JPS6237337A - Bearing alloy - Google Patents

Bearing alloy

Info

Publication number
JPS6237337A
JPS6237337A JP60175522A JP17552285A JPS6237337A JP S6237337 A JPS6237337 A JP S6237337A JP 60175522 A JP60175522 A JP 60175522A JP 17552285 A JP17552285 A JP 17552285A JP S6237337 A JPS6237337 A JP S6237337A
Authority
JP
Japan
Prior art keywords
component
bearing
weight
alloy
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60175522A
Other languages
Japanese (ja)
Inventor
Masahiko Shioda
正彦 塩田
Yoshihiro Marai
馬来 義弘
Akira Matsuyama
晃 松山
Katsuji Tanizaki
谷崎 勝二
Noboru Okabe
岡部 登
Katsuhiro Kishida
岸田 勝弘
Toshihisa Ogaki
大垣 俊久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nissan Motor Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nissan Motor Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nissan Motor Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP60175522A priority Critical patent/JPS6237337A/en
Publication of JPS6237337A publication Critical patent/JPS6237337A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To render a high level of fatigue resistance and surface performance as a bearing by subjecting a billet formed of alloy powder prepd. by dispersing an adequate ratio each of a lubricating component, hard component, lipophilic component, reinforcing component, etc. into an Al matrix to extrusion processing. CONSTITUTION:>=1 Kinds among Pb, Sn, In, Sb and Bi are incorporated as the lubricating component into the Al matrix at 0.006-0.004 ratio by cross sectional area. Si is incorporated as the hard component therein at 0.003-0.060 ratio likewise by cross sectional area. Zn is incorporated as the lipophilic component therein at over 5.0-10.0wt%. >=1 Kinds among Cu, Cr, Mg, Mn, Ni and Fe are incorporated as the reinforcing component therein at 0.2-5.0%. The size of the dispersed lubricating component is made <=8mum. The billet is molded from such Al alloy powder and is subjected to extrusion processing at >=10 extrusion ratio. The size of the Si particles dispersed into the matrix of such bearing alloy is <=12mum and the tensile strength thereof at an ordinary temp. is >=15kgf/mm<2>. The elongation is >=8%. The alloy is light weight and excels in both characteristics of the fatigue resistance and surface performance.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、自動車、工作機械、農業機械等の各種機械
装置の構造部品として使用される軸受および摺動部材用
の素材として適する軸受合金に関し、とくに銅系材料に
比べてかなり軽量であってしかも耐疲労性1表面性能等
にすぐれたアルミニウム系の軸受台金に関するものであ
る。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention relates to materials for bearings and sliding members used as structural parts of various mechanical devices such as automobiles, machine tools, and agricultural machinery. The present invention relates to bearing alloys suitable for use as bearing alloys, and particularly to aluminum-based bearing base metals that are considerably lighter than copper-based materials and have excellent fatigue resistance, surface performance, etc.

(従来の技術) 従来、すべり軸受の素材として使用される合金には、C
u−Pb系、バビット系等が所要の環境に応じて使用さ
れているが、とくに内燃機関用の軸受台金としては、耐
熱11111Fl耗性、耐腐食性、酎疲労性等の点から
AU系の軸受合金が注目されている。なかでも、An−
5n系、AU−5n −Pb系の軸受台金は上記性能の
点で他の材質に比べすぐれているため、近年急速にその
使用端が増加している。しかしながら、内燃機関の小型
化による軸受幅の縮小、高出力化に伴う軸受負荷の増大
等の内燃機関の高性能化により、軸受に課せられる要求
、はさらに強まり、とりわけ##疲労性の而、すなわち
軸受合金の亀裂あるいは鋼裏金からの局部的!A雛を抑
制すべく改善が望まれているのが実情である。
(Prior art) Conventionally, alloys used as materials for sliding bearings contain C.
U-Pb series, Babbitt series, etc. are used depending on the required environment, but AU series is especially used as a bearing base for internal combustion engines due to its heat resistance, corrosion resistance, and fatigue resistance. bearing alloys are attracting attention. Among them, An-
Since bearing base metals of 5n series and AU-5n-Pb series are superior to other materials in terms of the above-mentioned performance, their use has rapidly increased in recent years. However, as the performance of internal combustion engines increases, such as reduction in bearing width due to miniaturization of internal combustion engines and increase in bearing load due to higher output, demands placed on bearings become even stronger. In other words, cracks in the bearing alloy or localized cracks from the steel backing metal! The reality is that improvements are desired to suppress A-chicks.

本発明者らは、このような要望に応えるべく種々の研究
を積重ねているが、例えば先に粉末押出法を用いるAL
;L系の軸受合金を開発した(特願昭59−13224
9号)。
The present inventors have been conducting various researches in order to meet these demands, and for example, we first developed an AL method using a powder extrusion method.
; Developed L series bearing alloy (Patent application 13224/1989)
No. 9).

この軸受合金は、A文を主成分とし、潤滑成分としてP
b、Sn、In、Sb、Biよりなる群から選ばれた1
種以上の金属をAQマトリクス(matrix)に対す
る断面積比で0.006以上0.040以下、硬質成分
としてStを同じく断面積比で0.003以J:0.0
60以丁、強化成分としてCu、Cr、Mg、Mn、N
i。
This bearing alloy has A as a main component and P as a lubricating component.
1 selected from the group consisting of b, Sn, In, Sb, Bi
Metals with a cross-sectional area ratio of 0.006 or more and 0.040 or less with respect to the AQ matrix, and St as a hard component with a cross-sectional area ratio of 0.003 or more J: 0.0
60 pieces, Cu, Cr, Mg, Mn, N as reinforcing ingredients
i.

Znよりなる群から選ばれた1種以丘の金属を0.2重
量%以上5.0重量%以下を含み、均一微細に分散した
?!¥1滑成分の大きさが8μm以下である合金粉末か
ら成形したビレットを押出比10以にで押出成形して成
るものである。
It contains 0.2% by weight or more and 5.0% by weight or less of one or more metals selected from the group consisting of Zn, and is uniformly and finely dispersed. ! ¥1 It is made by extruding a billet formed from an alloy powder in which the size of the lubricating component is 8 μm or less at an extrusion ratio of 10 or more.

このAL;L系の軸受台金は、強度および伸びが優れた
ものであり、銅系の軸受台金に比べてかなり軽量であっ
てしかも耐疲労性および表面性能(潤滑性能〕という二
律背反・的な特性の両方共が従来にない高い水準をもつ
という著しく優れた軸受台金である。
This AL;L bearing base metal has excellent strength and elongation, and is considerably lighter than a copper bearing base metal, yet has the tradeoffs of fatigue resistance and surface performance (lubrication performance). This is an extremely superior bearing base metal that has both properties that are at unprecedented levels.

(発明が解決しようとする問題点) 上述したAU系の軸受台金は、上記のように耐疲労性お
よび潤滑性能の両方共において優れた特性を有している
が、潤滑油膜が極めて薄くなって油切れを起こすような
場合、例えば、低速回転高荷重の場合、あるいは潤滑油
温が高温の運転条件の場合には微小焼付きを起こす恐れ
があった。
(Problems to be Solved by the Invention) The above-mentioned AU bearing base metal has excellent characteristics in both fatigue resistance and lubrication performance as described above, but the lubricating oil film is extremely thin. If the lubricating oil is running at low speed and under high load, or if the lubricating oil temperature is high, there is a risk of slight seizure.

このような焼付防止には、耐焼付性の優れる成分(Pb
、Sn等)の含有量を増加させることも一方法であるが
、強度不足や高温軟化をもたらす難点があり1強度不足
や高温軟化をきたすことなく油切れ限界を高めることが
可能である軸受合金の開発が望まれていた。
To prevent such seizure, a component with excellent seizure resistance (Pb
One method is to increase the content of (Sn, Sn, etc.), but this has the disadvantage of causing insufficient strength and high-temperature softening.It is possible to increase the oil drain limit without causing insufficient strength or high-temperature softening. development was desired.

(発明の目的) この発明は、このような要望に着目してなされたもので
、軟質物質である潤滑成分としてPb。
(Object of the Invention) This invention was made in view of such a demand, and uses Pb as a lubricating component which is a soft substance.

Sn、In、Sb、Biよりなる群から選ばれた1種以
上の金属を多量かつ均一微細に含有させると共に、親油
性の優れるZnを多量に含有させ。
It contains a large amount of one or more metals selected from the group consisting of Sn, In, Sb, and Bi in a uniform and fine manner, and also contains a large amount of Zn, which has excellent lipophilicity.

さらに軸受合金としての有効成分をもつ合金噴霧粉末か
ら成形したビレットを押出成形することにより粉末粒子
表面の酸化皮膜を粉々に分散し、これによってSAPの
ような耐熱性向上の効果も生じさせ、粉末粒子を強固に
固着せしめた軸受合金を得ることで耐疲労性と表面性能
(潤滑性能)という軸受における二律背反的性能を従来
にない高い水準で実現し、とくに潤滑油膜が極めて薄く
なって油切れを起こすような場合においても微小焼付を
生じないようにするAU系の軸受合金を提供することを
目的としている。
Furthermore, by extruding a billet formed from alloy spray powder that has an active ingredient as a bearing alloy, the oxide film on the surface of the powder particles is dispersed into pieces, which also produces the effect of improving heat resistance like SAP, and By creating a bearing alloy with firmly fixed particles, we have achieved unprecedented levels of antinomian performance in bearings, namely fatigue resistance and surface performance (lubrication performance). The object of the present invention is to provide an AU-based bearing alloy that does not cause minute seizures even in cases where such seizures occur.

[発明の構成] (問題点を解決するためのF段) この発明による軸受台金は、Alを主成分とし、潤滑成
分としてPb、Sn、In、Sb。
[Structure of the Invention] (F Stage for Solving Problems) The bearing base metal according to the present invention has Al as a main component, and Pb, Sn, In, and Sb as lubricating components.

Biよりなる群から選ばれた1種以上の金属をA!;L
マトリクスに対する断面積比で0.006以上0.04
0以下、硬質成分としてSiを同じく断面積比で0.0
03以上0.060以下、親油成分としてZnを5.0
重量%超過10.0重量%以下1強化成分としてCu、
Cr、Mg。
A! One or more metals selected from the group consisting of Bi! ;L
Cross-sectional area ratio to matrix of 0.006 or more and 0.04
0 or less, Si as a hard component also has a cross-sectional area ratio of 0.0
03 or more and 0.060 or less, Zn as a lipophilic component 5.0
More than 10.0% by weight 1 Cu as a reinforcing component,
Cr, Mg.

Mn、Nf、Feよりなる群から選ばれた1種以上の金
属を0.2重量%以上5.0重量%以下を含み、必要に
応じて微細化成分としてTi、B。
Contains 0.2% by weight or more and 5.0% by weight or less of one or more metals selected from the group consisting of Mn, Nf, and Fe, and optionally includes Ti and B as finer components.

Zr、V、Gaおよび希土類元素(REM。Zr, V, Ga and rare earth elements (REM.

Sc、Yを含む希土類元素の1種以上を含む)よりなる
群から選ばれた1種以上の金属を0.01重Lし1%以
上3.0重量%以下を含み、均−微開に分散した潤滑成
分の大きさが8μm以下である合金粉末から成形したビ
レットを押出比10以玉で押出成形して成り、Anマト
リクス中に分散したSi粒子の大きさが12μm以下、
常温での引張強度が15 kgf/IIn?以上、常温
での伸びが12%以上であることを特徴としており、A
2系の軸受台金そのものとして使用したり、該軸受台金
層を鋼板等と直接、あるいはAl、Ni等の密着層を介
して接合した軸受として使用したりするものである。
Contains 1% or more and 3.0% by weight or less of one or more metals selected from the group consisting of Sc, Y, and one or more rare earth elements (including one or more rare earth elements, including A billet formed from an alloy powder in which the size of dispersed lubricating components is 8 μm or less is extruded at an extrusion ratio of 10 or more, and the size of Si particles dispersed in the An matrix is 12 μm or less,
Tensile strength at room temperature is 15 kgf/IIn? As mentioned above, it is characterized by an elongation of 12% or more at room temperature, and A
It can be used as a 2-system bearing base metal itself, or it can be used as a bearing in which the bearing base metal layer is bonded to a steel plate or the like directly or through an adhesive layer of Al, Ni, etc.

この発明による軸受合金の成分組成は、押出成形法を導
入することによってはじめて従来以上の軸受性能を発揮
することができる範囲であり、特許請求の範囲外の成分
にあっては押出成形を行うことによる相乗効果は期待し
がたい。
The composition of the bearing alloy according to the present invention is within a range that can exhibit better bearing performance than conventional bearings for the first time by introducing an extrusion molding method, and extrusion molding may be performed if the components are outside the scope of the claims. It is difficult to expect synergistic effects.

ここで、この発明による軸受合金に使用するA!;L合
金粉について説明する。
Here, A! used in the bearing alloy according to the present invention! ; L alloy powder will be explained.

(1)Pb、Sn、In、Sb、Biは潤滑成分として
有効であり、耐焼伺性にすぐれたものである。これらの
うちpbは鋳造材ではAnマトリクスに対する断面積比
で0.005以ドが偏析を起さない−1−眼である、し
かしながら、前述の如くアトマイズ法では多量のPbを
均一微細に含有させることができ、軸受合金の潤滑性能
を発揮させるためには断面積比で0.006以七でなけ
ればならない、また、Pbのほか、潤滑成分であるSn
、In、Sb、Biとの総量がAL;Lマトリクスに対
する断面積比で0.040を超過すると1耐荷重性の点
で軸受性能を満足できなくなるので潤?!?成分は0.
006以上0.040以下の範囲とするのが良い、一方
、Snはpbとの共存により表面性能を改善し、加えて
Pbの耐腐食性を数片する。また、InはSnと同じ作
用をするが高価であるので実用的には少量添加に抑える
方がより好ましい、さらに、Sb、BiはPb、Snの
微細分散に寄与するが、Pb、Sn添加針の0.1〜8
.5重量%の範囲にとどめるのがより望ましい、さらに
、潤滑成分の粒子径が過大であると軸受合金の性能に悪
影響を及ぼすので8μm以下とするのが良い。
(1) Pb, Sn, In, Sb, and Bi are effective as lubricating components and have excellent burn resistance. Among these, Pb is a cast material with a cross-sectional area ratio of 0.005 or less to the An matrix, which does not cause segregation.However, as mentioned above, in the atomization method, a large amount of Pb is contained uniformly and finely. In order to exhibit the lubricating performance of the bearing alloy, the cross-sectional area ratio must be 0.006 or more.In addition to Pb, the lubricating component Sn
If the total amount of , In, Sb, and Bi exceeds 0.040 in terms of the cross-sectional area ratio to the AL;L matrix, bearing performance cannot be satisfied in terms of load capacity. ! ? Ingredients are 0.
On the other hand, Sn improves the surface performance by coexisting with Pb, and also improves the corrosion resistance of Pb. In addition, although In has the same effect as Sn, it is expensive, so it is practically preferable to limit its addition to a small amount.Furthermore, although Sb and Bi contribute to fine dispersion of Pb and Sn, Pb and Sn addition needles 0.1-8
.. It is more desirable to keep the particle size within the range of 5% by weight. Furthermore, if the particle size of the lubricating component is too large, it will have a negative effect on the performance of the bearing alloy, so it is preferably 8 μm or less.

(2)Siは硬質成分として添加するものであり、共品
Siまたは初晶SiとしてA!;L中に分散し、硬質物
質として軸受強度の向丘および耐摩耗性の向丘にN’f
−する。このSiの添加量としては前記潤滑成分の約半
分から1,5倍程度までの量がのぞましく、多く添加す
ると硬くてもろくなり、加工性を阻害するので、Alト
リクスに対する断面積比で0.003以上0.060以
下の範囲とするのがよい、また、Si粒子の最大径が大
きくなれば相手材を傷つけ、分散の面密度が低下し、耐
摩耗性が劣化するので、Si粒子の最大径は12μm以
下に抑えるべきである。
(2) Si is added as a hard component, and A! ; Dispersed in L, N'f is dispersed as a hard substance on the bearing strength side and the wear resistance side.
- to do. The amount of Si to be added is preferably about half to 1.5 times the amount of the lubricating component.Adding too much will make it hard and brittle, impeding workability. It is preferable that the maximum diameter of the Si particles be in the range of 0.003 or more and 0.060 or less.In addition, if the maximum diameter of the Si particles increases, it will damage the mating material, reduce the areal density of dispersion, and deteriorate the wear resistance. The maximum diameter of should be suppressed to 12 μm or less.

(3)Cu、Cr、Mg、Mn、Ni、FeはAnマト
リクスの強度を高めるのに有効な成分である。これらの
うち、Cuはクリープ強度すなわち高温軟化抵抗を高め
る主要な元素であり、高温摺動下における耐疲労性の向
上に?i′グーする。しかし、0.2重量%未満では上
記した効果が少なく、5.0重量%を超過すると針状の
CuA交。
(3) Cu, Cr, Mg, Mn, Ni, and Fe are effective components for increasing the strength of the An matrix. Among these, Cu is the main element that increases creep strength, that is, high temperature softening resistance, and is it effective for improving fatigue resistance under high temperature sliding conditions? i' Goo. However, if it is less than 0.2% by weight, the above-mentioned effect will be small, and if it exceeds 5.0% by weight, acicular CuA interaction will occur.

化合物が多量に析出して脆くなり、耐疲労性の低下を招
く、また、Cu以外にAnマトリクスの強度を高める元
素として、Cr 、 M g 、 M n 。
Elements other than Cu that increase the strength of the An matrix include Cr, Mg, and Mn.

Ni、Feがあり、An合金展伸材の添加元素として良
く使用され、Cuを含むこれらの元素の1種以上を合計
で0.2重量%以上5.0重量%以下の範囲で添加して
もよい0、 (4)Znは上記したC u 、 Cr 、 M g 
Ni and Fe are often used as additive elements for An alloy wrought materials, and one or more of these elements including Cu are added in a total amount of 0.2% to 5.0% by weight. (4) Zn is the above-mentioned C u , Cr , M g
.

Mn、Ni、Feと同様にA!;Lマトリクスの強度を
高めるのに有効な成分である。そして、このZnはとく
にMgとの共存でM g Z n 2析出物の作用によ
りAnマトリクスを著しく強化できる成分である。さら
に、このZnの添加は、潤滑油との親和力が大きく油膜
切れ防止に著しく有効である。この場合、Znの添加量
が5.0重量%以丁ではこの親油性の効果が少なく、1
0.Oi量%を超過すると硬さが増大して加工性を阻害
するので、5.0重量%超過10.0重量%以下の範囲
とするのが良い、なお、このZnは上記した強化成分元
素であるCu、Cr、Mg、Mn、Ni 。
As with Mn, Ni, and Fe, A! ; It is an effective component for increasing the strength of the L matrix. This Zn is a component that can significantly strengthen the An matrix by the action of MgZn2 precipitates, especially when coexisting with Mg. Furthermore, the addition of Zn has a large affinity with lubricating oil and is extremely effective in preventing oil film breakage. In this case, when the amount of Zn added is less than 5.0% by weight, this lipophilic effect is small, and 1.
0. If the Oi amount% is exceeded, the hardness will increase and workability will be inhibited, so it is preferable to keep the Zn in the range of more than 5.0% by weight and 10.0% by weight or less. Some Cu, Cr, Mg, Mn, Ni.

Feと共存してその相乗効果を期待することもできる。It is also possible to expect a synergistic effect by coexisting with Fe.

(5)Ti 、B’、Zr、V、Ga、およびREM(
Y、Scを含む希土類元素の1種以、h)は、A1合金
の結晶粒微細化剤として有効であり、この発明の主旨で
ある潤滑成分(軟質物質)の均一微細化を助長するもの
として、必要に応じて0.01重量%以上3.0重量%
以下の範囲で添加することも望ましい。
(5) Ti, B', Zr, V, Ga, and REM (
One or more rare earth elements including Y and Sc, h) are effective as grain refiners for A1 alloys, and are used to promote uniform refinement of lubricating components (soft substances), which is the gist of the present invention. , 0.01% by weight or more 3.0% by weight as necessary
It is also desirable to add in the following range.

本発明者らは、以上の成分を決定する前にこれら組成の
単独粉の混合体あるいは一部合金粉と単独粉との混合体
を押…成形したが、押出し素材の表面欠陥および内部に
おける粉末粒界のクラックが発生し、結果として上記組
成の完全合金粉末を使用することにより観全な押出成形
体が得られた。これは、上記有効元素を粉末粒子内に内
包した1つ1つの粉末粒子硬さが混合粉の場合に比べて
均質であり、かつこのような粉末粒子が押出し時に粉末
粒子同士の摩擦による表面酸化皮膜の破壊と金属結合が
連続的に行われるためと推察される。
Before determining the above components, the present inventors extruded a mixture of individual powders having these compositions or a mixture of partially alloyed powder and individual powder, but the surface defects of the extruded material and the internal powder Cracks occurred at the grain boundaries, and as a result, by using the completely alloyed powder having the above composition, a completely extruded body was obtained. This is because the hardness of each powder particle containing the above-mentioned effective elements is more homogeneous than in the case of mixed powder, and when such powder particles are extruded, surface oxidation due to friction between powder particles occurs. It is assumed that this is because the destruction of the film and the metal bonding occur continuously.

(実施例) 次にこの発明の実施例を比較例と共に説明する。(Example) Next, examples of the present invention will be described together with comparative examples.

ここで使用した合金粉末組成を表1に示す。Table 1 shows the alloy powder composition used here.

まず、950 ’C〜1000℃の電気溶解炉にて表1
の各組成になるように各合金を溶製し、エアーアトマイ
ズ法により一18メツシュの粒径をもつ合金粉末を得た
、次いで、これらの合金粉末を直径100 m m 、
長さ100mmの円柱状に2tonf/cm2の静水圧
にて冷fin静水圧成形を行ってビレットに成形し、こ
のビレットを押出し前素材とした。なお、」二足の合金
粉末を直接押出す方法は、表面クラック、内部欠陥等を
発生し、現実には実用に供しうるちのは得られにくいこ
とがわかった。また、本発明者らによれば、粉末の直接
押出しでは、押出比を20以上に設定しても健全なもの
はえられなかった。したがって、冷間静水圧もしくは金
型成形により合金粉末を−・旦ビレット状に固化成形し
てこれを押出し前素材として準備する必要がある。
First, in an electric melting furnace at 950'C to 1000°C, Table 1
Each alloy was melted to have a composition of 100 mm in diameter, and an alloy powder with a particle size of 118 mesh was obtained by air atomization.
A cylindrical shape with a length of 100 mm was subjected to cold fin isostatic pressing at a hydrostatic pressure of 2 tonf/cm 2 to form a billet, and this billet was used as a material before extrusion. It has been found that the method of directly extruding two alloy powders causes surface cracks, internal defects, etc., and is difficult to obtain for practical use. Furthermore, according to the present inventors, direct extrusion of powder did not yield a healthy product even when the extrusion ratio was set to 20 or more. Therefore, it is necessary to prepare the alloy powder as a material before extrusion by first solidifying it into a billet shape by cold isostatic pressure or molding.

次に、前記ビレット状押出し前素材を押出し温度250
℃〜550℃において押出比40で前方押出しし、各種
の押出成形体を得た。そして、各押出成形体の押出時機
械的特性、すなわち引張強度および伸びを測定したとこ
ろ、同じく表1に示す結果が得られた。
Next, the billet-shaped material before extrusion is extruded at a temperature of 250.
Forward extrusion was carried out at an extrusion ratio of 40 at a temperature of 550°C to 550°C to obtain various extruded bodies. Then, the mechanical properties during extrusion, that is, the tensile strength and elongation of each extruded body were measured, and the results shown in Table 1 were also obtained.

なお、押出方式には各種の方法および設備が検討されて
いるが、生産性の高さ、設備メンテナンスの容易さ、そ
して安定した品質が得られやすいことなどから縦型ある
いは横型押出機による前方−軸押出しが好適である。ま
た、押出し温度は成形体の押出後の硬さおよび押出速度
ならびに押出比に影響を与えるが、押出成形体の健全性
は実質的に押出比で決定される。すなわち、押出ししに
くい成分配合の場合には押出し温度をL昇させればよい
、さらに、押出比はこの発明による軸受台金の性状に大
きく影響し、実施したいくつかの組成において押出比1
0を境にそれ以北であると表面クラックおよび内部クラ
ックが顕著に減少し、押出比20を超えるといずれの組
成でもクラックは皆無となった。そして、押出比の上限
は成形が可能である限り、また設備能力等の関係゛で設
定されるべきであり、この発明においてその上限設定は
不要である。
Various methods and equipment are being considered for extrusion, but the forward-extrusion method using a vertical or horizontal extruder is preferred because of its high productivity, ease of equipment maintenance, and the ability to easily obtain stable quality. Axial extrusion is preferred. Further, the extrusion temperature affects the hardness of the molded product after extrusion, the extrusion speed, and the extrusion ratio, but the soundness of the extruded product is substantially determined by the extrusion ratio. In other words, in the case of a component combination that is difficult to extrude, the extrusion temperature can be increased by
When the extrusion ratio exceeds 20, the surface cracks and internal cracks are significantly reduced north of 0, and there are no cracks in any composition when the extrusion ratio exceeds 20. The upper limit of the extrusion ratio should be set as long as molding is possible and in relation to equipment capacity, etc., and in the present invention, setting the upper limit is unnecessary.

これに対して、この発明の成分外の組成や、この発明の
成分内であっても混合粉の場合、そして押出比が10未
満の場合はいずれもクラ7りが発生し、観全な押出成形
体が得られにくいことが確かめられた。
On the other hand, if the composition is outside the ingredients of this invention, if it is a mixed powder even if it is included in the ingredients of this invention, or if the extrusion ratio is less than 10, cracking will occur, resulting in complete extrusion. It was confirmed that it was difficult to obtain a molded body.

(製造例) 次に、軸受の製造例について説明すると、第1図は軸受
を製造するのに採用したl工程図であり1合金粉末を冷
間静水圧成形してビレットとしたのちこのビレットを押
出成形し、その後必要に応じて圧接予備熱処理を行い、
次いで圧接およびアニール処理して軸受とするものであ
る。
(Manufacturing Example) Next, to explain an example of manufacturing a bearing, Fig. 1 is a process diagram adopted to manufacture a bearing. Extrusion molding, followed by pressure welding preliminary heat treatment as necessary.
The bearing is then subjected to pressure welding and annealing treatment.

陽、5組成の合金を溶解温度950℃〜1000℃で溶
製し、この合金溶湯からエアーアトマイズ法で一18メ
ツシュの粒径をもつ合金粉末を製造し、次いでこの合金
粉末を冷間静水圧2tonf/cm’で加圧成形して直
径100mm、長さ100mmのビレット成形体を製造
した6次いで、このビレット成形体を押出し温度400
℃、押出比80の条件で押出し、幅60m m X厚さ
1.8mmの板状押出成形体を得た。
5. An alloy having a composition of 5 is melted at a melting temperature of 950°C to 1000°C, and an alloy powder having a particle size of 118 mesh is produced from this molten alloy by an air atomization method, and then this alloy powder is subjected to cold isostatic pressure. A billet molded body with a diameter of 100 mm and a length of 100 mm was produced by pressure molding at 2 tonf/cm'6.Then, this billet molded body was extruded at a temperature of 400 mm.
C. and an extrusion ratio of 80 to obtain a plate-shaped extrusion molded product having a width of 60 mm and a thickness of 1.8 mm.

次いで、この成形体に、幅62mmX厚さ0.4mmの
純アルミニウム薄板を圧接し、厚さ1.2mmの二層軸
受合金板を得た0次に、この合金板に対し400℃×6
時間の7ニール処理を施すことによりHv53に軟化さ
せ、この合金を粗面化した厚さ2mmの鋼板に圧接した
後厚さが1.8mmとなるようにロール圧接を行った。
Next, a pure aluminum thin plate with a width of 62 mm and a thickness of 0.4 mm was pressure-welded to this compact to obtain a two-layer bearing alloy plate with a thickness of 1.2 mm.
The alloy was softened to Hv53 by applying a 7-hour anneal treatment, and the alloy was press-welded to a roughened steel plate with a thickness of 2 mm, and then roll-press welded to a thickness of 1.8 mm.

そして、圧接後に400℃×6時間のアニール処理を行
った。この後、電子顕微鏡によって軟質物質の分布を調
べたところ、軟質物質は均一微細に分散されており、潤
滑成分である軟質物質の大きさは874m以内であった
After the pressure bonding, an annealing treatment was performed at 400° C. for 6 hours. Thereafter, when the distribution of the soft substance was examined using an electron microscope, it was found that the soft substance was uniformly and finely dispersed, and the size of the soft substance, which is a lubricant component, was within 874 m.

なお、合金板と鋼板とを圧接する方法としては、A文薄
板を密着層とする方法以外に、密着層を省略する方法、
密着層にNiめっきを利用する方法などがあるが、軸受
合金組成、工法および経済性等の観点から適宜の工程を
選定すべきであって、他の材料(例えばAn粉末、Cu
めっきなど)であっても差支えない、また、圧接前に押
出成形体の熱処理を行うことも当然rir能であり、圧
接条件によっては押出成形体の前記予備熱処理を行うこ
とより圧下−(にをさらに大きくすることができる。
In addition, as a method for pressure-welding the alloy plate and the steel plate, in addition to the method of using the A pattern thin plate as the adhesive layer, there are also methods of omitting the adhesive layer,
There are methods such as using Ni plating for the adhesion layer, but the appropriate process should be selected from the viewpoints of bearing alloy composition, construction method, economic efficiency, etc., and other materials (for example, An powder, Cu
There is no problem with applying heat treatment to the extrusion molded product before pressure welding. It can be made even larger.

次に、表1の組成をもつAn系軸受合金の表面性能を調
へるために、前記製造例において述べたアニール処理後
の材料から試料(35X35m m )を切出し1表2
に示す条件で摩擦試験を行った。この結果を第3図に示
す。
Next, in order to examine the surface performance of the An-based bearing alloy having the composition shown in Table 1, samples (35 x 35 mm) were cut out from the material after the annealing treatment described in the above manufacturing example.
A friction test was conducted under the conditions shown below. The results are shown in FIG.

表 2  摩擦試験条件 第3図に示す結果より明らかなように、この発明による
軸受合金(1’o、3,6.11)は参考に示した従来
の軸受合金(No、13)よりも優れた表面性能を有し
ている。
Table 2 Friction test conditions As is clear from the results shown in Figure 3, the bearing alloy according to the present invention (1'o, 3, 6.11) is superior to the conventional bearing alloy (No. 13) shown for reference. It has excellent surface performance.

次に表1に示す各押出成形体を鋼板と圧接してアニール
処理した後の軸受合金から当業界公知の機械加工で軸受
を製作し、表3に示すような過酷な軸受耐疲労性試験を
行った。この結果を第4図に示す。
Next, each extrusion molded body shown in Table 1 was pressed against a steel plate and annealed, and then a bearing was manufactured from the bearing alloy by machining known in the industry, and subjected to a severe bearing fatigue resistance test as shown in Table 3. went. The results are shown in FIG.

表 3  軸受耐疲労性試験条件 第4図に示すように、この発明による軸受(No、1〜
12)は従来の軸受(No、13〜18)には見られな
いすぐれた耐疲労性を有しており、耐久時間が長いこと
がわかる。
Table 3 Bearing fatigue resistance test conditions As shown in FIG.
It can be seen that bearing No. 12) has excellent fatigue resistance not found in conventional bearings (Nos. 13 to 18) and has a long durability.

[発明の効果] 以F説明してきたように、この発明による軸受合金は、
Alを主成分とし、4月滑成分としてPb、Sn、In
、Sb、Biよりなる群から選ばれた1挿置りの金属を
Alトリクスに対する断面積比で0.006以北0.0
40以下、硬質成分としてSiを同じく断面積比で0.
003以七〇、060以下、親油成分としてZnを5.
0重h2%超過10.0重發%以下、強化成分としてC
u、Cr、Mg、Mn、Ni 、Feよりなる群から選
ばれた1挿置りの金属を0.2重量%以上5.0重量%
以下を含み、必要に応じて微細化成分としてTi 、B
、Zr 、V’、Ga、REMよりなる群から選ばれた
1種以上を0.01重州%以北3,0重量%以下を含み
、均一微細に分散した潤滑成分の大きさが8#Lm以下
である合金粉末から成形したビレットを押出比10以上
で押出成形して成り、Anマトリクス中に分散したSi
粒子の大きさが12μm以下、常温での引張強度が15
 kgf/lIrm2以上、常温での伸びが12%以上
であり、強度および伸びが箸しく優れていると共に、銅
系の軸受材料に比較してかなり軽量であってしかも耐疲
労性および表面性能(潤滑性能)という軸受における二
律背反的特性の両方共が従来にない高い水準をもち、と
くに低速回転高負荷の場合あるいは潤滑油温度が高温で
ある場合のごとく潤滑油膜が極めて薄くなって油切れを
起しやすいような場合であっても微小焼付を生じがたい
特性をもち、油切れ限界の高い著しく優れた特性の軸受
合金であるという著大なる効果を奏するものである。
[Effects of the Invention] As explained below, the bearing alloy according to the present invention has the following effects:
The main component is Al, and the main components are Pb, Sn, and In.
, Sb, and Bi, with a cross-sectional area ratio of 0.006 to 0.0 with respect to Al trix.
40 or less, Si as the hard component is also 0.40 or less in cross-sectional area ratio.
003 to 70, 060 and below, Zn as a lipophilic component 5.
Over 0 weight h2% and below 10.0 weight h2%, C as a reinforcing ingredient
0.2% by weight or more and 5.0% by weight of one metal selected from the group consisting of u, Cr, Mg, Mn, Ni, and Fe.
Contains the following, with Ti and B as finer components if necessary
, Zr, V', Ga, and REM, containing 0.01% to 3.0% by weight of one or more selected from the group consisting of Zr, V', Ga, and REM, and the size of the lubricating component uniformly and finely dispersed is 8#. It is made by extruding a billet formed from an alloy powder having a particle size of Lm or less at an extrusion ratio of 10 or more, and Si dispersed in an An matrix.
Particle size is 12 μm or less, tensile strength at room temperature is 15
kgf/lIrm2 or more, the elongation at room temperature is more than 12%, and it has excellent strength and elongation. It is also considerably lighter than copper-based bearing materials, and has excellent fatigue resistance and surface performance (lubrication). Both of the antinomic characteristics of bearings (performance) are at an unprecedentedly high level, and the lubricating oil film becomes extremely thin and oil runs out, especially when rotating at low speeds and under high loads or when the lubricating oil temperature is high. This bearing alloy has the remarkable effect of being resistant to minute seizures even in cases where it is easily damaged, and is a bearing alloy with extremely excellent properties that have a high oil drain limit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は軸受の製造工程例を示すブロック説明図、第2
図は摩擦試験の際の負荷パターンを示す説明図、第3図
は摩擦試験結果を示すグラフ、第4図はこの発明による
軸受と従来による軸受の各々耐疲労性試験の結果を示す
説明図である。 特許出願人   日産自動車株式会社 同 出願人   工ヌデーシー株式会社代理人弁理士 
 小  塩    間 第1図         第2図 第3図
Figure 1 is a block explanatory diagram showing an example of the manufacturing process of bearings, Figure 2
The figure is an explanatory diagram showing the load pattern during the friction test, Fig. 3 is a graph showing the friction test results, and Fig. 4 is an explanatory diagram showing the results of the fatigue resistance test of the bearing according to the present invention and the conventional bearing. be. Patent applicant: Nissan Motor Co., Ltd. Applicant: NDC Co., Ltd., agent and patent attorney
Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)Alを主成分とし、潤滑成分としてPb、Sn、
In、Sb、Biよりなる群から選ばれた1種以上の金
属をAlマトリクスに対する断面積比で0.006以上
0.040以下、硬質成分としてSiを同じく断面積比
で0.003以上0.060以下、親油成分としてZn
を5.0重量%超過10.0重量%以下、強化成分とし
てCu、Cr、Mg、Mn、Ni、Feよりなる群から
選ばれた1種以上の金属を0.2重量%以上5.0重量
%以下を含み、均一微細に分散した潤滑成分の大きさが
8μm以下である合金粉末から成形したビレットを押出
比10以上で押出成形して成り、Alマトリクス中に分
散したSi粒子の大きさが12μm以下、常温での引張
強度が15kgf/mm^2以上、常温での伸びが12
%以上であることを特徴とするアルミニウム系軸受合金
(1) Al as the main component, Pb, Sn as lubricating components,
One or more metals selected from the group consisting of In, Sb, and Bi have a cross-sectional area ratio of 0.006 to 0.040 with respect to the Al matrix, and Si as a hard component has a cross-sectional area ratio of 0.003 to 0.0. 060 or less, Zn as a lipophilic component
more than 5.0% by weight and not more than 10.0% by weight, and 0.2% by weight or more of one or more metals selected from the group consisting of Cu, Cr, Mg, Mn, Ni, and Fe as reinforcing components. % by weight or less, and the size of the lubricating component uniformly and finely dispersed is 8 μm or less, and the billet is extruded at an extrusion ratio of 10 or more, and the size of the Si particles dispersed in the Al matrix is is 12μm or less, tensile strength at room temperature is 15kgf/mm^2 or more, and elongation at room temperature is 12
% or more.
(2)Alマトリクス中に微細化成分としてTi、B、
Zr、V、Gaおよび希土類元素よりなる群から選ばれ
た1種以上の金属を全合金に対して0.01重量%以上
3.0重量%以下含んでいることを特徴とする特許請求
の範囲第(1)項記載のアルミニウム系軸受合金。
(2) Ti, B, as fine components in the Al matrix
Claims characterized in that the alloy contains at least 0.01% by weight and not more than 3.0% by weight of one or more metals selected from the group consisting of Zr, V, Ga, and rare earth elements. The aluminum-based bearing alloy according to item (1).
JP60175522A 1985-08-09 1985-08-09 Bearing alloy Pending JPS6237337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60175522A JPS6237337A (en) 1985-08-09 1985-08-09 Bearing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60175522A JPS6237337A (en) 1985-08-09 1985-08-09 Bearing alloy

Publications (1)

Publication Number Publication Date
JPS6237337A true JPS6237337A (en) 1987-02-18

Family

ID=15997529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60175522A Pending JPS6237337A (en) 1985-08-09 1985-08-09 Bearing alloy

Country Status (1)

Country Link
JP (1) JPS6237337A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110438A (en) * 1990-08-31 1992-04-10 Daido Metal Co Ltd Aluminum base bearing alloy excellent in fatigue resistance and seizing resistance
JPH0633175A (en) * 1992-07-16 1994-02-08 Daido Metal Co Ltd Aluminum alloy bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110438A (en) * 1990-08-31 1992-04-10 Daido Metal Co Ltd Aluminum base bearing alloy excellent in fatigue resistance and seizing resistance
JPH0633175A (en) * 1992-07-16 1994-02-08 Daido Metal Co Ltd Aluminum alloy bearing

Similar Documents

Publication Publication Date Title
US4857267A (en) Aluminum base bearing alloy and method of producing same
JP3939931B2 (en) Copper-based multi-layer sliding material
JP4424810B2 (en) Sintered material
US6652675B2 (en) Copper alloy sliding material
US5028393A (en) Al-based alloy for use as sliding material, superior in fatigue resistance and anti-seizure property
JP3839740B2 (en) Sliding material
DE2720978A1 (en) BEARING METAL FOR LARGE MACHINERY
DE3631029A1 (en) ALUMINUM BEARING ALLOY AND TWO-LAYER BEARING MATERIAL WITH A BEARING LAYER MADE OF ALUMINUM BEARING ALLOY
JPH0684528B2 (en) Graphite-containing lead bronze multilayer sliding material and method for producing the same
JP2756407B2 (en) Sliding material excellent in corrosion resistance and abrasion resistance and method for producing the same
KR910003442B1 (en) Sintered self-lubricating bearing and process for its manufacture
JP2769421B2 (en) Copper-lead bearing alloy material excellent in corrosion resistance and method for producing the same
JPH05202938A (en) Copper lead alloy bearing having overlay
JP2810057B2 (en) Aluminum bearing alloy
JPH07179963A (en) Copper-lead alloy bearing
JPS62235455A (en) Aluminum bearing alloy and its production
JPS6237337A (en) Bearing alloy
WO1998004756A1 (en) Sliding material having excellent abrasion resistance
JPH0569894B2 (en)
JPS6237336A (en) Bearing alloy
JPS636215A (en) Bearing
JP4422255B2 (en) Aluminum base bearing alloy
JP2574274B2 (en) Aluminum bearing alloy
JPH01198442A (en) Aluminum bearing alloy
JPH0421735A (en) Aluminum series bearing alloy