JP4422255B2 - Aluminum base bearing alloy - Google Patents

Aluminum base bearing alloy Download PDF

Info

Publication number
JP4422255B2
JP4422255B2 JP31949799A JP31949799A JP4422255B2 JP 4422255 B2 JP4422255 B2 JP 4422255B2 JP 31949799 A JP31949799 A JP 31949799A JP 31949799 A JP31949799 A JP 31949799A JP 4422255 B2 JP4422255 B2 JP 4422255B2
Authority
JP
Japan
Prior art keywords
bearing
bearing alloy
alloy
weight
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31949799A
Other languages
Japanese (ja)
Other versions
JP2001140890A (en
Inventor
幸彦 籠原
康治 北川
昭範 乗藤
隆 因幡
康一 山本
隆之 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP31949799A priority Critical patent/JP4422255B2/en
Publication of JP2001140890A publication Critical patent/JP2001140890A/en
Application granted granted Critical
Publication of JP4422255B2 publication Critical patent/JP4422255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • F16C2204/22Alloys based on aluminium with tin as the next major constituent

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は耐疲労性、非焼付性、耐摩耗性の向上を図ると共に、塑性加工性の改良を図ったアルミニウム基軸受合金に関する。
【0002】
【発明が解決しようとする課題】
アルミニウム基軸受合金は、耐疲労性、非焼付性、耐摩耗性に優れるため、自動車および一般産業機械の高出力エンジン用軸受として広く使用されている。最近のエンジンは、高速高出力化、軽量化、低燃費化の傾向にあり、これに伴って軸受には更なる性能の向上が望まれている。軸受合金の耐疲労性、非焼付性、耐摩耗性などの軸受性能を向上するには、軸受合金に種々の元素を添加する。アルミニウム基軸受合金の場合には、Sn、Si、Cuなどを添加し、軸受性能の向上を図っている。
【0003】
一方、エンジン用軸受は、Al合金板を鋼板(裏金)上に圧接して得たバイメタルから製造される。上記Al合金板は、Al合金を鋳造し、これを圧延することによって形成される。しかしながら、Al合金に種々の元素を添加すると、Al、Si、不可避的に含まれるFeなどがマトリックス中に脆い針状の金属間化合物を生成する確率が高くなる。マトリックス中に針状の金属間化合物が生成されると、Al合金の圧延性が損なわれ、圧延(塑性加工)工程でAl合金板にクラックが発生したりするという問題を生ずる。
【0004】
本発明は上記の事情に鑑みてなされたもので、その目的は、耐疲労性、非焼付性、耐摩耗性に優れ、しかも添加する元素により生成される金属間化合物の針状化を防止して塑性加工性を向上することができるアルミニウム基軸受合金を提供するにある。
【0005】
3.5〜20重量%のSn、0.5〜4.5重量%のSi、0.01〜2重量%のMn、0.01〜2重量%のVおよび/またはMo、残部が実質的にAlからなり、粒子径が2〜3μmのSi粒子と、Al―Fe−Mn−Si系の金属間化合物を生成させてVおよび/またはMoにより成長させた粒子径が4〜5μmの塊状の硬質粒子とを含んでいることを特徴とする。
この場合、次の(1)〜(3)のうち、1つ以上を含有させることができる。
(1)Cuを5重量%以下
(2)Ti、B、Cr、Zr、Sbのうちから1種以上を3重量%以下
(3)Zn、Ni、Co、W、Ag、Mg、Pb、Bi、Inのうちから1種以上を5重量%以下
【0007】
本発明者は、Al、Sn、Si系合金にMnを添加すると、MnがAl、Si、不可避的に含まれるFeなどと針状の金属間化合物を生成するが、そのMnを含む金属間化合物に対して、VやMoが針状化を防止し、塊状化する作用を有していることを見出し、これに着目して本発明を完成した。すなわち、本発明のアルミニウム基軸受合金では、AlにSn、Si、Mnなどを添加することにより、軸受合金の耐疲労性、非焼付性、耐摩耗性の向上を図る。しかし、Si、Mn、不可避的に含まれるFeは、Al−Fe−Mn−Si系の脆い針状の金属間化合物を生成するため、Vおよび/またはMoを添加することより、このMnを含む針状の金属間化合物を、塊状化することが可能となる。
【0008】
金属間化合物は、塊状化されることで軸受合金の靭性を損なわず、軸受合金の強度を維持する。このため、軸受合金の圧延などの塑性加工性が向上し、圧延工程でクラックを発生したりすることがなくなる。また、塊状化された金属間化合物は、高硬度の粒子としてマトリックスの内部に分散し、非焼付性および耐摩耗性を向上する。
【0009】
ところで、硬質粒子は非焼付性、耐摩耗性を向上するが、その効果は粒子径が大きいほど高い。Siは硬質で、非焼付性、耐摩耗性の向上に寄与するが、その効果を高めるために、Siの粒子径を大きくするには、従来、軸受合金の鋳造時の冷却をゆっくり行う方法が採られていた。ところが、徐冷のため均一な合金組織が得られず、軸受性能の向上を期し難くなる。
【0010】
しかしながら、本発明によれば、Vおよび/またはMoを添加することにより、Mnの含む針状の金属間化合物を塊状化できるので、Si粒子を微細均一化 (例えば2〜3μm)しておき、そしてAl−Fe−Mn−Si系の金属間化合物を生成させてVおよび/またはMoにより大きな塊状の硬質粒子(4〜5μm)に成長させることができる。したがって、徐冷を行わずとも済む。
【0011】
次に、本発明による軸受合金の各成分元素を上記のように限定した理由とその作用効果を説明する。
(a)Sn(3.5〜20重量%)
Snは非焼付性、なじみ性、埋収性などの表面性能を改善する。その添加量が3.5重量%未満ではその効果がなく、20重量%を越えると軸受合金の機械的性質が低下し、高出力エンジンのように厳しい条件下では使用に耐えない。
【0012】
(b)Si(0.5〜4.5重量%)
SiはAlマトリックスに固溶し、また高硬度のSi粒子として晶出し、軸受合金の硬度を上昇させる。組織中にSi粒子が点在すると、表面の柔らかいAlマトリックスのみが摩耗し、微視的に見ると表面が凹凸状になり、凸として残るSiが非凝着性を保ちながら高荷重に耐え、凹部が油溜まりのように機能し、高荷重、薄油膜、更には金属接触にも良く耐える。更に、Alマトリックス中に細かく点在したSi粒子は相手軸の微小突起やバリを研磨する作用を有し、非焼付性を向上させる。Siの添加量が0.5重量%未満では上述のような効果が得られず、4.5重量%を越えると脆くなり、圧延などの塑性加工性を低下させる。
【0013】
(c)Mn(0.01〜2重量%)
MnはAlマトリックスに固溶し、また金属間化合物として析出することにより、耐疲労性を著しく向上させる。その添加量が0.01重量%未満ではその効果が得られず、2重量%を越えると軸受としてのなじみ性が悪くなり、また不純物元素であるFeなどと化合物を生成し、圧延などの塑性加工性が著しく低下する。
【0014】
(d)Vおよび/またはMo(0.01〜2重量%)
V、MoはAlマトリックスに固溶し、強度を上昇させ、また軸受合金内に析出するAl−Fe−M−Si系化合物の形状を針状から塊状に変える働きをし、軸受合金の圧延などの塑性加工性を保つ。その添加量が0.01重量%未満ではその効果が得られず、2重量%を越えると軸受合金が硬くなり過ぎ、なじみ性が悪くなり、塑性加工性も低下する。
【0015】
(e)Cu(5重量%以下)
CuはAlマトリックスの強度を上昇させ、特に疲労強度を上昇させる。その添加量が5重量%を越えると、軸受合金が硬くなり過ぎてなじみ性が悪化し、塑性加工性も低下する。
【0016】
(f)Ti、B、Cr、Zr、Sbのうちから1種以上(3重量%以下)
これらの元素はAlマトリックスの疲労強度を上昇させる。その添加量が3重量%を越えると、軸受合金が硬くなり過ぎてなじみ性が悪くなる。
【0017】
(g)Zn、Ni、Co、W、Ag、Mg(1種以上を5重量%以下)
これらはAlマトリックス中に固溶するか、または金属間化合物として析出することにより、軸受合金の強度を上昇させる。添加量が5重量%を越えると軸受合金が硬くなり過ぎ、塑性加工性が低下する。
【0018】
(h)Pb、Bi、In(1種以上を5重量%以下)
これらは切削性、非焼付性を改善する。その添加量が5重量%を越えると、Alマトリックスに均一に分散させることが困難となり、軸受の強度も低下する。
【発明の実施の形態】
以下、本発明の一実施例を図面を参照しながら説明する。
図3に示す軸受1は半割軸受と称されるもので、2個1組にして使用される。この軸受1は、図2に示すように、裏金層2の表面に中間層3を介して軸受合金層4を被着してなる。なお、軸受合金層4の表面にオーバレイを施しても良い。上記中間層3はAl、Ni、Cuなどの各種の金属、合金が用いられる。
【0019】
上記裏金層2は例えば低炭素鋼板によって構成されている。軸受合金層4はAl基軸受合金により構成され、3.5〜20重量%のSn、0.5〜4.5重量%のSi、0.01〜2重量%のMn、0.01〜2重量%のVおよび/またはMo、残部が実質的にAlからなる。この場合、次の(1)〜(3)のうち、1つ以上を含有させるようにしても良い。
(1)Cuを5重量%以下
(2)Ti、B、Cr、Zr、Sbのうちから1種以上を3重量%以下
(3)Zn、Ni、Co、W、Ag、Mg、Pb、Bi、Inのうちから1種以上を5重量%以下
【0020】
次に上記構成の軸受1の製造方法を説明する。
まず、軸受合金層4用として、表1に示す組成のAl基軸受合金を鋳造し、これを圧延してAl合金板を製造する。次に、所定厚さに圧延したAl合金板を、裏金層2を構成する低炭素鋼からなる薄鋼板にロール圧接法によって圧着する。次いで、これを焼鈍し、エンジンのすべり軸受用素材としてのバイメタルを製造する。そして、このバイメタルを所定寸法に切断して半割の軸受形状にプレス加工し、更に機械加工して図3に示すような軸受1を製造する。
【0021】
さて、本発明者は次の表1に示す組成の発明品と比較品とについて、金属間化合物の形状、合金圧延性について調べると共に、合金硬さの測定、疲労試験、焼付試験、摩耗試験を行った。この各種の測定結果および試験結果を表2に示す。
ここで、合金圧延性は軸受合金を圧延率90%まで圧延したとき、クラックが生ずるか否かによって判定し、クラックが全く生じないものは○、クラックが生じても実用上問題のない程度のものは△、クラックが生じて圧延できないものは×を付して示した。
【0022】
疲労試験は表3に示す条件で行った。疲労面圧は疲労しない最大面圧とした。
焼付試験は表4に示す条件で行い、軸受内面温度が200℃を越えるか、またはトルク変動により軸駆動用ベルトがスリップした時の負荷を焼付面圧とした。
摩耗試験は表5に示す条件で行い、運転開始から20時間後の軸受の摩耗量を測定した。
【0023】
【表1】

Figure 0004422255
【0024】
【表2】
Figure 0004422255
【0025】
【表3】
Figure 0004422255
【0026】
【表4】
Figure 0004422255
【0027】
【表5】
Figure 0004422255
【0028】
表2から明らかなように、金属間化合物の形状について、比較品は図1(b)に示すように針状であるが、発明品では図1(a)に示すように塊状になっている。この金属間化合物の形状の違いから、針状の比較品は圧延性に劣るが、塊状の発明品は良好なる圧延性を呈する。
【0029】
ここで、V、Moを含まない比較品2、3、6〜8では、金属間化合物は針状であるのに対し、V、Moを含む発明品1〜12では、金属間化合物は塊状であり、V、Moが金属間化合物の塊状化に寄与することが理解される。
【0030】
また、例えば発明品1、5と比較品1、5はいずれもV、Moを含んでおり、それら発明品1、5と比較品1、5との成分上の相違は、Mnを含んでいるか否かだけにある。そして、Mnを含む発明品1、5では金属間化合物が塊状であるのに対し、Mnを含んでいない比較品1、5では金属間化合物が針状である。このことから、Mnを含む金属間化合物はV、Moによって塊状化され易いことが理解される。
【0031】
また、発明品は、合金硬度が50Hv以上であり、50Hv以下のものも存在する比較品に比べ、合金硬さが硬くなっている。これは、塊状で硬質の金属間化合物がマトリックス中に分散することにより、軸受合金の強度が強くなっていることの表れと言える。
【0032】
更に、焼付面圧については、発明品は比較品と同等或いはやや高い程度であるが、疲労面圧については、発明品は比較品より平均的に10MPa程度高く、耐疲労性に優れている。また、摩耗量については、発明品は比較品に比べて非常に少なく、耐摩耗性に優れている。
【0033】
このように、発明品が非焼付性、耐疲労性および耐摩耗性、特に耐疲労性と耐摩耗性に優れている理由は、塊状化された高硬度の金属間化合物がマトリックス中に分散してその硬度と強度を高めたものと考えられる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すもので、軸受合金の組織を示す顕微鏡写真の模式図
【図2】軸受の断面図
【図3】軸受の斜視図
【符号の説明】
図中、2は裏金層、4は軸受合金層である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum-based bearing alloy that is improved in fatigue resistance, non-seizure property, and wear resistance and improved in plastic workability.
[0002]
[Problems to be solved by the invention]
Aluminum-based bearing alloys are widely used as bearings for high-power engines of automobiles and general industrial machines because they are excellent in fatigue resistance, non-seizure properties, and wear resistance. Recent engines tend to have higher speed, higher output, lighter weight, and lower fuel consumption, and accordingly, further improvement in performance is desired for bearings. In order to improve bearing performance such as fatigue resistance, non-seizure property, and wear resistance of the bearing alloy, various elements are added to the bearing alloy. In the case of an aluminum-based bearing alloy, Sn, Si, Cu, etc. are added to improve the bearing performance.
[0003]
On the other hand, the engine bearing is manufactured from a bimetal obtained by press-contacting an Al alloy plate on a steel plate (back metal). The Al alloy plate is formed by casting an Al alloy and rolling it. However, when various elements are added to the Al alloy, there is a high probability that Al, Si, unavoidably contained Fe, and the like form brittle needle-like intermetallic compounds in the matrix. When a needle-like intermetallic compound is generated in the matrix, the rollability of the Al alloy is impaired, and there is a problem that cracks are generated in the Al alloy plate in the rolling (plastic working) process.
[0004]
The present invention has been made in view of the above circumstances, and the object thereof is excellent in fatigue resistance, non-seizure property, and wear resistance, and prevents the intermetallic compound produced by the added element from becoming acicular. Therefore, an object of the present invention is to provide an aluminum-based bearing alloy capable of improving plastic workability.
[0005]
3.5-20 wt% Sn, 0.5-4.5 wt% Si, 0.01-2 wt% Mn, 0.01-2 wt% V and / or Mo, the balance being substantially In addition, Si particles having a particle diameter of 2 to 3 μm and Al—Fe—Mn—Si based intermetallic compounds were formed and grown by V and / or Mo, and the particles having a particle diameter of 4 to 5 μm were formed. It is characterized by containing hard particles .
In this case, one or more of the following (1) to (3) can be contained.
(1) 5% by weight or less of Cu (2) 3% by weight or less of at least one of Ti, B, Cr, Zr, and Sb (3) Zn, Ni, Co, W, Ag, Mg, Pb, Bi 1 or more of In, 5% by weight or less
When the present inventor adds Mn to an Al, Sn, or Si-based alloy, Mn forms Al, Si, inevitably contained Fe or the like and an acicular intermetallic compound. On the other hand, it discovered that V and Mo had the effect | action which prevents a needle-like shape and agglomerates, and paid attention to this, and completed this invention. That is, in the aluminum-based bearing alloy of the present invention, by adding Sn, Si, Mn and the like to Al, the fatigue resistance, non-seizure property, and wear resistance of the bearing alloy are improved. However, Fe, which is inevitably contained in Si, Mn, forms Al—Fe—Mn—Si-based brittle needle-like intermetallic compounds, and therefore this Mn is contained by adding V and / or Mo. The acicular intermetallic compound can be agglomerated.
[0008]
The intermetallic compound is agglomerated to maintain the strength of the bearing alloy without impairing the toughness of the bearing alloy. For this reason, plastic workability such as rolling of the bearing alloy is improved, and cracks are not generated in the rolling process. In addition, the agglomerated intermetallic compound is dispersed in the matrix as high-hardness particles, thereby improving non-seizure and wear resistance.
[0009]
By the way, although hard particle | grains improve non-seizure property and abrasion resistance, the effect is so high that a particle diameter is large. Si is hard and contributes to the improvement of non-seizure and wear resistance, but in order to increase its effect, in order to increase the particle size of Si, conventionally, a method of slowly cooling the bearing alloy during casting has been used. It was taken. However, due to the slow cooling, a uniform alloy structure cannot be obtained, and it is difficult to improve the bearing performance.
[0010]
However, according to the present invention, by adding V and / or Mo, the acicular intermetallic compound containing Mn can be agglomerated, so that the Si particles are finely homogenized (for example, 2 to 3 μm), Then, an Al—Fe—Mn—Si-based intermetallic compound can be generated and grown into large massive hard particles (4 to 5 μm) by V and / or Mo. Therefore, it is not necessary to perform slow cooling.
[0011]
Next, the reason why each component element of the bearing alloy according to the present invention is limited as described above and the operation and effect thereof will be described.
(A) Sn (3.5 to 20% by weight)
Sn improves surface performance such as non-seizure property, conformability and embedding property. If the added amount is less than 3.5% by weight, the effect is not obtained. If the added amount exceeds 20% by weight, the mechanical properties of the bearing alloy are lowered, and it cannot be used under severe conditions as in a high-power engine.
[0012]
(B) Si (0.5 to 4.5% by weight)
Si dissolves in the Al matrix and crystallizes as high hardness Si particles, increasing the hardness of the bearing alloy. When Si particles are scattered in the structure, only the soft Al matrix on the surface is worn, and when viewed microscopically, the surface becomes uneven, and the remaining Si withstands a high load while maintaining non-adhesion, The recess functions like an oil sump and withstands heavy loads, thin oil films, and even metal contact. Further, the Si particles finely scattered in the Al matrix have an action of polishing the minute protrusions and burrs of the counterpart shaft, and improve the non-seizure property. If the addition amount of Si is less than 0.5% by weight, the above-described effects cannot be obtained, and if it exceeds 4.5% by weight, the material becomes brittle and deteriorates plastic workability such as rolling.
[0013]
(C) Mn (0.01 to 2% by weight)
Mn dissolves in the Al matrix and precipitates as an intermetallic compound, thereby significantly improving fatigue resistance. If the added amount is less than 0.01% by weight, the effect cannot be obtained. If the added amount exceeds 2% by weight, the conformability as a bearing deteriorates, and a compound such as Fe, which is an impurity element, is formed, and plasticity such as rolling is obtained. Workability is significantly reduced.
[0014]
(D) V and / or Mo (0.01-2% by weight)
V and Mo are dissolved in an Al matrix to increase the strength, and the shape of the Al—Fe—M n —Si compound precipitated in the bearing alloy is changed from a needle shape to a lump shape. Maintains plastic workability. If the added amount is less than 0.01% by weight, the effect cannot be obtained. If the added amount exceeds 2% by weight, the bearing alloy becomes too hard, the conformability becomes worse, and the plastic workability also decreases.
[0015]
(E) Cu (5 wt% or less)
Cu increases the strength of the Al matrix, and in particular increases the fatigue strength. When the added amount exceeds 5% by weight, the bearing alloy becomes too hard, the conformability deteriorates, and the plastic workability also deteriorates.
[0016]
(F) One or more of Ti, B, Cr, Zr, and Sb (3% by weight or less)
These elements increase the fatigue strength of the Al matrix. If the added amount exceeds 3% by weight, the bearing alloy becomes too hard and the conformability becomes worse.
[0017]
(G) Zn, Ni, Co, W, Ag, Mg (one or more types are 5% by weight or less)
These are dissolved in the Al matrix or precipitated as an intermetallic compound, thereby increasing the strength of the bearing alloy. If the added amount exceeds 5% by weight, the bearing alloy becomes too hard and the plastic workability is lowered.
[0018]
(H) Pb, Bi, In (1 type or more and 5% by weight or less)
These improve machinability and non-seizure properties. When the added amount exceeds 5% by weight, it becomes difficult to uniformly disperse in the Al matrix, and the strength of the bearing also decreases.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The bearing 1 shown in FIG. 3 is called a half bearing and is used as a set of two. As shown in FIG. 2, the bearing 1 is formed by depositing a bearing alloy layer 4 on the surface of a back metal layer 2 via an intermediate layer 3. The surface of the bearing alloy layer 4 may be overlaid. The intermediate layer 3 is made of various metals such as Al, Ni, Cu, and alloys.
[0019]
The back metal layer 2 is made of, for example, a low carbon steel plate. The bearing alloy layer 4 is made of an Al-based bearing alloy, and includes 3.5 to 20 wt% Sn, 0.5 to 4.5 wt% Si, 0.01 to 2 wt% Mn, 0.01 to 2 % By weight of V and / or Mo, the balance being substantially Al. In this case, one or more of the following (1) to (3) may be included.
(1) Cu is 5 wt% or less (2) One or more of Ti, B, Cr, Zr, and Sb is 3 wt% or less (3) Zn, Ni, Co, W, Ag, Mg, Pb, Bi 1 or more of In, 5 wt% or less
Next, a method for manufacturing the bearing 1 having the above configuration will be described.
First, for the bearing alloy layer 4, an Al-based bearing alloy having the composition shown in Table 1 is cast and rolled to produce an Al alloy plate. Next, the Al alloy plate rolled to a predetermined thickness is pressure-bonded to the thin steel plate made of low carbon steel constituting the back metal layer 2 by a roll pressure welding method. Next, this is annealed to produce a bimetal as a material for an engine slide bearing. Then, the bimetal is cut into a predetermined size, pressed into a half bearing shape, and further machined to manufacture a bearing 1 as shown in FIG.
[0021]
Now, the present inventor examined the shape of the intermetallic compound and the alloy rollability of the inventive product and the comparative product having the composition shown in Table 1 below, and performed measurement of alloy hardness, fatigue test, seizure test, and wear test. went. These various measurement results and test results are shown in Table 2.
Here, the alloy rollability is determined by whether or not a crack is generated when the bearing alloy is rolled to a rolling rate of 90%. The case where no crack is generated is ○, and there is no practical problem even if a crack occurs. Those which are indicated by Δ and those which cannot be rolled due to cracks are indicated by ×.
[0022]
The fatigue test was performed under the conditions shown in Table 3. The fatigue surface pressure was set to the maximum surface pressure that does not cause fatigue.
The seizure test was performed under the conditions shown in Table 4, and the load when the bearing inner surface temperature exceeded 200 ° C. or the shaft driving belt slipped due to torque fluctuation was defined as seizure surface pressure.
The wear test was performed under the conditions shown in Table 5, and the amount of wear of the bearing 20 hours after the start of operation was measured.
[0023]
[Table 1]
Figure 0004422255
[0024]
[Table 2]
Figure 0004422255
[0025]
[Table 3]
Figure 0004422255
[0026]
[Table 4]
Figure 0004422255
[0027]
[Table 5]
Figure 0004422255
[0028]
As is apparent from Table 2, the shape of the intermetallic compound is a needle shape as shown in FIG. 1 (b), but the invention product is agglomerated as shown in FIG. 1 (a). . Due to the difference in the shape of the intermetallic compound, the needle-like comparative product is inferior in rollability, whereas the block-like invention product exhibits good rollability.
[0029]
Here, in the comparative products 2, 3, and 6 to 8 that do not contain V and Mo, the intermetallic compounds are needle-shaped, whereas in the inventive products 1 to 12 that contain V and Mo, the intermetallic compounds are massive. It is understood that V and Mo contribute to the formation of intermetallic compounds.
[0030]
In addition, for example, the inventive products 1 and 5 and the comparative products 1 and 5 both contain V and Mo. Is the difference in components between the inventive products 1 and 5 and the comparative products 1 and 5 included Mn? It's just no. And in the products 1 and 5 containing Mn, the intermetallic compound is agglomerate, whereas in the comparative products 1 and 5 not containing Mn, the intermetallic compound is needle-like. From this, it is understood that the intermetallic compound containing Mn is easily agglomerated by V and Mo.
[0031]
In addition, the inventive product has an alloy hardness of 50 Hv or higher, and the alloy hardness is higher than that of a comparative product having a hardness of 50 Hv or lower. This can be said to be an indication that the strength of the bearing alloy is increased by dispersing the massive hard intermetallic compound in the matrix.
[0032]
Furthermore, the seizure surface pressure is about the same as or slightly higher than that of the comparative product, but the fatigue surface pressure of the invention product is about 10 MPa higher than the comparative product on average, and is excellent in fatigue resistance. In addition, the amount of wear of the invention is very small compared to the comparative product, and is excellent in wear resistance.
[0033]
As described above, the reason why the inventive product is excellent in non-seizure property, fatigue resistance and wear resistance, particularly fatigue resistance and wear resistance is that the agglomerated high hardness intermetallic compound is dispersed in the matrix. It is thought that the hardness and strength were increased.
[Brief description of the drawings]
FIG. 1 is a schematic view of a micrograph showing the structure of a bearing alloy according to an embodiment of the present invention. FIG. 2 is a sectional view of a bearing. FIG. 3 is a perspective view of a bearing.
In the figure, 2 is a back metal layer and 4 is a bearing alloy layer.

Claims (2)

3.5〜20重量%のSn、0.5〜4.5重量%のSi、0.01〜2重量%のMn、0.01〜2重量%のVおよび/またはMo、残部が実質的にAlからなり、
粒子径が2〜3μmのSi粒子と、Al―Fe−Mn−Si系の金属間化合物を生成させてVおよび/またはMoにより成長させた粒子径が4〜5μmの塊状の硬質粒子とを含んでいることを特徴とするアルミニウム基軸受合金。
3.5-20 wt% Sn, 0.5-4.5 wt% Si, 0.01-2 wt% Mn, 0.01-2 wt% V and / or Mo, the balance being substantially Made of Al,
Si particles having a particle diameter of 2 to 3 μm, and agglomerated hard particles having a particle diameter of 4 to 5 μm, which are produced by forming an Al—Fe—Mn—Si based intermetallic compound and grown by V and / or Mo An aluminum-based bearing alloy characterized by
次の(1)〜(3)のうち、1つ以上を含有することを特徴とする請求項1記載のアルミニウム基軸受合金。
(1)Cuを5重量%以下
(2)Ti、B、Cr、Zr、Sbのうちから1種以上を3重量%以下
(3)Zn、Ni、Co、W、Ag、Mg、Pb、Bi、Inのうちから1種以上を5重量%以下
The aluminum-based bearing alloy according to claim 1, comprising one or more of the following (1) to (3).
(1) Cu is 5 wt% or less (2) One or more of Ti, B, Cr, Zr, and Sb is 3 wt% or less (3) Zn, Ni, Co, W, Ag, Mg, Pb, Bi 1% or more of In, 5% by weight or less
JP31949799A 1999-11-10 1999-11-10 Aluminum base bearing alloy Expired - Fee Related JP4422255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31949799A JP4422255B2 (en) 1999-11-10 1999-11-10 Aluminum base bearing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31949799A JP4422255B2 (en) 1999-11-10 1999-11-10 Aluminum base bearing alloy

Publications (2)

Publication Number Publication Date
JP2001140890A JP2001140890A (en) 2001-05-22
JP4422255B2 true JP4422255B2 (en) 2010-02-24

Family

ID=18110889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31949799A Expired - Fee Related JP4422255B2 (en) 1999-11-10 1999-11-10 Aluminum base bearing alloy

Country Status (1)

Country Link
JP (1) JP4422255B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3472284B2 (en) * 2001-10-10 2003-12-02 大同メタル工業株式会社 Aluminum bearing alloy
GB0613526D0 (en) 2006-07-07 2006-08-16 Dana Corp Bearing materials
JP2011027241A (en) * 2009-07-29 2011-02-10 Daido Metal Co Ltd Sliding bearing
JP2016089869A (en) * 2014-10-30 2016-05-23 大豊工業株式会社 Manufacturing method of washer, and washer
KR102246758B1 (en) * 2016-03-30 2021-05-03 다이도 메탈 고교 가부시키가이샤 Al-based bearing alloy and sliding bearing using the same
JP2020128563A (en) * 2019-02-07 2020-08-27 大豊工業株式会社 SLIDE MEMBER, AND MANUFACTURING METHOD OF Al ALLOY LAYER FOR SLIDE MEMBER

Also Published As

Publication number Publication date
JP2001140890A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
KR100505928B1 (en) Aluminum Bearing Alloy
US4857267A (en) Aluminum base bearing alloy and method of producing same
US4789607A (en) Aluminum bearing alloy and two-layer bearing material having bearing layer of aluminum bearing alloy therein
JP5143827B2 (en) Method for producing Pb-free copper alloy sliding material
JP3839740B2 (en) Sliding material
JP2009228870A (en) Sliding bearing
JP3472284B2 (en) Aluminum bearing alloy
EP2292805B1 (en) Bronze alloy, process for producing the same, and sliding member comprising bronze alloy
JPH0539811A (en) Multilayer sliding material for high speed and manufacture thereof
JP2738999B2 (en) High wear-resistant aluminum bronze casting alloy, sliding member using the alloy
JP5412530B2 (en) Aluminum alloy for slide bearing, slide bearing and manufacturing method thereof
JP2007100200A (en) Aluminum alloy for bearing
JP5231312B2 (en) Plain bearing
JP4422255B2 (en) Aluminum base bearing alloy
US5512242A (en) Tin-base white metal bearing alloy excellent in heat resistance and fatigue resistance
JPH0633175A (en) Aluminum alloy bearing
JPS6245302B2 (en)
JP3351181B2 (en) Wear-resistant aluminum alloy sliding member
JPS5867841A (en) Aluminum alloy bearing
JP3920656B2 (en) High rigidity aluminum alloy containing boron
JPS6055582B2 (en) aluminum bearing material
JPS6143421B2 (en)
JPH0569894B2 (en)
JPS6140297B2 (en)
JPS5814866B2 (en) Al↓-Sn bearing alloy and bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees