JP5377557B2 - Copper-based sliding material - Google Patents

Copper-based sliding material Download PDF

Info

Publication number
JP5377557B2
JP5377557B2 JP2011074248A JP2011074248A JP5377557B2 JP 5377557 B2 JP5377557 B2 JP 5377557B2 JP 2011074248 A JP2011074248 A JP 2011074248A JP 2011074248 A JP2011074248 A JP 2011074248A JP 5377557 B2 JP5377557 B2 JP 5377557B2
Authority
JP
Japan
Prior art keywords
alloy
mass
alloy layer
copper
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011074248A
Other languages
Japanese (ja)
Other versions
JP2012207277A (en
Inventor
拓生 今井
耕治 図師
健太郎 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2011074248A priority Critical patent/JP5377557B2/en
Priority to DE102012204967.3A priority patent/DE102012204967B4/en
Priority to GB1205639.6A priority patent/GB2489601B/en
Publication of JP2012207277A publication Critical patent/JP2012207277A/en
Application granted granted Critical
Publication of JP5377557B2 publication Critical patent/JP5377557B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/18Alloys based on copper with bismuth as the next major constituent

Description

本発明は、耐疲労性及び耐焼付性に優れた銅系摺動材料に係り、特に自動車、産業機械等における半割軸受、ブシュ、スラストワッシャ等の材料として好適な銅系摺動材料に関する。   The present invention relates to a copper-based sliding material excellent in fatigue resistance and seizure resistance, and more particularly to a copper-based sliding material suitable as a material for half bearings, bushes, thrust washers, etc. in automobiles, industrial machines and the like.

従来から、内燃機関用すべり軸受に使用される銅系摺動材料は、連続焼結法により製造されるのが一般的である。この連続焼結法とは、帯鋼上にCu合金粉末を連続的に散布し、焼結、圧延を連続的に施す製造方法である。また、すべり軸受用の銅系摺動材料には、近年の環境規制に対応するため、Pbフリー化が求められており、Pbの代替材料としてBiを含有した焼結Cu合金を使用するものが提案されている(例えば、特許文献1〜5参照)。   Conventionally, a copper-based sliding material used for a plain bearing for an internal combustion engine is generally manufactured by a continuous sintering method. This continuous sintering method is a manufacturing method in which a Cu alloy powder is continuously sprayed on a steel strip and subjected to continuous sintering and rolling. Also, copper-based sliding materials for slide bearings are required to be Pb-free in order to comply with recent environmental regulations, and those using a sintered Cu alloy containing Bi as an alternative material for Pb. It has been proposed (see, for example, Patent Documents 1 to 5).

特許第3421724号公報Japanese Patent No. 3421724 米国特許2003/0068106A1号公報US 2003/0068106 A1 特表2010−535287号公報Special table 2010-535287 特開平4−28836号公報JP-A-4-28836 特開平5−263166号公報JP-A-5-263166

ところで、近年、内燃機関のクランク軸は高回転化される傾向にあり、すべり軸受にはより良好な耐焼付性が求められている。すべり軸受用の銅系摺動材料として、上記したBiを含有した焼結Cu合金を使用する場合、良好な耐焼付性を得るためには、焼結Cu合金にBiを10質量%以上含有させることが望ましい。   By the way, in recent years, crankshafts of internal combustion engines tend to be rotated at higher speeds, and sliding bearings are required to have better seizure resistance. In order to obtain good seizure resistance when using the above-described sintered Cu alloy containing Bi as a copper-based sliding material for a slide bearing, the sintered Cu alloy contains Bi by 10 mass% or more. It is desirable.

ところで、特許文献1〜3では、連続焼結法にてBiを含有したCu合金の焼結を実施しているが、この焼結Cu合金が良好な強度を有するか否かは、Biの含有量に大きく影響される。具体的には、図4(a)に示すように、帯鋼上にCu合金粉末を散布した場合、Cu合金層に多くの隙間が存在している。また、図4(b)に示すように、BiはCu合金粉末中に存在しており、その後の一次焼結工程にて昇温すると、Biが271℃付近で溶融して液相となる。そして、焼結温度に到達して冷却が開始されると、Biに対しCu合金の収縮速度が早いため、図4(c)に示すように、BiがCu合金粉末中から押し出され、Cu合金粉末同士の隙間に流れ出る。この隙間に流れ出たBiがCu合金粉末表面を伝いながら拡がることにより、図3及び図4(d)に示すように、Cu合金層中のBi粒が粗大化してしまう。なお、図3は、図4(d)に示す一次焼結後の焼結Cu合金に、さらに、圧延工程と二次焼結工程を施した後のCu合金の組織である。このBi粒が粗大化する現象は、Cu合金層中にBiが10質量%以上含有されている場合に、特に影響を受ける。BiはCu合金に殆ど固溶しないため、Cu合金層中に単独で存在しており、また、Cu合金に対しBiの強度が著しく低い。動荷重を受ける軸受では、特許文献2の段落[0030]に記載されているように、粗大化したBiまたはBiとCu合金との粒界を起点に割れが生じて、Cu合金層の疲労破壊が起きやすい。   By the way, in patent documents 1-3, although sintering of Cu alloy containing Bi is carried out by a continuous sintering method, whether or not this sintered Cu alloy has good strength is the inclusion of Bi. It is greatly influenced by the quantity. Specifically, as shown in FIG. 4A, when Cu alloy powder is spread on the steel strip, there are many gaps in the Cu alloy layer. Further, as shown in FIG. 4B, Bi is present in the Cu alloy powder, and when the temperature is raised in the subsequent primary sintering step, Bi melts near 271 ° C. to become a liquid phase. Then, when the sintering temperature is reached and the cooling is started, the shrinkage rate of the Cu alloy is higher than that of Bi, so Bi is extruded from the Cu alloy powder as shown in FIG. It flows out into the gap between the powders. As Bi flowing out to the gap spreads along the Cu alloy powder surface, Bi grains in the Cu alloy layer are coarsened as shown in FIGS. 3 and 4D. FIG. 3 shows the structure of the Cu alloy after the rolling and secondary sintering steps are further performed on the sintered Cu alloy after the primary sintering shown in FIG. The phenomenon that the Bi grains become coarse is particularly affected when Bi is contained in the Cu alloy layer in an amount of 10% by mass or more. Since Bi hardly dissolves in the Cu alloy, it exists alone in the Cu alloy layer, and the strength of Bi is significantly lower than that of the Cu alloy. In a bearing that receives a dynamic load, as described in paragraph [0030] of Patent Document 2, cracks occur starting from grain boundaries between coarse Bi or Bi and a Cu alloy, and fatigue failure of the Cu alloy layer occurs. Is prone to occur.

また、特許文献2,3では、軸受用のCu合金層の組成をCu−Sn−P−Bi系とし、Cu合金の素地をCu、SnおよびPの固溶体とした軸受が提案されている。この軸受は、使用中に摺動負荷を受けると、Cu合金の素地中のSnが軸受の摺動面に移動し、摺動面にSnを多く含む層が形成されることにより、軸受の耐焼付性が高まる旨が記載されている。しかしながら、軸受の摺動面となるCu合金の表面にSnが濃化した場合には、摺動面付近のCu合金が硬くなり、耐焼付性が低下してしまう。   Patent Documents 2 and 3 propose bearings in which the composition of the Cu alloy layer for the bearing is Cu—Sn—P—Bi, and the base of the Cu alloy is a solid solution of Cu, Sn, and P. When this bearing is subjected to a sliding load during use, Sn in the Cu alloy substrate moves to the sliding surface of the bearing, and a layer containing a large amount of Sn is formed on the sliding surface. It describes that seizure is improved. However, when Sn is concentrated on the surface of the Cu alloy that becomes the sliding surface of the bearing, the Cu alloy near the sliding surface becomes hard and seizure resistance decreases.

一方、特許文献4,5によれば、Biを含有したCu合金粉末をメカニカルアロイング法で作製し、このCu合金粉末を用いて比較的低温(400〜800℃、より好ましくは400〜700℃)で焼結を行うと、微細なBi粒を有する銅系摺動材料を得ることが可能な旨が記載されている。しかしながら、連続焼結法において800℃以下の温度で焼結を行うと、鋼裏金とCu合金層との接着が十分に得られないため、耐疲労性が低下してしまう。また、800℃を超える温度で焼結を行うと、鋼裏金との接着は良好であるが、特許文献4に記載されているように、Cu合金粉末の焼結が進み過ぎて、Cu合金層中のBi粒が粗大化してしまう。   On the other hand, according to Patent Documents 4 and 5, a Cu alloy powder containing Bi is produced by a mechanical alloying method, and this Cu alloy powder is used for a relatively low temperature (400 to 800 ° C., more preferably 400 to 700 ° C.). ), It is described that a copper-based sliding material having fine Bi grains can be obtained. However, if the sintering is performed at a temperature of 800 ° C. or lower in the continuous sintering method, the adhesion between the steel back metal and the Cu alloy layer cannot be sufficiently obtained, so that the fatigue resistance is lowered. Further, when sintering is performed at a temperature exceeding 800 ° C., the adhesion with the steel back metal is good, but as described in Patent Document 4, the sintering of the Cu alloy powder proceeds too much, and the Cu alloy layer The Bi grains inside become coarse.

本発明は、上記した事情に鑑みなされたものであり、その目的とするところは、連続焼結法にて作製されるCu合金層中のBi粒の粗大化を抑制し、耐疲労性及び耐焼付性に優れた銅系摺動材料を提供することにある。   The present invention has been made in view of the above-described circumstances, and its object is to suppress the coarsening of Bi grains in a Cu alloy layer produced by a continuous sintering method, and to improve fatigue resistance and resistance. An object of the present invention is to provide a copper-based sliding material having excellent seizure properties.

上記した目的を達成するために、請求項1に係る発明においては、鋼裏金層及びCu合金層からなる銅系摺動材料であって、前記Cu合金層はSnを6〜12質量%、Biを11〜30質量%、Pを0.01〜0.05質量%含有し、残部がCu及び不可避不純物からなる銅系摺動材料において、前記Biは、前記Snとの質量比がBi/Sn=1.7〜3.4、前記Pとの質量比がBi/P=500〜2100であり、前記Cu合金層には、Cu−Sn−P系化合物が分散することにより、前記Cu合金層の厚さ方向と平行な方向の断面に平均粒子面積が60〜350μmのBi粒が分散していることを特徴とする。 In order to achieve the above-described object, in the invention according to claim 1, a copper-based sliding material comprising a steel back metal layer and a Cu alloy layer, wherein the Cu alloy layer contains 6 to 12 mass% of Sn, Bi In a copper-based sliding material containing 11 to 30% by mass of P and 0.01 to 0.05% by mass of P, with the balance being Cu and inevitable impurities, the Bi has a mass ratio with the Sn of Bi / Sn. = 1.7 to 3.4, the mass ratio with P is Bi / P = 500 to 2100, and a Cu-Sn-P compound is dispersed in the Cu alloy layer, whereby the Cu alloy layer Bi grains having an average particle area of 60 to 350 μm 2 are dispersed in a cross section in a direction parallel to the thickness direction.

請求項2に係る発明においては、請求項1記載の銅系摺動材料において、前記Snは、前記Biとの質量比がBi/Sn=2.1〜3.1であり、且つ前記Cu合金層に6.8〜9質量%含有させることを特徴とする。   In a second aspect of the present invention, in the copper-based sliding material according to the first aspect, the Sn has a mass ratio with the Bi of Bi / Sn = 2.1 to 3.1, and the Cu alloy. It is characterized by containing 6.8-9 mass% in the layer.

請求項3に係る発明においては、請求項1又は請求項2記載の銅系摺動材料において、前記Cu合金層は、さらにNi、Fe、Agからなる群の中から少なくとも1種以上を総量で0.1〜10質量%含有することを特徴とする。   According to a third aspect of the present invention, in the copper-based sliding material according to the first or second aspect, the Cu alloy layer further includes a total amount of at least one selected from the group consisting of Ni, Fe, and Ag. It is characterized by containing 0.1 to 10% by mass.

請求項4に係る発明においては、請求項1乃至請求項3のいずれかに記載の銅系摺動材料において、前記Cu合金層は、さらに平均粒径が1〜10μmの炭化物、窒化物、珪化物、酸化物のいずれかからなる無機化合物を0.1〜10質量%含有することを特徴とする。 In the invention which concerns on Claim 4, in the copper-type sliding material in any one of Claim 1 thru | or 3, the said Cu alloy layer is further carbide, nitride, silicidation whose average particle diameter is 1-10 micrometers. It contains 0.1 to 10% by mass of an inorganic compound composed of any one of a product and an oxide .

請求項1に係る発明においては、銅系摺動材料にBiを添加すると、良好な摺動特性が得られることが知られているが、Cu合金層にBiを11〜30質量%含有させることで、高い摺動特性を達成している。また、Biの含有量が11質量%より少ないと、摺動特性が十分ではなく、耐焼付性が低下してしまう。一方、Biの含有量が30質量%を超えて多いと、耐疲労性が低下してしまう。   In the invention according to claim 1, it is known that when Bi is added to the copper-based sliding material, good sliding characteristics can be obtained. However, the Cu alloy layer contains 11 to 30% by mass of Bi. And achieves high sliding characteristics. On the other hand, if the Bi content is less than 11% by mass, the sliding characteristics are not sufficient and the seizure resistance is lowered. On the other hand, if the Bi content is more than 30% by mass, the fatigue resistance is lowered.

また、請求項1に係る発明においては、Cu合金層にCu−Sn−P系化合物を分散させることで、Bi粒の平均粒子面積を60〜350μmと微細に制御できることを見出した。これは、以下のメカニズムによると推測される。本発明の銅系摺動材料は、帯鋼上にCu合金粉末を連続的に散布し、焼結、圧延を繰り返して製造される。まず、散布工程において、図2(a)に示すように、帯鋼上にCu合金粉末を散布した後には、Cu合金層が多孔質な状態となっている。また、図2(b)に示すように、BiはCu合金粉末中に存在しており、その後の焼結工程にて昇温すると、Biが271℃付近で溶融して液相となる。そして、焼結を800〜900℃で行い、その後の冷却工程にて冷却が開始されると、BiよりもCu合金の熱収縮率が高く、Cu合金のほうが早く収縮するため、BiがCu合金粉末中から押し出され、Cu合金粉末同士の隙間に流れ出る。このとき、Cu合金にCu−Sn−P系化合物を析出させることで、Cu合金の収縮が抑制される。このように、Cu合金とBiの熱収縮率の差を緩和することで、図2(c)に示すように、Biの液相がCu合金粉末中から押し出されるのを防ぐことができ、図2(d)に示す組織となる。その後、緻密化のための圧延、焼結を施すことで、図1に示すように、Cu合金層中にBi粒を微細に分散することが可能となる。 Moreover, in the invention which concerns on Claim 1 , it discovered that the average particle | grain area of Bi grain | grains could be finely controlled with 60-350 micrometers 2 by disperse | distributing a Cu-Sn-P type compound to Cu alloy layer. This is presumed to be due to the following mechanism. The copper-based sliding material of the present invention is manufactured by continuously spreading a Cu alloy powder on a steel strip and repeating sintering and rolling. First, in the spreading step, as shown in FIG. 2A, after the Cu alloy powder is spread on the steel strip, the Cu alloy layer is in a porous state. Further, as shown in FIG. 2B, Bi is present in the Cu alloy powder. When the temperature is raised in the subsequent sintering step, Bi melts in the vicinity of 271 ° C. to become a liquid phase. And if sintering is performed at 800-900 degreeC and cooling is started in the subsequent cooling process, since the thermal contraction rate of Cu alloy is higher than Bi and Cu alloy contracts earlier, Bi is Cu alloy. It is extruded from the powder and flows into the gap between the Cu alloy powders. At this time, shrinkage of the Cu alloy is suppressed by precipitating the Cu—Sn—P-based compound on the Cu alloy. In this way, by relaxing the difference in thermal shrinkage between the Cu alloy and Bi, it is possible to prevent the liquid phase of Bi from being pushed out of the Cu alloy powder as shown in FIG. It becomes the organization shown in 2 (d). Thereafter, by rolling and sintering for densification, Bi grains can be finely dispersed in the Cu alloy layer as shown in FIG.

また、Cu−Sn−P系化合物は、以下のメカニズムでCu合金に析出する。まず、焼結温度(800〜900℃)では、常温時(20℃)よりBiの液相に多くのSn、Pが固溶可能な状態になるため、Sn、PがCu合金からBiの液相に拡散する。その後、冷却工程にて温度が低下すると、Biの液相にSn、Pが過飽和の状態となり、Sn、PがBiの液相からCu合金に拡散する。このため、Biの液相とCu合金の界面付近にSn、Pが濃化する。このとき、冷却工程における800℃から450℃までの冷却速度が早い場合には、Cu合金にSn、Pが過飽和の状態で固溶されるが、800℃から450℃までの冷却速度を4〜10分間かけて冷却することで、Cu合金にCu−Sn−P系化合物を析出させることが可能となる。これにより、Cu合金と液相になったBiの熱収縮率の差が緩和され、Biの液相がCu合金粉末中に留まるため、Bi粒の粗大化を抑制することができる。   Further, the Cu—Sn—P-based compound is precipitated on the Cu alloy by the following mechanism. First, at the sintering temperature (800 to 900 ° C.), a larger amount of Sn and P can be dissolved in the Bi liquid phase than at normal temperature (20 ° C.). Diffuses into the phase. Thereafter, when the temperature is lowered in the cooling step, Sn and P are supersaturated in the Bi liquid phase, and Sn and P diffuse from the Bi liquid phase into the Cu alloy. For this reason, Sn and P are concentrated near the interface between the liquid phase of Bi and the Cu alloy. At this time, when the cooling rate from 800 ° C. to 450 ° C. in the cooling step is fast, Sn and P are dissolved in a supersaturated state in the Cu alloy, but the cooling rate from 800 ° C. to 450 ° C. is 4 to 4 ° C. By cooling for 10 minutes, it becomes possible to precipitate a Cu-Sn-P-based compound on the Cu alloy. As a result, the difference in thermal shrinkage between Bi in a liquid phase with that of the Cu alloy is relaxed, and the liquid phase of Bi remains in the Cu alloy powder, so that the coarsening of Bi grains can be suppressed.

上述のように、Cu合金には、Cu−Sn−P系化合物を析出させることにより、Bi粒の粗大化を抑制することが可能となるが、Cu−Sn化合物、Sn−P化合物が析出してもよい。なお、Cu−Sn−Bi合金を用い、上述と同様の方法でCu−Sn化合物のみを析出させた場合には、Bi粒の粗大化を抑制する効果が得られなかった。   As described above, it is possible to suppress the coarsening of the Bi grains by precipitating the Cu—Sn—P compound in the Cu alloy, but the Cu—Sn compound and the Sn—P compound are precipitated. May be. In addition, when only a Cu-Sn compound was deposited by the same method as described above using a Cu-Sn-Bi alloy, the effect of suppressing the coarsening of Bi grains was not obtained.

また、Cu合金にCu−Sn−P系化合物を析出させ、Cu合金がSnを過飽和の状態に固溶するのを防ぐことで、摺動環境下で軸受表面にSnが濃化するのを防止し、耐焼付性を低下させるのを抑制することができる。Cu合金にSnが過飽和の状態で存在する場合には、Snが不安定で移動し易く、摺動環境下で軸受表面にSnの濃化層を形成する。一方、Cu合金にCu−Sn−P系化合物を析出させた場合には、Cu合金に過飽和の状態で存在するSnが少なくなるので、摺動環境下で軸受表面にSnの濃化層を形成しないため、良好な耐焼付性を有する。   In addition, Cu—Sn—P-based compounds are deposited on the Cu alloy, and the Cu alloy prevents Sn from being dissolved in a supersaturated state, thereby preventing Sn from concentrating on the bearing surface in a sliding environment. And it can suppress that seizure resistance falls. When Sn is present in a supersaturated state in the Cu alloy, Sn is unstable and easily moved, and a concentrated Sn layer is formed on the bearing surface in a sliding environment. On the other hand, when a Cu—Sn—P-based compound is deposited on a Cu alloy, Sn existing in a supersaturated state in the Cu alloy decreases, so that a concentrated Sn layer is formed on the bearing surface in a sliding environment. Therefore, it has good seizure resistance.

また、請求項1に係る発明においては、BiとSnの質量比をBi/Sn=1.7〜3.4、BiとPの質量比をBi/P=500〜2100とすることで、良好な耐疲労性を有することを見出した。このように、BiとSnの質量比、BiとPの質量比を制御することで、Cu合金にCu−Sn−P系化合物を析出させることが可能となり、Bi粒の平均粒子面積を60〜350μmに制御することができる。また、BiとSnの質量比(Bi/Sn)が1.7より小さいと、Biに対しSnの含有量が多い。Snは、Pに比べてBiに拡散し易く、焼結工程にてBiの液相がSnを飽和に固溶した状態となり、Biの液相にPが拡散することが困難となる。このため、Cu合金にCu−Sn−P系化合物を析出することがなく、Bi粒の粗大化を抑制する効果が得られない。一方、BiとSnの質量比(Bi/Sn)が3.4を超えて大きいと、Biに対しSnの含有量が少な過ぎるため、Cu−Sn−P系化合物の析出量が十分でなく、Bi粒の粗大化を抑制する効果が得られない。 In the invention according to claim 1, it is preferable that the mass ratio of Bi and Sn is Bi / Sn = 1.7 to 3.4, and the mass ratio of Bi and P is Bi / P = 500 to 2100. And found to have excellent fatigue resistance. Thus, by controlling the mass ratio of Bi and Sn and the mass ratio of Bi and P, it becomes possible to precipitate a Cu-Sn-P-based compound in the Cu alloy, and the average particle area of Bi grains is 60 to 60. It can be controlled to 350 μm 2 . Moreover, when the mass ratio (Bi / Sn) of Bi and Sn is smaller than 1.7, the content of Sn is larger than Bi. Sn is more easily diffused into Bi than P, and in the sintering process, the Bi liquid phase is in a state where Sn is saturated and dissolved, and it becomes difficult for P to diffuse into the Bi liquid phase. For this reason, the Cu—Sn—P-based compound is not precipitated in the Cu alloy, and the effect of suppressing the coarsening of the Bi grains cannot be obtained. On the other hand, if the mass ratio of Bi to Sn (Bi / Sn) is larger than 3.4, the content of Sn is too small relative to Bi, so the amount of precipitation of the Cu—Sn—P-based compound is not sufficient, The effect of suppressing the coarsening of Bi grains cannot be obtained.

また、BiとPの質量比(Bi/P)が500より小さいと、Biに対しPの含有量が多い。このため、焼結工程にてBiの液相がPを多く固溶した状態となり、その後の冷却工程にてBiの液相で余剰となったPの一部が、鋼裏金とCu合金の接着面付近にて鋼裏金と脆いFe−P化合物を形成することで、耐疲労性が低下してしまう。一方、BiとPの質量比(Bi/P)が2100を超えて大きいと、Biに対しPの含有量が少な過ぎるため、Cu−Sn−P系化合物の析出量が十分ではなく、Bi粒の粗大化を抑制する効果が得られない。   When the mass ratio of Bi to P (Bi / P) is smaller than 500, the P content is larger than Bi. For this reason, the Bi liquid phase is in a state where a large amount of P is dissolved in the sintering process, and a part of the P surplus in the Bi liquid phase in the subsequent cooling process is bonded to the steel backing metal and the Cu alloy. By forming a steel back metal and a brittle Fe-P compound in the vicinity of the surface, the fatigue resistance is lowered. On the other hand, if the mass ratio of Bi to P (Bi / P) is greater than 2100, the P content is too small relative to Bi, so the amount of precipitation of the Cu—Sn—P compound is not sufficient, and Bi grains The effect which suppresses the coarsening of is not acquired.

また、請求項1に係る発明においては、Cu合金にSnを6〜12質量%含有させているが、Snの含有量が6質量%より少ないと、Cu合金にSnが固溶され、Snが余剰となることがない。このため、Cu合金にCu−Sn−P系化合物を析出することがなく、Bi粒の粗大化を抑制する効果が得られない。一方、Snの含有量が12質量%を超えて多いと、焼結工程にてCu−Snの液相が多く発生するようになり、Cu合金粉末が一部流動する。このため、Cu合金粉末からBiの液相が流れ出るのを抑制することができず、Bi粒の粗大化を抑制する効果が得られない。   Moreover, in the invention which concerns on Claim 1, although Sn contains 6-12 mass% in Cu alloy, when content of Sn is less than 6 mass%, Sn will be solid-solved in Cu alloy and Sn will be contained. There will be no surplus. For this reason, the Cu—Sn—P-based compound is not precipitated in the Cu alloy, and the effect of suppressing the coarsening of the Bi grains cannot be obtained. On the other hand, if the Sn content exceeds 12% by mass, a large amount of Cu—Sn liquid phase is generated in the sintering process, and the Cu alloy powder partially flows. For this reason, it cannot suppress that the liquid phase of Bi flows out from Cu alloy powder, and the effect which suppresses the coarsening of Bi grain cannot be acquired.

また、請求項1に係る発明においては、Cu合金にPを0.01〜0.05質量%含有させているが、Pの含有量が0.01質量%より少ないと、Cu合金にPが固溶され、Pが余剰となることがない。このため、Cu−Sn−P系化合物の析出量が十分ではなく、Bi粒の粗大化を抑制する効果が得られない。一方、Pの含有量が0.05質量%を超えて多いと、焼結工程にてBiの液相がPを多く固溶した状態となり、その後の冷却工程にてBiの液相で余剰となったPの一部が、鋼裏金とCu合金の接着面付近にて鋼裏金と脆いFe−P化合物を形成することで、耐疲労性が低下してしまう。   Moreover, in the invention which concerns on Claim 1, although 0.01-0.05 mass% of P is contained in Cu alloy, when content of P is less than 0.01 mass%, P will be contained in Cu alloy. It is dissolved and P does not become excessive. For this reason, the precipitation amount of the Cu—Sn—P compound is not sufficient, and the effect of suppressing the coarsening of Bi grains cannot be obtained. On the other hand, if the content of P exceeds 0.05% by mass, the Bi liquid phase is in a state where a large amount of P is dissolved in the sintering process, and the Bi liquid phase is excessive in the subsequent cooling process. A part of the formed P forms a brittle Fe—P compound with the steel back metal in the vicinity of the bonding surface between the steel back metal and the Cu alloy, so that the fatigue resistance is lowered.

また、請求項1に係る発明においては、Cu合金層に分散されるBi粒の平均面積を60〜350μmに制御することで、良好な耐疲労性を有することを見出した。なお、Biの平均粒子面積とは、Cu合金層の厚さ方向に平行な方向の断面における各Bi粒の面積の平均値である。Biは、Cu合金に対し強度が著しく低く、Bi粒が疲労の起点となることが多い。このBi粒の平均面積を350μmより大きく制御した場合には、粗大化したBi粒に亀裂が発生し、耐疲労性が著しく低下してしまう。 Moreover, in the invention which concerns on Claim 1 , it discovered that it had favorable fatigue resistance by controlling the average area of Bi grain disperse | distributed to Cu alloy layer to 60-350 micrometer < 2 >. The average particle area of Bi is the average value of the area of each Bi grain in the cross section in the direction parallel to the thickness direction of the Cu alloy layer. Bi has a significantly lower strength than Cu alloys, and Bi grains are often the starting point of fatigue. When the average area of the Bi grains is controlled to be larger than 350 μm 2 , cracks are generated in the coarsened Bi grains, and the fatigue resistance is significantly lowered.

また、請求項2に係る発明においては、BiとSnの質量比をBi/Sn=2.1〜3.1とし、且つSnを6.8〜9質量%含有させることで、良好な耐焼付性を有することを見出した。これは、以下のメカニズムによると推測される。Cu合金には、Cu−Sn−P系化合物の他に、Cu−Sn化合物、Sn−P化合物が析出しているが、これらの化合物がCu合金に比べて硬いため、Cu合金に多く析出すると、Cu合金が硬くなり過ぎる。一方、これらの化合物の析出量が少ないと、Cu合金にSnが過飽和の状態で固溶されており、摺動環境下で軸受表面にSnの濃化層を形成するため、その部分が硬化する。このため、摺動環境下で軸受表面の順応性が失われ、耐焼付性が低下してしまう。   Moreover, in the invention which concerns on Claim 2, the mass ratio of Bi and Sn shall be Bi / Sn = 2.1-3.1, and Sn is 6.8-9 mass% contained, Good seizure resistance It was found to have sex. This is presumed to be due to the following mechanism. In addition to Cu-Sn-P compounds, Cu-Sn compounds and Sn-P compounds are precipitated in the Cu alloy. However, since these compounds are harder than the Cu alloy, a large amount of the Cu alloy is precipitated. Cu alloy becomes too hard. On the other hand, when the precipitation amount of these compounds is small, Sn is dissolved in a supersaturated state in the Cu alloy, and a concentrated layer of Sn is formed on the bearing surface in a sliding environment, so that portion is cured. . For this reason, the adaptability of the bearing surface is lost in a sliding environment, and seizure resistance is lowered.

上述のように、BiとSnの質量比(Bi/Sn)が大きくなると、Cu−Sn−P系化合物の析出量が少なくなり、摺動環境下で軸受表面にSnの濃化層を形成し易く、その部分が硬化し易くなる。一方、BiとSnの質量比(Bi/Sn)が小さくなると、Cu−Sn−P系化合物の析出量が多くなるが、Cu−Sn化合物、Sn−P化合物の析出量も多くなり、Cu合金が硬化し易くなる。このような状況下で、BiとSnの質量比をBi/Sn=2.1〜3.1とすることで、Cu合金にSnが過飽和の状態で固溶されることがなく、摺動環境下で軸受表面にSnの濃化層が形成され難くなる。また、Cu合金におけるCu−Sn化合物、Sn−P化合物の析出量も少ないため、Cu合金が硬化し難く、良好な耐焼付性を有することが可能となる。   As described above, when the mass ratio of Bi and Sn (Bi / Sn) increases, the amount of Cu-Sn-P compound deposited decreases, and a concentrated Sn layer is formed on the bearing surface in a sliding environment. It becomes easy and the part becomes easy to harden. On the other hand, when the mass ratio of Bi and Sn (Bi / Sn) is reduced, the amount of precipitation of the Cu—Sn—P compound increases, but the amount of precipitation of the Cu—Sn compound and Sn—P compound also increases, resulting in a Cu alloy. Becomes easy to cure. Under such circumstances, by setting the mass ratio of Bi and Sn to Bi / Sn = 2.1 to 3.1, Sn is not dissolved in the Cu alloy in a supersaturated state, and the sliding environment Under this, it becomes difficult to form a concentrated Sn layer on the bearing surface. Moreover, since the precipitation amount of the Cu—Sn compound and Sn—P compound in the Cu alloy is also small, the Cu alloy is hard to be hardened and can have good seizure resistance.

また、BiとSnの質量比がBi/Sn=2.1〜3.1であるとき、Snの含有量が増加すると、Cu−Sn−P系化合物の析出量だけでなく、Cu−Sn化合物の析出量も増加する。本発明者は、実験の結果、Snの含有量を9質量%以下とすることで、もっとも良好な耐焼付性を有することを見出した。一方、Snの含有量は少ないほうが好ましいが、6.8質量%より少ないと、Cu−Sn−P系化合物の析出量が少な過ぎるため、耐焼付性が低下してしまう。   In addition, when the mass ratio of Bi and Sn is Bi / Sn = 2.1 to 3.1, when the Sn content is increased, not only the precipitation amount of the Cu—Sn—P compound but also the Cu—Sn compound The amount of precipitation increases. As a result of the experiment, the present inventor has found that the Sn content is 9% by mass or less, thereby having the best seizure resistance. On the other hand, it is preferable that the Sn content is small. However, if the Sn content is less than 6.8% by mass, the amount of precipitation of the Cu—Sn—P compound is too small, and the seizure resistance is lowered.

また、請求項3に係る発明のように、Cu合金層を強化するため、Ni、Fe、Agからなる群の中から少なくとも1種以上を総量で0.1〜10質量%含有させてもよい。これらの含有量が総量で0.1質量より少ないと、Cu合金層の強化が不十分となる。また、これらの含有量が総量で10質量%を超えて多くなると、Cu合金層が脆くなり、耐疲労性が低下してしまう。   Further, as in the invention according to claim 3, in order to reinforce the Cu alloy layer, at least one kind selected from the group consisting of Ni, Fe, and Ag may be contained in a total amount of 0.1 to 10% by mass. . When the total content is less than 0.1 mass, the Cu alloy layer is not sufficiently strengthened. Moreover, when these content increases in total exceeding 10 mass%, Cu alloy layer will become weak and fatigue resistance will fall.

また、請求項4に係る発明のように、Cu合金層を強化するため、無機化合物を0.1〜10質量%含有させてもよい。この無機化合物としては、炭化物、窒化物、珪化物、酸化物などを使用することができる。また、無機化合物は、平均粒径が1〜10μmのものを使用することができる。無機化合物の含有量が0.1質量%より少ないと、Cu合金層の強化が不十分となる。また、無機化合物の含有量が10質量%を超えて多くなると、Cu合金層中で無機化合物粒が凝集するため、強度が低下してしまう。   Moreover, in order to reinforce a Cu alloy layer like the invention which concerns on Claim 4, you may contain 0.1-10 mass% of inorganic compounds. As this inorganic compound, carbide, nitride, silicide, oxide, or the like can be used. An inorganic compound having an average particle diameter of 1 to 10 μm can be used. When the content of the inorganic compound is less than 0.1% by mass, the Cu alloy layer is not sufficiently strengthened. On the other hand, when the content of the inorganic compound exceeds 10% by mass, the inorganic compound particles aggregate in the Cu alloy layer, so that the strength decreases.

Cu−Sn−P−Bi系のCu合金層の組織を示す模式図である。It is a schematic diagram which shows the structure | tissue of a Cu-Sn-P-Bi type Cu alloy layer. Cu−Sn−P−Bi系のCu合金層の作製工程におけるBiの挙動を説明するための図である。It is a figure for demonstrating the behavior of Bi in the preparation process of a Cu-Sn-P-Bi type Cu alloy layer. 従来のCu−Bi系のCu合金層の組織を示す模式図である。It is a schematic diagram which shows the structure | tissue of the conventional Cu-Bi type Cu alloy layer. 従来のCu−Bi系のCu合金層の作製工程におけるBiの挙動を説明するための図である。It is a figure for demonstrating the behavior of Bi in the preparation process of the conventional Cu-Bi type Cu alloy layer.

本実施形態に係るBiを含有したCu合金を用いた実施例1〜17と比較例1〜13について、Bi粒の平均粒子面積を測定するとともに、軸受疲労試験を行った。また、実施例1〜17と比較例1については、軸受焼付試験を行った。実施例1〜17及び比較例1〜13の組成(質量%)、BiとSnの質量比(Bi/Sn)、BiとPの質量比(Bi/P)を表1に示す。実施例1〜17は、アトマイズ法にて表1に示す組成で作製したCu合金粉末を用い、その粉末を帯鋼上に散布し、焼結、圧延を繰り返して摺動材料を作製した。なお、焼結は830℃の温度で行い、焼結後の冷却工程にて830℃から450℃まで7分で降温させることにより、Cu合金にCu−Sn−P系化合物を析出させた。この摺動材料を半円筒状に加工し、すべり軸受を作製した。   About Examples 1-17 and Comparative Examples 1-13 using the Cu alloy containing Bi which concerns on this embodiment, while measuring the average particle area of Bi grain | grains, the bearing fatigue test was done. Moreover, about Examples 1-17 and the comparative example 1, the bearing seizure test was done. Table 1 shows the compositions (mass%) of Examples 1 to 17 and Comparative Examples 1 to 13, the mass ratio of Bi and Sn (Bi / Sn), and the mass ratio of Bi and P (Bi / P). Examples 1-17 used the Cu alloy powder produced with the composition shown in Table 1 with the atomizing method, sprayed the powder on a strip steel, repeated sintering, and rolled, and produced the sliding material. Sintering was performed at a temperature of 830 ° C., and the Cu—Sn—P-based compound was precipitated on the Cu alloy by lowering the temperature from 830 ° C. to 450 ° C. in 7 minutes in the cooling step after sintering. This sliding material was processed into a semicylindrical shape to produce a sliding bearing.

Figure 0005377557
Figure 0005377557

比較例1は、特許文献2,3に記載されたCu合金であり、実施例の作製方法とは、焼結後の冷却工程にて830℃から450℃まで2分で降温させることにより、Cu合金にSn、Pを過飽和の状態で固溶させ、Cu−Sn−P系化合物が析出しないようにした点のみを異ならせた方法にて、表1に示す組成ですべり軸受を作製した。また、比較例2は、特許文献1に記載されたCu合金であり、実施例と同じ作製方法にて、表1に示す組成ですべり軸受を作製した。また、比較例3,4は、特許文献4,5に記載されたCu合金であり、メカニカルアロイング法にて表1に示す組成で作製したCu合金粉末を用い、その粉末を帯鋼上に散布し、焼結、圧延を繰返して摺動材料を作製した。なお、焼結工程において、比較例3は700℃、比較例4は830℃の温度条件で焼結を実施した。この摺動材料を半円筒状に加工し、すべり軸受を作製した。また、比較例5〜13は、実施例と同じ作製方法にて、表1に示す組成ですべり軸受を作製した。   Comparative Example 1 is a Cu alloy described in Patent Documents 2 and 3, and the manufacturing method of the example is that the temperature is lowered from 830 ° C. to 450 ° C. in 2 minutes in the cooling step after sintering. Sliding bearings having the compositions shown in Table 1 were prepared by a method in which Sn and P were dissolved in a supersaturated state in the alloy and only the point that the Cu-Sn-P compound was not precipitated was different. Comparative Example 2 is a Cu alloy described in Patent Document 1, and a plain bearing having a composition shown in Table 1 was manufactured by the same manufacturing method as that of the example. Further, Comparative Examples 3 and 4 are Cu alloys described in Patent Documents 4 and 5, and Cu alloy powders prepared by the mechanical alloying method with the composition shown in Table 1 are used. Scattering, sintering and rolling were repeated to produce a sliding material. In the sintering process, the comparative example 3 was sintered at a temperature of 700 ° C. and the comparative example 4 was sintered at a temperature of 830 ° C. This sliding material was processed into a semicylindrical shape to produce a sliding bearing. In Comparative Examples 5 to 13, sliding bearings having the compositions shown in Table 1 were produced by the same production method as in the Examples.

次に、作製されたすべり軸受について、電子顕微鏡を用いてCu合金層の厚さ方向に平行な方向の断面において、その厚さ方向の中央部付近の画像を200倍(観察視野:Cu合金層の厚さ方向の長さ200μm、Cu合金層の厚さ方向に垂直な方向の長さ300μmで画定される長方形の範囲)で撮影し、その画像を一般的な画像解析手法(解析ソフト:Image−Pro Plus(Version4.5);(株)プラネトロン製)を用いて、各Bi粒の面積を測定し、平均を算出している。この値をBi粒の平均粒子面積とし、その測定結果を表1に示す。また、実施例1〜17は、一般的なTEM分析を用いて、Cu合金層にCu−Sn−P系化合物が分散していることを確認した。   Next, with respect to the produced slide bearing, an image near the center in the thickness direction in a cross section in a direction parallel to the thickness direction of the Cu alloy layer using an electron microscope is 200 times (observation field: Cu alloy layer). The film was photographed with a length of 200 μm in the thickness direction and a rectangular range defined by a length of 300 μm in the direction perpendicular to the thickness direction of the Cu alloy layer, and the image was analyzed by a general image analysis method (analysis software: Image) -Pro Plus (Version 4.5); manufactured by Planetron Co., Ltd.) was used to measure the area of each Bi grain and calculate the average. This value was taken as the average particle area of Bi grains, and the measurement results are shown in Table 1. Moreover, Examples 1-17 confirmed that the Cu-Sn-P type compound was disperse | distributing to the Cu alloy layer using general TEM analysis.

軸受疲労試験の試験条件を表2に示す。実施例1〜17及び比較例1〜13は、軸受試験機にて表2に示す試験条件で軸受疲労試験を実施した。また、実施例1〜17及び比較例1は、軸受試験機にて表3に示す試験条件で軸受焼付試験を実施した。これらの試験結果を表1に示す。表1の耐疲労性欄には試料に疲労が起こらなかった限界の圧力を、耐焼付性欄には試料に焼付が起こらなかった限界の圧力を示す。   Table 2 shows the test conditions of the bearing fatigue test. In Examples 1 to 17 and Comparative Examples 1 to 13, a bearing fatigue test was performed under the test conditions shown in Table 2 using a bearing tester. Moreover, Examples 1-17 and the comparative example 1 implemented the bearing seizure test on the test conditions shown in Table 3 with a bearing tester. The test results are shown in Table 1. The limit pressure at which no fatigue occurred in the sample is shown in the fatigue resistance column of Table 1, and the limit pressure at which no seizure occurred in the sample is shown in the seizure resistance column.

Figure 0005377557
Figure 0005377557

Figure 0005377557
Figure 0005377557

実施例1〜17は、比較例1〜13と比較し、何れも良好な耐疲労性を有している。実施例1〜17では、BiとSnの質量比をBi/Sn=1.7〜3.4、BiとPの質量比をBi/P=500〜2100とすることで、段落[0015]で説明したように、焼結後の冷却工程にてCu合金粉末中のCu合金にCu−Sn−P系化合物を析出することが可能となる。これにより、Cu合金粉末中のCu合金と液相になったBiの熱収縮率の差が緩和され、Biの液相がCu合金粉末中に留まるため、Bi粒の粗大化を抑制し、Cu合金層の耐疲労性を高めることができる。   Examples 1-17 have favorable fatigue resistance compared with Comparative Examples 1-13. In Examples 1 to 17, the mass ratio of Bi and Sn is Bi / Sn = 1.7 to 3.4, and the mass ratio of Bi and P is Bi / P = 500 to 2100. As explained, it becomes possible to precipitate a Cu—Sn—P-based compound on the Cu alloy in the Cu alloy powder in the cooling step after sintering. As a result, the difference in thermal shrinkage between the Cu alloy in the Cu alloy powder and Bi in the liquid phase is alleviated, and the Bi liquid phase remains in the Cu alloy powder. The fatigue resistance of the alloy layer can be increased.

実施例1〜17は、比較例1と比較し、何れも良好な耐焼付性を有するが、実施例1〜17のうち実施例1,4,5,13〜17は、特に良好な耐焼付性を有している。実施例1,4,5,13〜17では、BiとSnの質量比をBi/Sn=2.1〜3.1とし、且つSnを6.8〜9質量%含有させることで、段落[0024]で説明したように、Cu合金にSnが過飽和の状態で固溶されることがなく、摺動環境下で軸受表面にSnの濃化層が形成され難くなる。また、Cu合金におけるCu−Sn化合物、Sn−P化合物の析出量も少ないため、Cu合金が硬化し難く、Cu合金層の耐焼付性を高めることができる。   Examples 1 to 17 all have good seizure resistance as compared to Comparative Example 1, but Examples 1, 4, 5, and 13 to 17 among Examples 1 to 17 have particularly good seizure resistance. It has sex. In Examples 1, 4, 5, 13 to 17, the mass ratio of Bi and Sn is Bi / Sn = 2.1 to 3.1, and Sn is contained in an amount of 6.8 to 9 mass%. [0024] As described in [0024], Sn is not solid-solved in the Cu alloy in a supersaturated state, and it is difficult to form a concentrated Sn layer on the bearing surface in a sliding environment. Moreover, since there are also few precipitation amounts of the Cu-Sn compound and Sn-P compound in Cu alloy, Cu alloy is hard to harden | cure and the seizure resistance of Cu alloy layer can be improved.

実施例16は、Cu合金にNi、Fe、Agを含有させ、実施例17は、Cu合金に無機化合物(この実施例ではMoC)を含有させているが、実施例1〜15と同じく、Bi粒の粗大化を抑制し、Cu合金層の耐疲労性を高めることができる。また、Cu合金が硬化し難く、Cu合金層の耐焼付性を高めることができる。 Example 16 contains Ni, Fe, and Ag in the Cu alloy, and Example 17 contains an inorganic compound (Mo 2 C in this example) in the Cu alloy, but is the same as in Examples 1-15. , Bi grain coarsening can be suppressed and the fatigue resistance of the Cu alloy layer can be increased. Moreover, Cu alloy is hard to be hardened and the seizure resistance of the Cu alloy layer can be improved.

比較例1は、実施例1と比較し、Bi粒の平均粒子面積が大きく、耐疲労性及び耐焼付性が劣った結果となっている。この比較例1では、Cu合金の組成が実施例1と同じであるが、冷却工程での冷却速度が実施例1より早く、Cu合金にSn、Pが過飽和の状態で固溶されるため、Cu−Sn−P系化合物を析出することがない。このため、Cu合金とBiの熱収縮率の差が緩和されることなく、BiがCu合金粉末同士の隙間に流れ出すことにより、Bi粒が粗大化し、耐疲労性が低下している。また、摺動環境下で軸受表面にSnの濃化層を形成することにより、その部分が硬化し、耐焼付性が低下している。   In Comparative Example 1, compared with Example 1, the average particle area of Bi grains is large, resulting in poor fatigue resistance and seizure resistance. In Comparative Example 1, the composition of the Cu alloy is the same as that of Example 1, but the cooling rate in the cooling step is faster than that of Example 1, and Sn and P are dissolved in a supersaturated state in the Cu alloy. Cu—Sn—P based compounds are not precipitated. For this reason, Bi flows out into the gap between the Cu alloy powders without mitigating the difference in thermal shrinkage between the Cu alloy and Bi, and thus the Bi grains are coarsened and fatigue resistance is reduced. Further, by forming a Sn concentrated layer on the bearing surface in a sliding environment, the portion is cured and seizure resistance is reduced.

比較例2は、実施例1と比較し、Bi粒の平均粒子面積が大きく、耐疲労性が劣った結果となっている。この比較例2では、Cu合金にPを含有しないため、Cu−Sn−P系化合物を析出することがなく、Cu−Sn化合物を析出する。このため、Cu合金とBiの熱収縮率の差が緩和されることなく、BiがCu合金粉末同士の隙間に流れ出すことにより、Bi粒が粗大化し、耐疲労性が低下している。   In Comparative Example 2, the average particle area of Bi grains is large and fatigue resistance is inferior compared with Example 1. In Comparative Example 2, since Cu is not contained in the Cu alloy, the Cu—Sn—P compound is not precipitated, and the Cu—Sn compound is precipitated. For this reason, Bi flows out into the gap between the Cu alloy powders without mitigating the difference in thermal shrinkage between the Cu alloy and Bi, and thus the Bi grains are coarsened and fatigue resistance is reduced.

比較例3は、実施例1と比較し、Bi粒の平均粒子面積が同程度に小さいが、耐疲労性が劣った結果となっている。これは、焼結温度が700℃と低く、Cu合金層と帯鋼との接着が十分でなかったためである。また、比較例4は、実施例1と比較し、Bi粒の平均粒子面積が大きく、耐疲労性が劣った結果となっている。これは、焼結温度が830℃と高く、Cu合金粉末同士の焼結が進み過ぎ、メカニカルアロイング粉末を使用したときのBi粒を微細化する効果が失われたためである。   In Comparative Example 3, compared with Example 1, the average particle area of the Bi grains is about the same, but the fatigue resistance is inferior. This is because the sintering temperature was as low as 700 ° C. and the adhesion between the Cu alloy layer and the steel strip was not sufficient. Moreover, compared with Example 1, the comparative example 4 has the result that the average particle | grain area of Bi grain was large and its fatigue resistance was inferior. This is because the sintering temperature is as high as 830 ° C., the sintering of Cu alloy powders proceeds too much, and the effect of refining Bi grains when mechanical alloying powder is used is lost.

比較例5は、実施例よりBiとSnの質量比(Bi/Sn)が大きい。すなわち、Biに対しSnの含有量が少なく、Cu−Sn−P系化合物の析出量が十分でないため、Bi粒の平均粒子面積が大きく、耐疲労性が低下している。また、比較例6は、実施例よりBiとSnの質量比(Bi/Sn)が小さい。すなわち、Biに対しSnの含有量が多く、焼結工程にてBiの液相がSnのみを固溶して飽和の状態となるため、Biの液相にPが拡散することが困難となり、Cu−Sn−P系化合物を析出することがない。その結果、Bi粒の平均粒子面積が大きく、耐疲労性が低下している。   In Comparative Example 5, the mass ratio (Bi / Sn) between Bi and Sn is larger than that of the example. That is, since the Sn content is small with respect to Bi and the precipitation amount of the Cu—Sn—P compound is not sufficient, the average particle area of Bi grains is large and fatigue resistance is reduced. In Comparative Example 6, the mass ratio (Bi / Sn) between Bi and Sn is smaller than that of the example. That is, the content of Sn is larger than Bi, and the liquid phase of Bi is in a saturated state by dissolving only Sn in the sintering process, so that it is difficult for P to diffuse into the liquid phase of Bi. Cu—Sn—P based compounds are not precipitated. As a result, the average grain area of the Bi grains is large and the fatigue resistance is reduced.

比較例7は、実施例よりBiとPの質量比(Bi/P)が小さい。すなわち、Biに対しPの含有量が多く、焼結工程でBiの液相にPが多く固溶され過ぎるため、冷却工程にてBiの液相で余剰となったPの一部が、鋼裏金と脆いFe−P化合物を形成する。その結果、Bi粒の平均粒子面積が小さいが、耐疲労性が低下している。また、比較例8は、実施例よりBiとPの質量比(Bi/P)が大きい。すなわち、Biに対しPの含有量が少なく、Cu−Sn−P系化合物の析出量が極めて少なくなるため、Bi粒の平均粒子面積が大きく、耐疲労性が低下している。   In Comparative Example 7, the mass ratio (Bi / P) of Bi and P is smaller than that of the example. That is, since the P content is large relative to Bi and a large amount of P is dissolved in the Bi liquid phase in the sintering process, a part of the P surplus in the Bi liquid phase in the cooling process is a part of the steel. A fragile Fe-P compound is formed with the backing metal. As a result, the average particle area of Bi grains is small, but the fatigue resistance is reduced. In Comparative Example 8, the mass ratio (Bi / P) of Bi and P is larger than that of the example. That is, since the P content is small relative to Bi and the precipitation amount of the Cu—Sn—P-based compound is extremely small, the average particle area of Bi grains is large and the fatigue resistance is low.

比較例9は、実施例よりBiの含有量が多い。Biは、Cu合金に対し強度が著しく低いため、Bi粒の平均粒子面積は小さいが、耐疲労性が低下している。   The comparative example 9 has more Bi content than an Example. Since Bi has a significantly lower strength than Cu alloys, the average particle area of Bi grains is small, but fatigue resistance is reduced.

比較例10は、実施例よりSnの含有量が多く、焼結工程にてCu−Snの液相が多く発生するため、Cu合金粉末の表面が一部流動し、Cu合金粉末からBiの液相が流れ出してしまう。その結果、Bi粒の平均粒子面積が大きく、耐疲労性が低下している。また、比較例11は、実施例よりSnの含有量が少なく、Cu合金に全てのSnが固溶されるため、Cu−Sn−P系化合物を析出することがない。その結果、Bi粒の平均粒子面積が大きく、耐疲労性が低下している。   In Comparative Example 10, the Sn content is higher than that of the Example, and a large amount of Cu-Sn liquid phase is generated in the sintering process. The phase flows out. As a result, the average grain area of the Bi grains is large and the fatigue resistance is reduced. In Comparative Example 11, the Sn content is lower than that in the Examples, and all Sn is dissolved in the Cu alloy, so that no Cu—Sn—P based compound is precipitated. As a result, the average grain area of the Bi grains is large and the fatigue resistance is reduced.

比較例12は、実施例よりPの含有量が多く、焼結工程にてBiの液相にPが多く固溶され過ぎるため、冷却工程にてBiの液相で余剰となったPが、Cu−Sn−P系化合物だけでなく、鋼裏金と脆いFe−P化合物を形成する。その結果、Bi粒の平均粒子面積は小さいが、耐疲労性が低下している。また、比較例13は、実施例よりPの含有量が少なく、Cu−Sn−P系化合物の析出量が十分でないため、Bi粒の平均粒子面積が大きく、耐疲労性が低下している。   In Comparative Example 12, the P content is higher than that in the Examples, and P is excessively dissolved in the Bi liquid phase in the sintering process. Not only Cu—Sn—P compounds but also steel backing metal and brittle Fe—P compounds are formed. As a result, the average grain area of Bi grains is small, but the fatigue resistance is lowered. Moreover, since the comparative example 13 has less P content than an Example and the precipitation amount of a Cu-Sn-P type compound is not enough, the average particle area of Bi grain | grains is large and fatigue resistance is falling.

本実施形態に係る銅系摺動材料は、内燃機関のすべり軸受や各種産業機械のすべり軸受材料に適用できる。また、本実施形態に係る銅系摺動材料は、Cu合金層上にオーバレイ層を形成させた多層軸受としても使用される。   The copper-based sliding material according to the present embodiment can be applied to a sliding bearing for an internal combustion engine and a sliding bearing material for various industrial machines. The copper-based sliding material according to the present embodiment is also used as a multilayer bearing in which an overlay layer is formed on a Cu alloy layer.

Claims (4)

鋼裏金層及びCu合金層からなる銅系摺動材料であって、前記Cu合金層はSnを6〜12質量%、Biを11〜30質量%、Pを0.01〜0.05質量%含有し、残部がCu及び不可避不純物からなる銅系摺動材料において、
前記Biは、前記Snとの質量比がBi/Sn=1.7〜3.4、前記Pとの質量比がBi/P=500〜2100であり、
前記Cu合金層には、Cu−Sn−P系化合物が分散することにより、前記Cu合金層の厚さ方向と平行な方向の断面に平均粒子面積が60〜350μmのBi粒が分散していることを特徴とする銅系摺動材料。
A copper-based sliding material comprising a steel back metal layer and a Cu alloy layer, wherein the Cu alloy layer has Sn of 6 to 12% by mass, Bi of 11 to 30% by mass, and P of 0.01 to 0.05% by mass. In the copper-based sliding material containing, the balance consisting of Cu and inevitable impurities,
The Bi has a mass ratio with the Sn of Bi / Sn = 1.7 to 3.4, and a mass ratio with the P of Bi / P = 500 to 2100,
In the Cu alloy layer, Cu—Sn—P-based compounds are dispersed, whereby Bi grains having an average particle area of 60 to 350 μm 2 are dispersed in a cross section parallel to the thickness direction of the Cu alloy layer. A copper-based sliding material characterized by having
前記Snは、前記Biとの質量比がBi/Sn=2.1〜3.1であり、且つ前記Cu合金層に6.8〜9質量%含有させることを特徴とする請求項1記載の銅系摺動材料。   The mass ratio of the Sn to the Bi is Bi / Sn = 2.1 to 3.1, and 6.8 to 9 mass% is contained in the Cu alloy layer. Copper-based sliding material. 前記Cu合金層は、さらにNi、Fe、Agからなる群の中から少なくとも1種以上を総量で0.1〜10質量%含有することを特徴とする請求項1又は請求項2記載の銅系摺動材料。   The copper system according to claim 1 or 2, wherein the Cu alloy layer further contains 0.1 to 10% by mass in a total amount of at least one selected from the group consisting of Ni, Fe, and Ag. Sliding material. 前記Cu合金層は、さらに平均粒径が1〜10μmの炭化物、窒化物、珪化物、酸化物のいずれかからなる無機化合物を0.1〜10質量%含有することを特徴とする請求項1乃至請求項3のいずれかに記載の銅系摺動材料。
The Cu alloy layer further contains 0.1 to 10% by mass of an inorganic compound composed of any one of carbide, nitride, silicide, and oxide having an average particle diameter of 1 to 10 μm. The copper-based sliding material according to claim 3.
JP2011074248A 2011-03-30 2011-03-30 Copper-based sliding material Active JP5377557B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011074248A JP5377557B2 (en) 2011-03-30 2011-03-30 Copper-based sliding material
DE102012204967.3A DE102012204967B4 (en) 2011-03-30 2012-03-28 Copper-based sliding material
GB1205639.6A GB2489601B (en) 2011-03-30 2012-03-29 Copper-based sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011074248A JP5377557B2 (en) 2011-03-30 2011-03-30 Copper-based sliding material

Publications (2)

Publication Number Publication Date
JP2012207277A JP2012207277A (en) 2012-10-25
JP5377557B2 true JP5377557B2 (en) 2013-12-25

Family

ID=46159986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011074248A Active JP5377557B2 (en) 2011-03-30 2011-03-30 Copper-based sliding material

Country Status (3)

Country Link
JP (1) JP5377557B2 (en)
DE (1) DE102012204967B4 (en)
GB (1) GB2489601B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403636B2 (en) * 2011-08-22 2014-01-29 大同メタル工業株式会社 Copper-based sliding material
DE102016208485A1 (en) * 2016-05-18 2017-11-23 Federal-Mogul Wiesbaden Gmbh Process for the production of sliding bearing composite materials, sliding bearing composite material and sliding element made of such sliding bearing composite materials
JP6752672B2 (en) 2016-09-30 2020-09-09 大同メタル工業株式会社 Sliding member and its manufacturing method
JP6752671B2 (en) * 2016-09-30 2020-09-09 大同メタル工業株式会社 Sliding materials, their manufacturing methods, and sliding members
JP6503393B2 (en) * 2017-03-08 2019-04-17 大同メタル工業株式会社 Sliding material, method of manufacturing the same, sliding member and bearing device
JP7111484B2 (en) * 2018-03-27 2022-08-02 大同メタル工業株式会社 sliding member

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918292B2 (en) 1990-05-25 1999-07-12 大豊工業株式会社 Sliding material
JP3195042B2 (en) 1992-03-19 2001-08-06 大豊工業株式会社 Manufacturing method of plain bearing alloy
JP3421724B2 (en) * 1999-09-13 2003-06-30 大同メタル工業株式会社 Copper-based sliding material
JP3939931B2 (en) * 2001-03-23 2007-07-04 大同メタル工業株式会社 Copper-based multi-layer sliding material
ATE407755T1 (en) * 2001-10-08 2008-09-15 Federal Mogul Corp LEAD-FREE BEARING
JP2003194061A (en) * 2001-12-27 2003-07-09 Daido Metal Co Ltd Copper-based sintered sliding material and its manufacturing method
CN101541989B (en) * 2006-08-05 2014-05-28 大丰工业株式会社 Lead-free copper alloy sliding material
US8679641B2 (en) * 2007-01-05 2014-03-25 David M. Saxton Wear resistant lead free alloy bushing and method of making
KR101265391B1 (en) * 2007-05-15 2013-05-20 다이호 고교 가부시키가이샤 Pb-FREE COPPER ALLOY SLIDING MATERIAL AND PLAIN BEARINGS
EP2322676A4 (en) * 2008-09-10 2012-06-13 Taiho Kogyo Co Ltd SLIDING COMPONENT CONSISTING OF Pb-FREE Cu-Bi TYPE SINTERED MATERIAL

Also Published As

Publication number Publication date
GB201205639D0 (en) 2012-05-16
DE102012204967B4 (en) 2017-08-24
JP2012207277A (en) 2012-10-25
GB2489601B (en) 2013-03-13
GB2489601A (en) 2012-10-03
DE102012204967A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5143827B2 (en) Method for producing Pb-free copper alloy sliding material
JP5377557B2 (en) Copper-based sliding material
JP5058276B2 (en) Copper-based sliding material
KR100814656B1 (en) Free copper alloy sliding material
JP5492089B2 (en) Pb-free Cu-Bi sintered material sliding parts
DE602005001976T2 (en) Lead-free bearing for fuel injection pump
JP3839740B2 (en) Sliding material
JP2001220630A (en) Copper series sliding material
US20130323524A1 (en) Sliding bearing composite material
WO2012147780A1 (en) Sliding material, alloy for bearing, and multilayer metal material for bearing
JP2733736B2 (en) Copper-lead alloy bearings
JP5403636B2 (en) Copper-based sliding material
JP5340355B2 (en) Copper-based sliding material
JP6752672B2 (en) Sliding member and its manufacturing method
JP6363931B2 (en) Copper alloy for slide bearing
JP5566394B2 (en) Bearing material
JP7376998B2 (en) Alloys for sliding parts, sliding parts, internal combustion engines, and automobiles
JP5073925B2 (en) Lead-free copper-based sliding material
JPH0569894B2 (en)
JP3531248B2 (en) Bearing and bearing material
JP7227099B2 (en) sliding member
JPH02122042A (en) Aluminum alloy for bearing excellent in seizure resistance
JPH02290940A (en) Bearing alloy
JP2003231931A (en) Slide bearing material and bearing parts

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

R150 Certificate of patent or registration of utility model

Ref document number: 5377557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250