JPH02290940A - Bearing alloy - Google Patents

Bearing alloy

Info

Publication number
JPH02290940A
JPH02290940A JP11011989A JP11011989A JPH02290940A JP H02290940 A JPH02290940 A JP H02290940A JP 11011989 A JP11011989 A JP 11011989A JP 11011989 A JP11011989 A JP 11011989A JP H02290940 A JPH02290940 A JP H02290940A
Authority
JP
Japan
Prior art keywords
alloy
powder
weight
alloy powder
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11011989A
Other languages
Japanese (ja)
Inventor
Masahiko Shioda
正彦 塩田
Masaji Arita
有田 正司
Katsuji Tanizaki
谷崎 勝二
Hiroe Okawa
広衛 大川
Takeshi Sakai
坂井 武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nissan Motor Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nissan Motor Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nissan Motor Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP11011989A priority Critical patent/JPH02290940A/en
Publication of JPH02290940A publication Critical patent/JPH02290940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the fatigue resistance and seizure resistance of the bearing alloy by extruding a billet formed by adding Pb-Sb alloy powder under prescribed conditions to Al alloy powder contg. lubricating components and hard components. CONSTITUTION:A billet constituted of mixed powder of an Al alloy and a Pb-Sb alloy is extruded to form the bearing alloy. The billet is formed by adding, by weight, 5 to 20% Pb-Sb alloy powder contg. 25 to 30% Sb to Al alloy powder. The above Al alloy includes lubricating components, hard components, reinforcing components and grain refining components; above all, the lubricating components and the hard components are included as essential components.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

(産業上の利用分野) 本発明は、自動車,工作機械等の各種機械装置の構成部
品として使用される軸受の素材ならびに摺動部材の素材
として好適に利用される軸受台金に関し、特に、銅系の
軸受材料に比べ軽量であってしかも耐焼付性,耐疲労性
に優れたアルミニウム系の軸受合金に関するものである
. (従来の技術) 従来、すべり軸受の素材として用いられる合金には、C
u−Pb系,バビット系等が使用目的などに応じて使用
されているが、近年、とくに内燃機関用の軸受台金とし
ては、耐熱#摩耗性,#腐食性,耐疲労性等の点で、使
用部位の厳しい要求特性を十分に満足できないという欠
点があった. これに対して、本発明者らは、特開昭63−19283
7号公報に開示されているように、AM−Pb−St系
のアトマイズ合金粉末と、単独のPb粉末とを混合して
成形したビレットを押出比10以上で押出成形すること
により、耐焼付性を著しく向上させるPbを多量に添加
できるため耐焼付性に優れていると共に合金強度が高く
て耐疲労性にも優れている軸受台金を開発した. この合金組織中では、もともとアルミニウム合金粉末中
に入っているPbは、均一微細に基地中に分散し、また
、単独添加のPb粒は,粗粒となって組織中に分散して
いる. そして,本発明者らは、さらに種々の実験研究を行った
結果、前述の合金系において著しく酎焼付性が向上する
のは、この単独添加したPbの粗大粒が主たる効果を発
揮していることによるものとの結論を得た.これは、ア
ルミニウム合金粉末から供給される摺動表面の微細なP
bは、焼付限界に近づくと消失する傾向にあるが,単独
添加の粗大なPb粒は表面が消失して摺動面内部から新
たなPbとして供給が可能であるためと考えられる. (発明が解決しようとする課題) しかしながら,この合金系において、単独粉末として添
加●混合するPb粉末の量が多くなると、押出のための
加熱時にPbの液相が粉末粒子間にしみ出して押出性を
低下させると共に、Pb粉末同士が結びついてPb粒が
粗大になるため好ましくなく、単独粉末としてのPb粉
末の添加量は12重量%以下としていた. また、すべり軸受の素材に粉末の押出成形材を用いる場
合,後の圧延工程の回数や変形量を考えると押出成形材
の厚さは2mm以下であることが望ましい.しかし、こ
の合金系から厚さ2mm以下の押出材を作製する場合に
は、単独粉末としてのPb粉末の添加量が12重量%以
下であっても押出材の割れやPbの溶け出しなどの欠陥
が発生することがあり,Pbは押出性を低下させるとい
う課題を有していた. (発明の目的) 本発明は,上記従来の課題に鑑みてなされたもので、ア
ルミニウム合金粉末に単独添加することによって分散す
るPb粒をPb−Sb合金とすることにより、押出性が
著しく良好であると共に耐疲労性および耐焼付性に優れ
たアルミニウム系の軸受台金を提供することを目的とし
ている.
(Field of Industrial Application) The present invention relates to a bearing base metal that is suitably used as a material for bearings and a material for sliding members used as components of various mechanical devices such as automobiles and machine tools. This relates to an aluminum-based bearing alloy that is lighter than other bearing materials and has superior seizure resistance and fatigue resistance. (Prior art) Conventionally, alloys used as materials for sliding bearings contain C.
U-Pb series, Babbitt series, etc. are used depending on the purpose of use, etc., but in recent years, especially as bearing base metals for internal combustion engines, they have been used in terms of heat resistance, wear resistance, corrosion resistance, fatigue resistance, etc. However, it had the disadvantage that it could not fully satisfy the strict requirements of the parts in which it was used. In contrast, the present inventors have
As disclosed in Publication No. 7, seizure resistance is improved by extruding a billet formed by mixing AM-Pb-St based atomized alloy powder and individual Pb powder at an extrusion ratio of 10 or more. We have developed a bearing base metal that has excellent seizure resistance due to the addition of a large amount of Pb, which significantly improves the corrosion resistance, and has high alloy strength and excellent fatigue resistance. In this alloy structure, the Pb originally contained in the aluminum alloy powder is uniformly and finely dispersed in the matrix, and the Pb grains added alone are dispersed in the structure as coarse particles. As a result of further various experimental studies, the present inventors found that the reason why the scorching property of the above-mentioned alloy system is significantly improved is due to the main effect of the coarse grains of Pb added alone. The conclusion was that this was due to the This is due to the fine P on the sliding surface supplied from aluminum alloy powder.
b tends to disappear when approaching the seizure limit, but this is thought to be because the surface of coarse Pb particles added alone disappears and it is possible to supply new Pb from inside the sliding surface. (Problem to be solved by the invention) However, in this alloy system, if the amount of Pb powder added/mixed as a single powder increases, the liquid phase of Pb will seep between the powder particles during heating for extrusion, resulting in extrusion. This is undesirable because it lowers the properties and the Pb particles become coarse due to the Pb powders bonding together, so the amount of Pb powder added as a single powder was limited to 12% by weight or less. Furthermore, when extruded powder material is used as the raw material for a sliding bearing, it is desirable that the thickness of the extruded material be 2 mm or less, considering the number of subsequent rolling steps and the amount of deformation. However, when producing an extruded material with a thickness of 2 mm or less from this alloy system, defects such as cracks in the extruded material and melting of Pb may occur even if the amount of Pb powder added as a single powder is 12% by weight or less. Pb has the problem of reducing extrudability. (Object of the Invention) The present invention has been made in view of the above-mentioned conventional problems, and by making the Pb grains dispersed by adding them alone to aluminum alloy powder into a Pb-Sb alloy, extrudability is significantly improved. The purpose of this project is to provide an aluminum bearing base metal with excellent fatigue resistance and seizure resistance.

【発明の構成】[Structure of the invention]

(課題を解決するための手段) 本発明に係る耐疲労性および耐焼付性に優れたアルミニ
ウム系の軸受台金は、An中に潤滑成分と硬質成分と強
化成分と結晶粒微細化成分のうち少なくとも潤滑成分と
硬質成分を含むアルミニウム合金粉末に、Sb:25〜
50重量%を含むPb−Sb合金粉末を5〜20重量%
の割合で添加●混合した粉末から成形したビレットを押
出成形して成る構成としたことを特徴としており、この
ような耐疲労性および耐焼付性に優れたアルミニウム系
の軸受台金の構成を上述した従来の課題を解決するため
の手段としている. 本発明に係るアルミニウム系の軸受台金は、AJl中に
潤滑成分と硬質成分と強化成分と結晶粒微細化成分のう
ち少なくとも潤滑成分と硬質成分を含むアルミニウム合
金粉末を用いているが、このアルミニウム合金粉末とし
ては、Anを主成分とし、潤滑成分としてPb:3〜1
5重量%,Sn:5重量%以下のうちから選ばれる1種
または2種,硬質成分としてSill〜12重量%,必
要に応じて強化成分としてCu,Cr,Mg,Mn,N
i,Zn,Fel)うちから選ばれる1種または2種以
実の元素=0.2〜5重量%、同じく必要に応じて結晶
粒微細化成分としてTi,B,Zr,V,Ga,REM
c7)うちから選ばれる1種または2種以上の元素:0
.01− 3重量%を含んだものを用いることも望まし
い.そして、本発明に係る耐疲労性および耐焼付性に優
れたアルミニウム系の軸受台金は、上記のアルミニウム
合金粉末に.Sb:25〜50重量%を含むPb−Sb
合金粉末を5〜20重量%の割合で添加・混合した粉末
から成形したビレットをより望ましくは押出比40以上
で押出成形して成るものである. 次に、本発明によるアルミニウム系の軸受台金に用いる
アルミニウム合金粉末およびPb−Sb合金粉末につい
てさらに詳しく説明する.(1)アルミニウム合金粉末 ■潤滑成分 潤滑成分としてはPb,Snが有効であり、Pb,Sn
のうちから選ばれる1種または2種を添加することによ
って,低摩擦性,#摩耗性に効果がある.また、単独添
加のPb合金と比べれば主たる効果ではないが、耐焼付
性の向上にも効果がある. この酎焼付性の向上の点ではSnよりもPbの方が優れ
ている.しかし,Pbの量が3重量%未満の場合は耐焼
付性および異物理収性が劣る傾向となり、また、15重
量%を超えるとマトリックスの疲労強度不足となる傾向
となり、耐荷重性の点で軸受性能を満足しがたくなる.
また、12重量%を超えると実用的な溶湯温度域から得
られるアトマイズ合金粉末中のPb相が粗大化,偏析を
生じやすくなるため、より望ましくは12重量%以下と
するのがよい. また、SnもPbと同様に潤滑成分として有効であり、
Pbの耐腐食性を改善する効果もある.しかし、Snが
5重量%を超えるとマトリックスの疲労強度不足となり
、押出時には液相となって溶け出し、押出欠陥を発生さ
せやすくなるため、添加するとしても5重量%以下とす
るのがよい. ■硬質成分 硬質成分としてはStを添加するのが有効である.この
Siは共晶Siまたは初晶SiとしてAnマトリックス
中に分散し、硬質物質として軸受強度の向上および#摩
耗性の向上に寄与するが、Stの量が1重量%未満では
添加した効果が少なく、12重量%を超えるともろくな
り、加工性を阻害する傾向となるので、1〜12重量%
の範囲とするのがよい. また、押出成形後にAnマトリックス中に分散したSt
粒子径については、121Lmを超えると相手材を傷つ
けやすくなり、分散の面密度が低下し、耐摩耗性が劣化
するので、12JLtq以下とするのがよい. なお、特開昭62−130253号公報に開示されたア
ルミニウム系の軸受台金の第2の製造法のように、Si
粒子径が6〜12pmであるAn−8〜30重量%Si
アトマイズ合金粉末の形でStを添加しても問題はない
. ■強化成分 強化成分としては、C u , C r , M g 
, M n ,Ni,Zn,Feなどが有効であり、こ
れらの元素のうちから選ばれる1種または2種以上を必
要に応じて添加することによってAnマトリックスの強
度を高めるのに有効である.これらのうち、Cuはクリ
ープ強度すなわち高温軟化抵抗を高めるのに有効な元素
であり、高温摺動下における耐疲労性の向上に寄与する
.しかし、0.2重量%未満では上記した効果が少なく
,5重量%を超えると針状のC u A l 2化合物
が多量に析出して脆くなり、耐疲労性の低下を招く傾向
となる.また、Cu以外にAnマトリックスの強度を高
める元素として、Cr,Mg,Mn,Ni ,Zn,F
eがあり,これらはアルミニウム合金展伸材の添加元素
としてよく利用されるものであって、Cuを含むこれら
の元素のうちから選ばれる1種または2種以上を0.2
〜5重量%の範囲で添加しても良い. ■結晶粒微細化成分 結晶粒微細化成分としては、Ti,B,Zr,V,Ga
,REM(Y,Scを含む希土類元素のうちから選ばれ
る1種または2種以上)などが有効であり、これらの1
種または2種以上を必要に応じて添加することによって
アルミニウム合金の結晶粒を微細化させるのに有効であ
り、アルミニウム合金粉末中の潤滑成分(Pb,Sn)
の均一微細化を助長するものとして必要に応じてこれら
のうちから選ばれる1種または2種以上を合計で0.0
1〜3重量%の範囲で添加することも良い. (2)Pb−Sb合金粉末 前記アルミニウム合金粉末に対する混合粉末として添加
されるPb−Sb合金は,主に、耐焼付性,なじみ性,
異物理収性の向上に効果を発揮する.そして、アルミニ
ウム合金中に含まれるPb系合金相は、アルミニウム合
金粉末がアトマイズ法によって通常製造ざれているため
、急冷凝固されてその粒径は2〜3gm以下となってい
る. 一方、添加や混合されるPb−Sb合金粉末が上記効果
を発揮するためには、平均粒径で5〜50pmの範囲の
粒子が望ましい.すなわち、5gmよりも小さいと摩耗
粉等の異物が摺動面に混入したときにそれらの埋収性が
悪くなり、かじりが発生し易い傾向となる.また、焼付
限界近くになり、表面からPbが消失し出したときに内
部からPbが供給されて焼付きを防止するという鉛溜め
効果もなくなり、焼付きが発生しやすくなる.一方、平
均粒子径が50pmよりも大きくなると、軸受台金の強
度が低下し,疲労剥離やクラック等が発生し易くなる. すでに述べたように、単独添加する従来のPb粉末は、
種々の効果を発揮するが、押出性を低下させるという課
題があった.そこで本発明において添加することとした
Pb−Sb合金粉末は、単独添加するPb粉末の効果を
失うことなく押出性を向上させようとするものである. すなわち、融点が327℃である単独Pb粉末は押出時
の加熱において全て液相になっているため押出欠陥発生
の原因になりやすいが、本発明においてはPbにSbを
25〜50重量%の範囲で添加したPb−Sb合金粉末
を用いることにより、押出時の液相の発生を抑制するこ
とを可能としている. また、Pb−Sb合金粉末を用いることによって,添加
粉末の分散状態は従来よりも均一になるため、疲労強度
の向上も効果として加わる. しかし、Pb−Sb合金中のSbが25重量%未満では
単独Pb粉末の融点と同程度ないしはそれ以下の温度で
液相域に入ってしまい、50重量%超過では単独Pb粉
末より焼付防止効果が少なくなるので好ましくない. そして,このPb−Sb合金粉末のアルミニウム合金粉
末に対する添加量は5〜20重量%とするのが良い.す
なわち、5重量%未満であると耐焼付性向上の効果はあ
まりなく、20重量%を超えるとこの合金粉末を添加し
た場合でも摩擦などによる局所的な温度上昇により発生
した液相が粉末粒子間にしみ出して押出欠陥になるので
好ましくなく、また、Pb−Sb合金粉末回士が結びつ
いて著しく粗大になるため好ましくない. 次に、本発明に係る耐疲労性および耐焼付性に優れたア
ルミニウム系の軸受台金の製造方法の一例を説明する. まず,前記アルミニウム合金粉末とPb−Sb合金粉末
とをV型ブレンダー等の混合機を用いて十分に混合し、
均一にしたうえで等方圧プレス、油圧プレス等を用いて
ビレットに成形する.次に、このビレットを350〜4
50℃程度に予熱し、より望ましくは押出比40以上で
押出す.この場合,押出比がこの範囲からはずれると内
部クラックおよび押出後の軸受素材の表面割れ.うねり
,破断等の不具合が生じることがある.そして、裏金付
の軸受材でない場合は、このあと機械加工にて所定の寸
法に加工して使用する. 他方lj金付の軸受材として使用する場合には、1〜1
0mm厚さの板材として押出し、圧延,アニールを繰返
しながら、例えばC含有量が0.1重量%前後の軟鋼板
にクラッドして、プッシュ半割メタル用等に加工する. (発明の作用) 本発明に係るアルミニウム系の軸受台金は、上記した構
成を有するものであるから、PbにSbを25〜50重
量%の範囲で添加したPb−Sb合金粉末を用いること
により、押出時の液相の発生が抑制されることとなり、
従来の単独添加するPbの効果を失うことなく押出性が
向上されるようになり、押出材の割れやPbの溶け出し
などの欠陥の発生が防止されるようになるという作用が
もたらされる. (実施例) 第1表のNo.  1〜12の各欄に示す化学組成のア
ルミニウム合金粉末を約1100℃のアルミニウム合金
溶湯から粉化するエアーアトマイズ法により得た.また
、同様に第1表のNo.7.8,9,11.12の各欄
に示すPb粉末およびNo.1〜6.10の各欄に示す
化学組成のPb−Sb合金粉末を500〜850℃の溶
湯より粉化するエアーアトマイズ法により得た. そして、前記アルミニウム合金粉末に平均粒径30gm
のPbまたはPb−Sb合金粉末を同じく第1表の単独
添加するPbまたはPb合金粉末の添加量の欄に示す割
合で添加してVブレンダーにより混合し、それぞれの混
合粉末を直径170mmの円柱形状に2.Otonf/
cm2の静水圧にて冷間静水圧成形してビレットとし、
これらのビレットを純アルミニウム板で全面被覆しなが
ら400゜Cにおいて押出加工し、No.1 〜6,8
,10.11については厚さ2mm,幅110mm,N
o.7.9.12については厚さ3mm,幅110mm
の板状押出成形体を得た.押出後の各押出材の状態を同
じく第1表に示す. 第1表に示す結果より明らかなように、No.2.5,
toの本発明合金,およびNo. 3 . 4の比較合
金では厚さ2mmであっても健全な押出材が得られた. 一方、Pb−Sb合金粉末中のSb添加量が本発明合金
より少ないNo.  1の比較合金,およびPb−Sb
合金粉末量が本発明合金より多いNo.6の比較合金で
はいずれもPb−Sb合金の溶け出しが生じた. また、Pb単独粉末を添加・混合した比較合金のうち、
厚さ2mmの押出材No. 8 . 1 1では耳割れ
や溶け出しが生じた.そして、厚さ3mmの押出材にす
ると単独Pb粉末添加量が5重量%のNo.l2、8重
量%のNO.9については健全な押出材が得られたが、
16重量%のNO.7の押出材にはPbの溶け出しが生
じた. 摩擦摩耗試験 健全な押出材が得られた本発明合金No.2.5,10
と比較合金No.3.4,9.12の各押出材を数回圧
延し,350℃で5時間のア二一ル処理を行った後切出
し、表面研磨を行って供試材を作製し、第2表に示す条
件で摩擦摩耗試験を実施した.この結果を第3表に示す
. 第2表:摩擦摩耗試験条件 第3表:摩擦摩耗試験結果 第3表に示すように、本発明合金No. 2 . 5 
.10はPbを単独粉末として添加した比較合金No.
9.12と同等あるいはそれ以上の耐焼付性を示してい
る.一方、Pb−Sb合金粉末中のS′b量が本発明合
金より多いNo. 3の比較合金、およびPb−Sb合
金粉末量が本発明合金より少ないNo. 4の比較合金
はいずれも本発明合金よりも耐焼付性が劣っていること
がわかる。 疲労試験 健全な押出材および圧延材が得られた本発明合金No.
2.5,10と比較合金No.3.4,9.12の各圧
延品について、1.7mm厚さでC含有量が0.10重
量%の鋼板とロール圧延(圧下率48%)を行い、その
後350゜C×10時間のアニール処理を行ったのち機
械加工を加えて軸受を試作した.そして、各々の試作軸
受に対して第4表に示す条件で疲労試験を行った.この
結果を第5表に示す. 第4表:疲労試験条件 第5表二疲労試験結果 本発明に係るアルミニウム系の軸受合金は、A文中に潤
滑成分と硬質成分と強化成分と結晶粒微細化成分のうち
少なくとも潤滑成分と硬質成分を含むアルミニウム合金
粉末に、Sb:25〜50重量%を含むPb−Sb合金
粉末を5〜20重量%の割合で添加φ混合した粉末から
成形したビレットを押出成形して成るものであるから、
押出時の液相の発生が抑制されることとなると共に、従
来の単独添加するPbの作用を失うことがないので、押
出性が著しく良好なものとなり、しかも耐疲労性および
酎焼付性に優れた軸受合金であるという非常に優れた効
果がもたらされる. 第5表に示すように、単独添加粉末としてPb−Sb合
金粉末を添加した本発明合金No. 2 .5,10は
単独粉末としてPb合金粉末を添加した比較合金No.
9.12よりも高い疲労強度を有することが確かめられ
た.
(Means for Solving the Problems) The aluminum-based bearing base metal having excellent fatigue resistance and seizure resistance according to the present invention has a lubricating component, a hard component, a reinforcing component, and a grain refining component in An. Aluminum alloy powder containing at least a lubricating component and a hard component, Sb: 25~
5-20% by weight of Pb-Sb alloy powder containing 50% by weight
The structure of the aluminum bearing base metal, which has excellent fatigue resistance and seizure resistance, is described above. This is a means to solve the conventional problems. The aluminum-based bearing base metal according to the present invention uses aluminum alloy powder containing at least a lubricating component and a hard component among a lubricating component, a hard component, a reinforcing component, and a grain refining component in AJI. The alloy powder contains An as a main component and Pb as a lubricating component: 3 to 1.
5% by weight, Sn: one or two selected from 5% by weight or less, Sill to 12% by weight as a hard component, Cu, Cr, Mg, Mn, N as a reinforcing component if necessary
i, Zn, Fel) = 0.2 to 5% by weight, Ti, B, Zr, V, Ga, REM as grain refining components if necessary
c7) One or more elements selected from among: 0
.. It is also desirable to use one containing 01-3% by weight. The aluminum-based bearing base metal with excellent fatigue resistance and seizure resistance according to the present invention is produced by using the above-mentioned aluminum alloy powder. Sb: Pb-Sb containing 25-50% by weight
It is formed by extruding a billet formed from a powder to which 5 to 20% by weight of alloy powder is added and mixed, preferably at an extrusion ratio of 40 or more. Next, the aluminum alloy powder and Pb-Sb alloy powder used in the aluminum-based bearing base metal according to the present invention will be explained in more detail. (1) Aluminum alloy powder ■ Lubricating component Pb and Sn are effective as lubricating components;
By adding one or two selected from among these, it is effective for low friction and wear resistance. It is also effective in improving seizure resistance, although this is not a major effect compared to Pb alloys in which Pb is added alone. Pb is superior to Sn in terms of improving the scorching properties. However, if the amount of Pb is less than 3% by weight, seizure resistance and different physical properties tend to be inferior, and if it exceeds 15% by weight, the fatigue strength of the matrix tends to be insufficient, resulting in poor load resistance. Bearing performance becomes difficult to satisfy.
Moreover, if it exceeds 12% by weight, the Pb phase in the atomized alloy powder obtained from a practical molten metal temperature range tends to become coarse and segregated, so it is more preferably 12% by weight or less. In addition, Sn is also effective as a lubricating component like Pb,
It also has the effect of improving the corrosion resistance of Pb. However, if Sn exceeds 5% by weight, the fatigue strength of the matrix will be insufficient, and it will melt into a liquid phase during extrusion, making extrusion defects more likely to occur. ■Hard component It is effective to add St as a hard component. This Si is dispersed in the An matrix as eutectic Si or primary Si, and as a hard substance it contributes to improving bearing strength and wear resistance, but if the amount of St is less than 1% by weight, the effect of adding it is small. If it exceeds 12% by weight, it becomes brittle and tends to impede workability, so 1 to 12% by weight.
It is best to set it within the range of . In addition, St dispersed in the An matrix after extrusion molding
Regarding the particle size, if it exceeds 121 Lm, it will easily damage the mating material, the areal density of the dispersion will decrease, and the wear resistance will deteriorate, so it is recommended that the particle size be 12 JLtq or less. In addition, as in the second manufacturing method of an aluminum bearing base metal disclosed in Japanese Patent Application Laid-Open No. 62-130253, Si
An-8 to 30 wt% Si with a particle size of 6 to 12 pm
There is no problem in adding St in the form of atomized alloy powder. ■Reinforcing components Reinforcing components include Cu, Cr, Mg
, M n , Ni, Zn, Fe, etc. are effective, and adding one or more selected from these elements as necessary is effective in increasing the strength of the An matrix. Among these, Cu is an effective element for increasing creep strength, that is, high temperature softening resistance, and contributes to improving fatigue resistance under high temperature sliding conditions. However, if it is less than 0.2% by weight, the above-mentioned effects will be small, and if it exceeds 5% by weight, a large amount of acicular Cu Al 2 compounds will precipitate, resulting in brittleness and a tendency to reduce fatigue resistance. In addition to Cu, other elements that increase the strength of the An matrix include Cr, Mg, Mn, Ni, Zn, and F.
These are often used as additive elements for aluminum alloy wrought materials, and one or more selected from these elements including Cu are added to 0.2
It may be added in a range of 5% by weight. ■Grain-refining components Crystal grain-refining components include Ti, B, Zr, V, and Ga.
, REM (one or more selected from rare earth elements including Y and Sc) are effective, and these one
It is effective for refining the crystal grains of aluminum alloy by adding one or more seeds as necessary, and it is a lubricating component (Pb, Sn) in aluminum alloy powder.
If necessary, one or more selected from these may be added to a total of 0.00% to promote uniform miniaturization.
It may also be added in a range of 1 to 3% by weight. (2) Pb-Sb alloy powder The Pb-Sb alloy added as a mixed powder to the aluminum alloy powder is mainly used for seizure resistance, conformability,
Effective in improving different physical properties. The Pb-based alloy phase contained in the aluminum alloy is rapidly solidified and has a particle size of 2 to 3 gm or less, since the aluminum alloy powder is usually produced by the atomization method. On the other hand, in order for the Pb-Sb alloy powder to be added or mixed to exhibit the above effects, it is desirable that the particles have an average particle size in the range of 5 to 50 pm. In other words, if it is smaller than 5 gm, when foreign substances such as wear particles get mixed into the sliding surface, the embedding property thereof becomes poor, and galling tends to occur easily. Furthermore, when the seizure limit is approached and Pb begins to disappear from the surface, the lead reservoir effect of supplying Pb from inside to prevent seizure is lost, and seizure is more likely to occur. On the other hand, when the average particle size is larger than 50 pm, the strength of the bearing base metal decreases, and fatigue peeling and cracks are more likely to occur. As already mentioned, the conventional Pb powder added alone is
Although it exhibits various effects, it has the problem of reducing extrudability. Therefore, the Pb-Sb alloy powder added in the present invention is intended to improve extrudability without losing the effect of the Pb powder added alone. In other words, single Pb powder with a melting point of 327°C becomes a liquid phase during heating during extrusion, which tends to cause extrusion defects, but in the present invention, Pb and Sb are added in a range of 25 to 50% by weight. By using the Pb-Sb alloy powder added in step 1, it is possible to suppress the generation of liquid phase during extrusion. Furthermore, by using Pb-Sb alloy powder, the dispersion state of the added powder becomes more uniform than before, which also adds to the effect of improving fatigue strength. However, if Sb in the Pb-Sb alloy is less than 25% by weight, it will enter the liquid phase region at a temperature similar to or lower than the melting point of Pb powder alone, and if it exceeds 50% by weight, it will have less anti-seizure effect than Pb powder alone. This is not preferable because it reduces the amount. The amount of this Pb-Sb alloy powder added to the aluminum alloy powder is preferably 5 to 20% by weight. In other words, if it is less than 5% by weight, it will not have much of an effect on improving seizure resistance, and if it exceeds 20% by weight, even if this alloy powder is added, the liquid phase generated due to local temperature rise due to friction etc. will form between the powder particles. This is undesirable because it oozes out and causes extrusion defects, and it is also undesirable because the Pb-Sb alloy powder particles are combined and become extremely coarse. Next, an example of a method for manufacturing an aluminum bearing base metal having excellent fatigue resistance and seizure resistance according to the present invention will be explained. First, the aluminum alloy powder and Pb-Sb alloy powder are thoroughly mixed using a mixer such as a V-type blender,
After making it uniform, it is formed into a billet using an isostatic press, hydraulic press, etc. Next, this billet is 350~4
Preheat to about 50°C and extrude, preferably at an extrusion ratio of 40 or higher. In this case, if the extrusion ratio deviates from this range, internal cracks and surface cracks of the bearing material after extrusion will occur. Problems such as waviness and breakage may occur. If the bearing material does not have a backing metal, it is then machined to the specified dimensions. On the other hand, when used as a bearing material with lj metal, 1 to 1
While repeating extrusion, rolling, and annealing as a plate material with a thickness of 0 mm, it is clad with a mild steel plate with a C content of about 0.1% by weight, and processed into push-half metal parts. (Function of the Invention) Since the aluminum-based bearing base metal according to the present invention has the above-described structure, by using a Pb-Sb alloy powder in which Sb is added to Pb in a range of 25 to 50% by weight. , the generation of liquid phase during extrusion is suppressed,
Extrudability is improved without losing the effect of conventional Pb added alone, and the effects of preventing defects such as cracking of the extruded material and melting of Pb are brought about. (Example) No. 1 in Table 1. Aluminum alloy powders having the chemical compositions shown in columns 1 to 12 were obtained by an air atomization method in which molten aluminum alloy at about 1100°C was pulverized. Similarly, No. 1 in Table 1. Pb powder shown in each column of 7.8, 9, 11.12 and No. Pb-Sb alloy powders having the chemical compositions shown in columns 1 to 6.10 were obtained by an air atomization method in which molten metal at 500 to 850°C was powdered. Then, the aluminum alloy powder has an average particle size of 30 g.
Pb or Pb-Sb alloy powders were added in the proportions shown in the column of added amount of individually added Pb or Pb alloy powder in Table 1 and mixed in a V-blender, and each mixed powder was made into a columnar shape with a diameter of 170 mm. 2. Otonf/
Cold isostatically formed into a billet at cm2 of hydrostatic pressure,
These billets were extruded at 400°C while being entirely covered with a pure aluminum plate, and No. 1 ~6,8
, 10.11, thickness 2mm, width 110mm, N
o. For 7.9.12, the thickness is 3mm and the width is 110mm.
A plate-shaped extruded product was obtained. The state of each extruded material after extrusion is also shown in Table 1. As is clear from the results shown in Table 1, No. 2.5,
No. to of the present invention alloy, and No. 3. In comparison alloy No. 4, a sound extruded material was obtained even at a thickness of 2 mm. On the other hand, No. 2 has a smaller amount of Sb added in the Pb-Sb alloy powder than the alloy of the present invention. 1 comparative alloy, and Pb-Sb
No. 1 with a larger amount of alloy powder than the alloy of the present invention. In all comparative alloys No. 6, melting of the Pb-Sb alloy occurred. In addition, among the comparative alloys in which Pb single powder was added and mixed,
Extruded material No. 2 mm thick. 8. In 11, ear cracking and melting occurred. When making an extruded material with a thickness of 3 mm, No. 1 with a Pb powder addition amount of 5% by weight. l2, 8% by weight NO. Regarding No. 9, a sound extruded material was obtained, but
16% by weight NO. Pb dissolved out in the extruded material No. 7. Friction and abrasion test Inventive alloy No. 1 obtained a sound extruded material. 2.5,10
and comparative alloy No. Each of the extruded materials in 3.4 and 9.12 was rolled several times, annealed at 350°C for 5 hours, cut out, and surface polished to produce test materials. Friction and wear tests were conducted under the conditions shown. The results are shown in Table 3. Table 2: Friction and wear test conditions Table 3: Friction and wear test results As shown in Table 3, the present invention alloy No. 2. 5
.. Comparative alloy No. 10 is a comparative alloy in which Pb is added as a single powder.
It shows seizure resistance equal to or better than 9.12. On the other hand, No. 2 has a higher amount of S'b in the Pb-Sb alloy powder than the alloy of the present invention. Comparative alloy No. 3, and No. 3 with a smaller amount of Pb-Sb alloy powder than the invention alloy. It can be seen that all comparative alloys No. 4 have inferior seizure resistance than the invention alloy. Inventive alloy No. 1 obtained extruded and rolled materials with good fatigue test results.
2.5, 10 and comparative alloy No. For each of the rolled products in 3.4 and 9.12, roll rolling (reduction rate of 48%) was performed with a steel plate having a thickness of 1.7 mm and a C content of 0.10% by weight, and then rolled at 350°C for 10 hours. After annealing, we added machining to create a prototype bearing. A fatigue test was then conducted on each prototype bearing under the conditions shown in Table 4. The results are shown in Table 5. Table 4: Fatigue test conditions Table 5 Table 2 Fatigue test results The aluminum-based bearing alloy according to the present invention has at least a lubricant component and a hard component among the lubricant component, hard component, reinforcing component, and grain refinement component in text A. Pb-Sb alloy powder containing Sb: 25-50% by weight is added to aluminum alloy powder containing φ at a ratio of 5-20% by weight, and a billet is formed by extrusion molding.
The generation of a liquid phase during extrusion is suppressed, and the effect of Pb, which is added alone in the past, is not lost, so extrudability is extremely good, and it also has excellent fatigue resistance and scorching properties. This is a bearing alloy with excellent properties. As shown in Table 5, alloy No. 1 of the present invention in which Pb-Sb alloy powder was added as the sole additive powder. 2. 5 and 10 are comparative alloy Nos. 5 and 10 in which Pb alloy powder was added as a single powder.
It was confirmed that the fatigue strength was higher than that of 9.12.

【発明の効果】【Effect of the invention】

特許出願人  日産自動車株式会社 特許出願人  工ヌデーシー株式会社 Patent applicant: Nissan Motor Co., Ltd. Patent applicant KonuDC Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)Al中に潤滑成分と硬質成分と強化成分と結晶粒
微細化成分のうち少なくとも潤滑成分と硬質成分を含む
アルミニウム合金粉末に、Sb:25〜50重量%を含
むPb−Sb合金粉末を5〜20重量%の割合で添加・
混合した粉末から成形したビレットを押出成形して成る
ことを特徴とする耐疲労性および耐焼付性に優れたアル
ミニウム系の軸受合金。
(1) Pb-Sb alloy powder containing Sb: 25 to 50% by weight is added to aluminum alloy powder containing at least a lubricating component, a hard component, a reinforcing component, and a grain refining component in Al. Added at a rate of 5 to 20% by weight.
An aluminum bearing alloy with excellent fatigue resistance and seizure resistance, which is made by extruding a billet formed from mixed powder.
JP11011989A 1989-04-28 1989-04-28 Bearing alloy Pending JPH02290940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11011989A JPH02290940A (en) 1989-04-28 1989-04-28 Bearing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11011989A JPH02290940A (en) 1989-04-28 1989-04-28 Bearing alloy

Publications (1)

Publication Number Publication Date
JPH02290940A true JPH02290940A (en) 1990-11-30

Family

ID=14527518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11011989A Pending JPH02290940A (en) 1989-04-28 1989-04-28 Bearing alloy

Country Status (1)

Country Link
JP (1) JPH02290940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108286001A (en) * 2018-02-06 2018-07-17 珠海市润星泰电器有限公司 Tough aluminium alloy of a kind of semisolid pressure casting height and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108286001A (en) * 2018-02-06 2018-07-17 珠海市润星泰电器有限公司 Tough aluminium alloy of a kind of semisolid pressure casting height and preparation method thereof
CN108286001B (en) * 2018-02-06 2019-01-08 珠海市润星泰电器有限公司 A kind of preparation method of the high tough aluminium alloy of semisolid pressure casting

Similar Documents

Publication Publication Date Title
US4857267A (en) Aluminum base bearing alloy and method of producing same
JP4424810B2 (en) Sintered material
US20060134447A1 (en) Flame-sprayed copper-aluminum composite material and its production method
JP3472284B2 (en) Aluminum bearing alloy
JPH0684528B2 (en) Graphite-containing lead bronze multilayer sliding material and method for producing the same
KR100426386B1 (en) Swash plate of swash-plate type compressor
JP2810057B2 (en) Aluminum bearing alloy
US6706126B2 (en) Aluminum alloy for sliding bearing and its production method
JPH07179963A (en) Copper-lead alloy bearing
JPS62235455A (en) Aluminum bearing alloy and its production
KR100316558B1 (en) Aluminum alloy-based sliding material
JPH0569894B2 (en)
JPH02290940A (en) Bearing alloy
JPS636215A (en) Bearing
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
JPS6237336A (en) Bearing alloy
JP2574274B2 (en) Aluminum bearing alloy
JP3388476B2 (en) Aluminum-based composite sliding material and method for producing the same
JP2002206158A (en) Aluminum alloy thermal sprayed layer having excellent sliding characteristic and sliding material
JPH0421735A (en) Aluminum series bearing alloy
JP3556863B2 (en) Method for producing copper-aluminum composite material
JP3048143B1 (en) Thermal spray layer with excellent sliding properties
US11572606B2 (en) High-tensile brass alloy and high-tensile brass alloy product
JPS6237337A (en) Bearing alloy
JPH02122042A (en) Aluminum alloy for bearing excellent in seizure resistance