した合金。 ※3)所定の組成を有する各粉末を機械的合金化法、機
械的混合法、造粒法等の機械的粉砕・混合処理を施さず
に混合のみした後、焼結した合金。
Incidentally, * 1, * 2 and * 3 in the remarks column of Table 1 are as follows. * 1) The mixed powder is mechanically crushed and mixed based on the manufacturing process (a) in FIG. 1, but the average particle size of the Fe-based metal compound that is the dispersed hard particles is changed to 15 by changing the crushing conditions.
An alloy obtained by forming and sintering this in μm. * 2) The mixed powder is mechanically pulverized and mixed based on the manufacturing process (a) in Fig. 1. However, the pore diameter distributed in the powder compact is averaged by changing the surface pressure condition during powder compaction. 45
μm, and an alloy obtained by sintering this. * 3) An alloy obtained by mixing powders having the specified composition without mechanical pulverization / mixing treatment such as mechanical alloying, mechanical mixing, and granulation, and then sintering.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】試料No.1〜17は本発明の合金であ
り、その機械的特性および摩擦試験結果は表2に見るよ
うに良好である。
Sample No. 1 to 17 are alloys of the present invention, and their mechanical properties and friction test results are good as shown in Table 2.

【0051】一方、比較材での試験結果は以下のようで
ある。 18:Sn量が2%と少ない為に素地の強度不足により
摩擦材が摩耗してμ値が増加。 19:Sn量が35%と多い為に素地が著しく硬化して
相手材を攻撃してμ値が増加。 20:硬質粒子が10wt%と少ない為に十分なμ値が
得られない。 21:硬質粒子が30wt%と多く含まれている為に十
分なμ値が得られない。 22:固体潤滑剤を含まない為に潤滑不良を生じて相手
材と焼付きを発生する。 23:固体潤滑剤が4%と多い為に強度・靭性が低下す
る。 24:空孔量が0%である為に耐焼付き性が低下して相
手材と焼付きを生じる。 25:空孔量が35%と大きい為に強度・靭性が不足し
て摩擦材が摩耗する。 26:硬質粒子の平均粒径が15μmと大きい為に強度
・靭性が低下し、また相手材を攻撃すると共に、Δμ値
が0.18と大きくなり、摺動時に振動・異音が生じ
た。 27:空孔の大きさが平均45μmと大きい為に強度・
靭性が不足して摩擦材が摩耗する。 28:機械的粉砕・混合処理を行わず、単に所定成分を
有する各粉末を混合のみした後焼結した為に、硬質粒子
と素地との反応層が形成されず、また粗大な硬質粒子が
存在する為に摺動時に硬質粒子が素地から脱落して相手
材と焼付きを生じると共に、Δμ値が0.26と大きく
なり、摺動時に振動・異音が生じ、更に焼結材の強度・
靭性が低下する。
On the other hand, the test results of the comparative material are as follows. 18: Since the Sn content was as small as 2%, the friction material was worn due to insufficient strength of the base material, and the μ value increased. 19: Since the Sn content is as large as 35%, the base material is significantly hardened and attacks the partner material to increase the μ value. 20: A sufficient μ value cannot be obtained because the hard particles are as small as 10 wt%. 21: A sufficient μ value cannot be obtained because the hard particles are contained in a large amount of 30 wt%. 22: Since solid lubricant is not contained, poor lubrication occurs and seizure occurs with the mating material. 23: Strength and toughness deteriorate because the solid lubricant content is as large as 4%. 24: Since the amount of voids is 0%, seizure resistance is reduced and seizure occurs with the mating material. 25: Since the amount of pores is as large as 35%, the strength and toughness are insufficient and the friction material wears. 26: Since the average particle diameter of the hard particles was as large as 15 μm, the strength and toughness deteriorated, and when the mating material was attacked, the Δμ value became large as 0.18, and vibration and abnormal noise were generated during sliding. 27: Strength is due to the large size of pores of 45 μm on average.
The toughness is insufficient and the friction material wears. 28: The reaction layer between the hard particles and the base material is not formed because there is no mechanical pulverization / mixing treatment, and only the powders having the predetermined components are mixed and then sintered, and coarse hard particles are present. Therefore, when sliding, hard particles fall off from the base material and cause seizure with the mating material, and the Δμ value increases to 0.26, causing vibration and noise during sliding, and further increasing the strength of the sintered material.
Toughness decreases.

【0052】<実施例2>表1に記載した合金組成およ
び製造方法に基づいて作製した、本発明の焼結摩擦材お
よび比較材料に関する摩擦試験結果(滑り速度に対する
摩擦係数、摩擦材および相手材S35C材の摩耗量)を
表3に示す。尚、摩擦試験は図3に示す湿式摩擦試験機
により実施した。
Example 2 Friction test results of the sintered friction material of the present invention and the comparative material produced based on the alloy composition and the production method shown in Table 1 (friction coefficient against sliding speed, friction material and mating material). Table 3 shows the amount of wear of the S35C material. The friction test was carried out by the wet friction tester shown in FIG.

【0053】[0053]

【表3】 [Table 3]

【0054】本表においてNo.1〜10が本発明の焼
結部材、No.11〜18が比較材である。本発明の合
金No.1〜10の摩擦試験結果は表3に見るように良
好である。
In the table, No. 1 to 10 are sintered members of the present invention, and No. 11 to 18 are comparative materials. The alloy No. of the present invention. The friction test results of 1 to 10 are good as shown in Table 3.

【0055】一方、比較材での試験結果は以下のようで
ある。 11:Sn量が2%と少ない為に素地の強度不足により
摩擦材が摩耗・焼付きが生じてμ値が増加。 12:Sn量が35%と多い為に素地が著しく硬化して
相手側のS35C材を攻撃して焼付きが発生し、その結
果μ値が増加。 13:硬質粒子が10wt%と少ない為に十分なμ値が
得られない。 14:硬質粒子が30wt%と多く含まれている為、相
手側のS35C材を攻撃して焼付きが発生し、その結果
μ値が増加。 15:固体潤滑剤を含まない為、高速度下で摺動すると
摩擦係数が変動する。 16:空孔量が0%である為、油膜(油溜まり)が形成
されず、相手材と焼付きを生じる。 17:機械的粉砕・混合処理を行わず、単に所定成分を
有する各粉末を混合のみした後焼結した為に、硬質粒子
と素地との反応層が形成されず、また粗大な硬質粒子が
存在する為、摺動時に硬質粒子が素地から脱落して相手
材と焼付きを生じ、その結果μ値が増加する。 18:機械的粉砕・混合処理を行わず、単に所定成分を
有する各粉末を混合のみした後焼結した為に、硬質粒子
と素地との反応層が形成されず、また粗大な硬質粒子が
存在する為、摺動時に硬質粒子が素地から脱落して相手
材と焼付きを生じ、その結果μ値が増加する。
On the other hand, the test results of the comparative material are as follows. 11: Since the Sn content was as small as 2%, the friction material was worn and seized due to insufficient strength of the base material, and the μ value increased. 12: Since the Sn content was as large as 35%, the base material was significantly hardened and the S35C material on the other side attacked, causing seizure, resulting in an increase in the μ value. 13: A sufficient μ value cannot be obtained because the hard particles are as small as 10 wt%. 14: Since a large amount of hard particles is contained at 30 wt%, S35C material on the other side attacks and seizure occurs, resulting in an increase in μ value. 15: Since no solid lubricant is contained, the friction coefficient fluctuates when sliding at high speed. 16: Since the amount of pores is 0%, an oil film (oil sump) is not formed and seizure occurs with the mating material. 17: The reaction layer between the hard particles and the base material is not formed because there is no mechanical pulverization / mixing treatment, and only the powders having the predetermined components are mixed and then sintered, and coarse hard particles are present. Therefore, the hard particles fall off from the base material during sliding, causing seizure with the mating material, and as a result, the μ value increases. 18: The reaction layer between the hard particles and the base material is not formed because there is no mechanical pulverization / mixing process, and only the powders having the predetermined components are mixed and then sintered, and coarse hard particles are present. Therefore, the hard particles fall off from the base material during sliding, causing seizure with the mating material, and as a result, the μ value increases.

【0056】[0056]

【発明の効果】本発明の銅系焼結摩擦材は、乾式摩擦摺
動条件下において約0.4以上、湿式摩擦摺動条件にお
いて0.1以上の摩擦係数を安定して保持でき、しかも
乾式摺動の際に、静止摩擦係数と動摩擦係数の差を0.
1以下に抑制することで摺動時の振動・びびり・鳴き・
異音等の問題が解消できる。また、摩擦摺動時に相手材
を攻撃すること無く、相手材と焼付きを生じることがな
い。更には、十分な強度・靭性・硬度等の機械的特性を
有していることから本焼結摩擦材単体で構造用部材とし
て使用することができる。
The copper-based sintered friction material of the present invention can stably maintain a friction coefficient of about 0.4 or more under dry friction sliding conditions and 0.1 or more under wet friction sliding conditions, and During dry sliding, the difference between the static friction coefficient and the dynamic friction coefficient was set to 0.
Vibration, chatter, and squeal during sliding can be suppressed by suppressing it to 1 or less.
Problems such as abnormal noise can be solved. Further, during frictional sliding, the mating material is not attacked, and seizure with the mating material does not occur. Furthermore, since it has sufficient mechanical properties such as strength, toughness and hardness, the sintered friction material alone can be used as a structural member.

【0057】従って、本材料の用途としてコンプレッサ
ー用クラッチ材や自動車・バイク・車両等のブレーキ摩
擦材、湿式摺動部材としては自動変速機用のクラッチ材
などがある。
Therefore, the application of this material includes a clutch material for a compressor, a brake friction material for automobiles, motorcycles and vehicles, and a wet sliding member for an automatic transmission.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の焼結摺動部材の製造工程を示す工程図
である。
FIG. 1 is a process drawing showing a manufacturing process of a sintered sliding member of the present invention.

【図2】本発明の焼結摺動部材の乾式摩擦試験の説明図
である。
FIG. 2 is an explanatory diagram of a dry friction test of the sintered sliding member of the present invention.

【図3】本発明の焼結摺動部材の湿式摩擦試験の説明図
である。
FIG. 3 is an explanatory diagram of a wet friction test of the sintered sliding member of the present invention.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 銅系焼結合金において、最大粒径15μ
m以下、平均粒径5μm以下の硬質粒子が合金素地の旧
粉末粒内部に15〜25重量%均一に分散する組織を有
しており、乾式環境下にて鋼材と摺動した際に0.4以
上の摩擦係数を有し、且つ潤滑油中にて鋼材と摺動した
際に0.1以上の摩擦係数を有することを特徴とする焼
結摺動部材。
1. The maximum grain size of a copper-based sintered alloy is 15 μm.
It has a structure in which hard particles having an average particle size of 5 μm or less and having an average particle size of 5 μm or less are uniformly dispersed within the old powder particles of the alloy base in an amount of 15 to 25% by weight. A sintered sliding member having a coefficient of friction of 4 or more and a coefficient of friction of 0.1 or more when sliding on a steel material in a lubricating oil.
【請求項2】 乾式環境下にて鋼材と摺動した際に、静
止摩擦係数と動摩擦係数の差が0.1以下であることを
特徴とする請求項1記載の焼結摺動部材。
2. The sintered sliding member according to claim 1, wherein the difference between the static friction coefficient and the dynamic friction coefficient is 0.1 or less when sliding on a steel material in a dry environment.
【請求項3】 前記銅系焼結合金において、平均径が3
0μm以下である空孔が1容量%以上30容量%以下均
一に合金内部に分散することを特徴とする請求項1記載
の焼結摺動部材。
3. The average diameter of the copper-based sintered alloy is 3
The sintered sliding member according to claim 1, wherein pores having a diameter of 0 μm or less are uniformly dispersed in the alloy within a range of 1% by volume to 30% by volume.
【請求項4】 前記銅系焼結合金の素地の組成は、S
n;3〜20重量%で、残部が実質的にCuおよび不可
避的不純物からなることを特徴とする請求項1記載の焼
結摺動部材。
4. The composition of the base material of the copper-based sintered alloy is S
The sintered sliding member according to claim 1, wherein n: 3 to 20% by weight and the balance substantially consists of Cu and inevitable impurities.
【請求項5】 前記硬質粒子は、FeMo,FeCr,
FeTi,FeW,FeBの群からなる鉄系金属間化合
物のうち、少なくとも1種または2種以上からなること
を特徴とする請求項1記載の焼結摺動部材。
5. The hard particles are made of FeMo, FeCr,
The sintered sliding member according to claim 1, wherein the sintered sliding member is made of at least one kind or two or more kinds among iron-based intermetallic compounds consisting of FeTi, FeW, and FeB.
【請求項6】 前記銅系焼結合金において、必要に応じ
て固体潤滑剤を3重量%以下含有することを特徴とする
請求項1記載の焼結摺動部材。
6. The sintered sliding member according to claim 1, wherein the copper-based sintered alloy contains a solid lubricant in an amount of 3% by weight or less, if necessary.
【請求項7】 前記固体潤滑剤は黒鉛,MoS2,Ca
2,BNのうち少なくとも1種または2種以上からな
ることを特徴とする請求項6記載の焼結摺動部材。
7. The solid lubricant is graphite, MoS 2 , Ca
The sintered sliding member according to claim 6, which is made of at least one kind or two kinds or more of F 2 and BN.
【請求項8】 前記銅系焼結合金は、Sn;3〜20重
量%を含有し、残部が実質的にCuおよび不可避的不純
物からなる組成のCu−Sn合金粉末と15〜25重量
%の硬質粒子からなる混合粉末を、機械的合金化法(メ
カニカルアロイング法)、機械的混合法(メカニカルグ
ラインディング法)、造粒法のいずれかの混合・粉砕処
理を施すことにより硬質粒子を最大粒径15μm以下、
平均粒径5μm以下に粉砕し、且つCu−Sn合金素地
中にこれを均一に分散させた合金粉末を原料粉末に使用
することを特徴とする請求項1記載の焼結摺動部材。
8. The copper-based sintered alloy contains Sn; 3 to 20% by weight, the balance being Cu—Sn alloy powder having a composition substantially consisting of Cu and inevitable impurities, and 15 to 25% by weight. By mixing and pulverizing the mixed powder consisting of hard particles with any one of mechanical alloying method (mechanical alloying method), mechanical mixing method (mechanical grinding method) and granulation method, the hard particles can be maximized. Particle size 15 μm or less,
2. The sintered sliding member according to claim 1, wherein an alloy powder obtained by pulverizing to an average particle diameter of 5 [mu] m or less and uniformly dispersing it in a Cu-Sn alloy base is used as a raw material powder.
【請求項9】 前記銅系焼結合金は、Sn;3〜20重
量%を含有し、残部が実質的にCuおよび不可避的不純
物からなる組成のCu−Sn合金粉末と15〜25重量
%の硬質粒子、3重量%以下の固体潤滑剤からなる混合
粉末を、機械的合金化法、機械的混合法、造粒法のいず
れかの混合・粉砕処理を施すことにより硬質粒子を最大
粒径15μm以下、平均粒径5μm以下に粉砕し、且つ
固体潤滑剤と共にCu−Sn合金素地中に均一に分散さ
せた合金粉末を原料粉末に使用することを特徴とする請
求項1記載の焼結摺動部材。
9. The copper-based sintered alloy contains Sn; 3 to 20% by weight, the balance being Cu—Sn alloy powder having a composition essentially consisting of Cu and inevitable impurities, and 15 to 25% by weight. The hard particles have a maximum particle size of 15 μm by mixing and pulverizing the hard particles and a mixed powder of 3% by weight or less of a solid lubricant by any one of a mechanical alloying method, a mechanical mixing method and a granulating method. The sintered slide according to claim 1, wherein an alloy powder pulverized to an average particle size of 5 μm or less and uniformly dispersed in a Cu—Sn alloy base together with a solid lubricant is used as a raw material powder. Element.
【請求項10】 前記銅系焼結合金は、Sn粉末;3〜
20重量%、硬質粒子;15〜25重量%、残部が実質
的にCu粉末および不可避不純物からなる混合粉末を、
機械的合金化法、機械的混合法、造粒法のいずれかの混
合・粉砕処理を施すことにより、硬質粒子を最大粒径1
5μm以下、平均粒径5μm以下に粉砕し、且つCu−
Sn合金素地中にこれを均一に分散させた合金粉末を原
料粉末に使用することを特徴とする請求項1記載の焼結
摺動部材。
10. The copper-based sintered alloy is Sn powder;
20% by weight, hard particles; 15 to 25% by weight, a mixed powder comprising the balance substantially Cu powder and unavoidable impurities,
The maximum particle size of hard particles is 1 by performing mixing and crushing process of any one of mechanical alloying method, mechanical mixing method and granulation method.
5 μm or less, an average particle size of 5 μm or less, and Cu-
The sintered sliding member according to claim 1, wherein an alloy powder in which the Sn alloy base is uniformly dispersed is used as a raw material powder.
【請求項11】 前記銅系焼結合金は、Sn粉末;3〜
20重量%、硬質粒子;15〜25重量%、固体潤滑
剤;3重量%以下、残部が実質的にCu粉末および不可
避的不純物からなる混合粉末を、機械的合金化法、機械
的混合法、造粒法のいずれかの混合・粉砕処理を施すこ
とにより、硬質粒子を最大粒径15μm以下、平均粒径
5μm以下に粉砕し、且つCu−Sn合金素地中に硬質
粒子と固体潤滑剤を均一に分散させた合金粉末を原料粉
末に使用することを特徴とする請求項1記載の焼結摺動
部材。
11. The copper-based sintered alloy is Sn powder;
20% by weight, hard particles; 15 to 25% by weight, solid lubricant; 3% by weight or less, and a mixed powder consisting essentially of Cu powder and inevitable impurities, mechanical alloying method, mechanical mixing method, Hard particles are pulverized to a maximum particle size of 15 μm or less and an average particle size of 5 μm or less by performing any of the mixing and pulverizing processes of the granulation method, and the hard particles and the solid lubricant are uniformly dispersed in the Cu—Sn alloy matrix. The sintered sliding member according to claim 1, wherein the alloy powder dispersed in is used as a raw material powder.
【請求項12】 前記原料粉末において、必要に応じて
黒鉛,MoS2,CaF2,BNのうち少なくとも1種ま
たは2種以上からなる固体潤滑剤を3重量%以下、添加
することを特徴とする請求項8もしくは請求項10記載
の焼結摺動部材。
12. A solid lubricant comprising at least one or two or more of graphite, MoS 2 , CaF 2 , and BN is added to the raw material powder in an amount of 3% by weight or less, if necessary. The sintered sliding member according to claim 8 or 10.
JP6197985A 1993-08-09 1994-07-30 Sintered sliding member Pending JPH07102335A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6197985A JPH07102335A (en) 1993-08-09 1994-07-30 Sintered sliding member
JP7191311A JPH08100227A (en) 1994-07-30 1995-07-03 Sintered sliding member
US08/506,566 US5518519A (en) 1994-07-30 1995-07-25 Sintered contact component
DE69519009T DE69519009T2 (en) 1994-07-30 1995-07-28 Sintered contact component
EP95305276A EP0703382B1 (en) 1994-07-30 1995-07-28 Sintered contact component
CN95108696A CN1121117A (en) 1994-07-30 1995-07-28 Sintered contact component
KR1019950023073A KR100193606B1 (en) 1994-07-30 1995-07-29 Sintered contact member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21813093 1993-08-09
JP5-218130 1993-08-09
JP6197985A JPH07102335A (en) 1993-08-09 1994-07-30 Sintered sliding member

Publications (1)

Publication Number Publication Date
JPH07102335A true JPH07102335A (en) 1995-04-18

Family

ID=26510700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6197985A Pending JPH07102335A (en) 1993-08-09 1994-07-30 Sintered sliding member

Country Status (1)

Country Link
JP (1) JPH07102335A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269026A (en) * 1996-03-29 1997-10-14 Honda Motor Co Ltd Sintered frictional material
JPH10318308A (en) * 1997-05-22 1998-12-04 Toshiba Tungaloy Co Ltd Sintered friction material for roller brake
KR101320557B1 (en) * 2006-12-20 2013-11-13 재단법인 포항산업과학연구원 sintered Cu-base friction material protecting the sweating phenomenon, and Fabrication method of it
WO2016190403A1 (en) * 2015-05-28 2016-12-01 曙ブレーキ工業株式会社 Sintered friction material for high speed railway vehicles and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269026A (en) * 1996-03-29 1997-10-14 Honda Motor Co Ltd Sintered frictional material
US6068094A (en) * 1996-03-29 2000-05-30 Honda Giken Kogyo Kabushiki Kaisha Sintered friction material
JPH10318308A (en) * 1997-05-22 1998-12-04 Toshiba Tungaloy Co Ltd Sintered friction material for roller brake
KR101320557B1 (en) * 2006-12-20 2013-11-13 재단법인 포항산업과학연구원 sintered Cu-base friction material protecting the sweating phenomenon, and Fabrication method of it
WO2016190403A1 (en) * 2015-05-28 2016-12-01 曙ブレーキ工業株式会社 Sintered friction material for high speed railway vehicles and method for manufacturing same
JP2016222964A (en) * 2015-05-28 2016-12-28 曙ブレーキ工業株式会社 Sintered friction material for high speed railway vehicle and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JPH08100227A (en) Sintered sliding member
Moazami-Goudarzi et al. Tribological behavior of self lubricating Cu/MoS2 composites fabricated by powder metallurgy
US6844085B2 (en) Copper based sintered contact material and double-layered sintered contact member
JP7111484B2 (en) sliding member
JPH08253826A (en) Sintered friction material, composite copper alloy powder used therefor and their production
CN107523716B (en) Sintered friction material for friction linings
JP4430468B2 (en) Copper-based sintered friction material
JP2010533756A (en) Lead-free sintered lubricating material and sintered powder for its production
US20030209103A1 (en) Cooper-based sintering sliding material and multi-layered sintered sliding member
JP6360270B1 (en) Sintered friction material for brake
KR0149739B1 (en) Sintered contact component
JP3484444B2 (en) Sliding member
US5753725A (en) Dry friction material and method of preparing the same
JPH07102335A (en) Sintered sliding member
JP4757460B2 (en) Pb-free copper alloy composite sliding material with excellent seizure resistance
JP3042539B2 (en) Sliding material
JP3298636B2 (en) Sliding material
JPH06145845A (en) Sintered friction material
JP2006037179A (en) Pb-FREE COPPER-ALLOY-BASED COMPOSITE SLIDING MATERIAL SUPERIOR IN SEIZURE RESISTANCE
JPH0893816A (en) Wet type friction engagement plate and manufacture thereof
KR0118771B1 (en) Sintered copper alloy for friction material
JPH0979288A (en) Synchronous ring for transmission and manufacture thereof
JPH0861406A (en) Wet sintered friction material, manufacture therefor, and wet friction engagement plate
JP2905730B2 (en) Brake lining material for crane motor
JPH07188812A (en) Sintered sliding member and its production