JPS6143421B2 - - Google Patents

Info

Publication number
JPS6143421B2
JPS6143421B2 JP54111480A JP11148079A JPS6143421B2 JP S6143421 B2 JPS6143421 B2 JP S6143421B2 JP 54111480 A JP54111480 A JP 54111480A JP 11148079 A JP11148079 A JP 11148079A JP S6143421 B2 JPS6143421 B2 JP S6143421B2
Authority
JP
Japan
Prior art keywords
alloy
bearing
alloys
present
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54111480A
Other languages
Japanese (ja)
Other versions
JPS5635744A (en
Inventor
Tatsuhiko Fukuoka
Takeshi Muraki
Shoji Kamya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP11148079A priority Critical patent/JPS5635744A/en
Publication of JPS5635744A publication Critical patent/JPS5635744A/en
Priority to JP1524282A priority patent/JPS6055582B2/en
Publication of JPS6143421B2 publication Critical patent/JPS6143421B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルミニウムAlを母材とする。アル
ミニウム―スズ(Sn)系軸受材料に関するもの
である。さらに詳しくはAl―Sn系軸受合金中に
含まれる低融点材料を改良し、かつ硬質物を合金
中に多量に分散させてなる耐摩耗性にすぐれた
Al―Sn系軸受合金を提供することにある。 従来のアルミニウム軸受合金としては、主とし
てAl―Sn系合金が使用されているが、この合金
は最近の自動車用内燃機関がより高速、高荷重の
条件下で使用されると軸と軸受との間に介在する
潤滑油膜が薄くなつて軸と軸受の直接接触が生じ
やすくなり、その結果軸受の摩耗量が多くなつた
り焼付にいたることがある。 そこで本件発明は軸と軸受が直接接触を起して
も充分な耐摩耗性を持つと同時に耐荷重性にもす
ぐれたAl―Sn系軸受合金を提供することにあ
る。すなわち、Alを実質上残部としてSn3〜40
%,鉛(Pb)0.1〜5.0%,アンチモン(Sb)0.1
〜3%未満及び硬質物生成用としての、シリコン
(Si),ニツケル(Ni),マンガン(Mn),鉄
(Fe),ジルコニウム(Zr),モリブデン(Mo),
バナジウム(V),コバルト(Co),ニオブ
(Nb)の1種または2種以上を合計で3.0%を越
え10.0%以下添加した軸受合金であつて、かつ母
材中に析出した硬質物を圧延によりその母材中に
分散させた軸受合金(合金1)。 合金1にCuおよび(または)Mgを0.1〜3.0%
添加した軸受合金(合金2)を提供するものであ
る。 次に本件合金に添加した各種元素の特性を示す
と Sn: 潤滑を主目的として添加される元素であ
る。このSnはAl中に微細に分散する程潤滑性を
確保しながら全般の機械的強度を保つ。3%以下
では潤滑の効果がなく、40%以上では全般が軟ら
かくなつて耐荷重性がなくなる。 Pb: 潤滑を主目的として添加される元素である
が、Sn以上に潤滑性にすぐれた材料である。ま
たSnとともに存在させると一部Sb―Pbの合金元
素を作りSn,Pbより融点の低い元素が存在する
ことになつて金属接触が生じた場合には、特に潤
滑性の効果が発揮される。0.1%以下では潤滑の
効果がなく5.0%を越えると分散性が低下し、鋳
造性が悪くなる。 Sb: Pbを比較的微細に分散させる効果があ
り、またSnとPbとともに存在させるとSn―Pb―
Sbの合金を作つて融点及び硬度の高い軟質金属
を存在させる。このことは軟質材の耐荷重性、高
温特性を改良することになる。また余分なSb
は、Al―Sb,Al―Sb―Si等の析出物を作り、こ
の析出物は非常に硬いため、これが適度に分散す
ると耐荷重性の向上と耐摩耗性の向上につなが
る。この意味で0.1%以上添加すれば上記を満足
し、3.0%以上になると析出物が多くなりすぎ
る。 Cu・Mg: Al地を強化し耐荷重性、疲労強度の点で
軸受が高温(200℃以上)りさらされた場合の硬
さの低下を防止する。0.1%以下では効果がなく
3.0%以上ではAl地が硬くなりすぎる。 Si,Ni,Mn,Fe,Zr,Mo,Co,V,Np: これら元素を(一般的に母合金で添加)
Alとともに鋳造することにより、晶出物,析出
物を生じさせ、さらに圧延することによつてその
析出物すなわち硬質物を母材中に分散させる。こ
れら硬質物はすべてビツカーズ硬さで数百以上あ
るため合金全体の硬さの向上と耐摩耗を向上させ
る。 これらの元素の添加量は、30%以下では析出す
る硬質物の量が少なくて効果があまり期待できな
く、また10%以上では硬質物が多く析出しすぎて
圧延性が悪くなるとともに、圧延による硬質物の
分散性も悪くなる。尚これら添加物元素の互の合
金化した元素またはAlと合金化した元素を添加
させてもよい。 ここで好ましい範囲は Sn:6〜20% Pb:0.5〜4.0% Sb:0.5〜2.0% Cu・Mg:0.2〜2.0% Si等:3.0〜6.0% 次に実施例によつて本発明を説明する。次表は
本発明に係る合金1〜8、比較用として9〜11
の化学成分値を示すものである。
The present invention uses aluminum Al as a base material. This relates to aluminum-tin (Sn) bearing materials. In more detail, we improved the low melting point material contained in the Al-Sn bearing alloy and dispersed a large amount of hard substances in the alloy, resulting in excellent wear resistance.
Our objective is to provide Al-Sn bearing alloys. Al-Sn alloys are mainly used as conventional aluminum bearing alloys, but when modern automobile internal combustion engines are used under higher speed and higher load conditions, this alloy becomes more difficult to maintain between the shaft and the bearings. The lubricating oil film present in the bearing becomes thinner, making direct contact between the shaft and the bearing more likely to occur, resulting in increased bearing wear or seizure. Therefore, the object of the present invention is to provide an Al--Sn bearing alloy that has sufficient wear resistance even when the shaft and bearing come into direct contact, and also has excellent load carrying capacity. That is, Sn3 to 40 with Al as the substantial remainder.
%, lead (Pb) 0.1-5.0%, antimony (Sb) 0.1
Silicon (Si), nickel (Ni), manganese (Mn), iron (Fe), zirconium (Zr), molybdenum (Mo), less than ~3% and for hard material generation.
A bearing alloy containing one or more of vanadium (V), cobalt (Co), and niobium (Nb) in a total amount of more than 3.0% and less than 10.0%, and the hard material precipitated in the base material is rolled. bearing alloy (alloy 1) dispersed in its base material. Alloy 1 with 0.1-3.0% Cu and/or Mg
The present invention provides a bearing alloy (alloy 2) containing the following: Next, the characteristics of the various elements added to the alloy are as follows: Sn: This is an element added primarily for the purpose of lubrication. The finer the Sn is dispersed in Al, the more it ensures lubricity and maintains overall mechanical strength. If it is less than 3%, there will be no lubrication effect, and if it is more than 40%, the whole will become soft and lose its load bearing capacity. Pb: An element added primarily for lubrication, but it is a material with better lubricity than Sn. Furthermore, when it is present together with Sn, it forms a partial Sb--Pb alloy element, and when an element with a lower melting point than Sn and Pb is present, a lubricity effect is particularly exhibited when metal contact occurs. If it is less than 0.1%, there is no lubrication effect, and if it exceeds 5.0%, dispersibility decreases and castability deteriorates. Sb: Has the effect of dispersing Pb relatively finely, and when present together with Sn and Pb, Sn-Pb-
Create an alloy of Sb to create a soft metal with a high melting point and hardness. This improves the load carrying capacity and high temperature properties of the soft material. Also extra Sb
produces precipitates such as Al-Sb and Al-Sb-Si, and since these precipitates are very hard, proper dispersion of these precipitates leads to improved load carrying capacity and wear resistance. In this sense, adding 0.1% or more satisfies the above requirements, and adding 3.0% or more results in too much precipitate. Cu/Mg: Strengthens the Al base to improve load resistance and fatigue strength, preventing a decrease in hardness when the bearing is exposed to high temperatures (over 200℃). No effect below 0.1%
If it exceeds 3.0%, the Al base will become too hard. Si, Ni, Mn, Fe, Zr, Mo, Co, V, Np: These elements (generally added in the master alloy)
By casting with Al, crystallized substances and precipitates are generated, and by further rolling, the precipitates, that is, hard substances, are dispersed in the base material. All of these hard substances have a Bitkers hardness of several hundred or more, which improves the hardness and wear resistance of the entire alloy. If the amount of these elements added is less than 30%, the amount of hard substances precipitated will be small and the effect will not be expected, and if it is more than 10%, too many hard substances will precipitate, resulting in poor rolling properties and problems caused by rolling. The dispersibility of hard materials also deteriorates. Note that an element alloyed with each other or an element alloyed with Al may be added. Here, the preferred range is Sn: 6-20% Pb: 0.5-4.0% Sb: 0.5-2.0% Cu/Mg: 0.2-2.0% Si, etc.: 3.0-6.0% Next, the present invention will be explained with examples. . The following table shows alloys 1 to 8 according to the present invention, and alloys 9 to 11 for comparison.
It shows the chemical composition value of.

【表】【table】

【表】 合金1から8迄は、ガス炉においてAl地金を
溶解し次にAl―Sb母合金やAl―Cu母合金、Al―
Mg母合金、Al―Si母合金、Al―Mn母合金、Al―
Ni母合金、Al―Fe母合金、Al―Zr母合金、Al―
Co母合金等を目的成分に応じて溶解し最後にSn
およびPbを添加したのち脱ガス処理をし、金型
に鋳造を行なつたものでその後圧延と焼鈍(350
℃)を繰り返して試料を作り、硬さの測定を行な
つた。このとき、母材中に析出する析出物は上記
圧延によつて母材中に充分に分散されて合金全体
の機械的性質を向上させている。 すなわち、本発明の範囲内の組成を有する鋳造
材では偏析が生じてもろくなる。第4図aはSiを
50%とし、他は本発明の範囲内の組成としたとき
の鋳造材におけるSiの偏析状態を、第5図aは同
様にMnを4.5%としたときのAl―Mn合金の偏析
状態を模式図として示したものである。さらに第
4図bおよび第5図bは第4図a、第5図aの鋳
造材を圧延して上記析出した硬質物を母材中に分
散させた本発明における状態を示している。硬質
物が偏析した状態で存在する鋳造材においては、
その偏析部分にひびやわれが生じ易くなつてもろ
くなる等機械的性質が悪くなり、一般に上記元素
の添加量が3%を越えるようになると実用に供し
得なくなる。 これに対し本発明は、上記元素を3%を越えて
添加することにより多くの硬質物を積極的に析出
させ、更にこれを圧延して上記偏析した硬質物を
母材中に分散させ(第4図bおよび第5図b参
照)、これによりもろさ等の機械的性質を改善し
て実用化を可能としたものである。 次に、上記硬さの測定を行なつた試料について
は、その後これらの合金と裏金鋼板とを接着して
バイメタル材とし、これを焼鈍した後平面軸受に
加工して摩擦試験を行なつた。この試験結果は、
合金を直接平面軸受に加工して行なう摩擦試験結
果に対応する。また合金9〜11は、比較材の合
金を上記合金と同一製造法で作成して試料とし同
一の試験を行なつた。第1図は上記合金1ないし
8の硬さをヴイツカース硬度で測定した結果を示
すものである。これらのグラフから明らかなよう
に、本発明に係る1〜8は比較材合金9〜11に
比してすべて同等または以上に硬度が高い。これ
は析出物の硬質物のためである。 また特にCuおよび(または)Mgを添加した合
金は温度を上昇させて硬さを測定した第2図で明
らかな如く、高温度になつても硬さの低下が少な
いことが認められる。このことは軸受が高温度で
使用されても耐荷重性、耐摩耗性を有することに
なるのである。 次に第3図は、本発明に係る合金2,4,7と
比較材の合金9,10,11について摩擦試験を
行なつたときの結果を示すものである。この実験
は、軸回転数1000r.p.m、軸材としてS55C焼入れ
材を使用し、軸表面粗さを1μmとし、一定油温
(120℃)の強制潤滑下において、荷重を増加させ
た場合の摩耗量の変化の状態を測定した結果を示
すグラフである。このグラフによれば比較材の合
金9,10,11と比し2,4,7は摩耗量が極
めて少ないことが認められ、優れた耐摩耗性を示
している。 これはAl地中に分散している硬質物の効果で
あると認められる。なお、本発明に係る合金組成
においてAl中には通常の精錬技術ではどうして
も避けられない不純物が含まれることは勿論であ
る。 以上の通り本発明に係るAl―Sn系軸受合金は
多量の硬質物を圧延によつて母材中に分散させた
ものであるので、多量の硬質物が偏析しているも
のに比してもろさ等の機械的性質を改善して実用
に供することが可能となるという効果が得られ
る。さらに、Cuおよび(または)Mgを加えれば
高温強度がより向上する。
[Table] For Alloys 1 to 8, Al base metal is melted in a gas furnace, and then Al-Sb mother alloy, Al-Cu mother alloy, Al-
Mg master alloy, Al-Si master alloy, Al-Mn master alloy, Al-
Ni master alloy, Al-Fe master alloy, Al-Zr master alloy, Al-
Co master alloy etc. are melted according to the target components and finally Sn
After adding Pb and degassing, the product was cast into a mold and then rolled and annealed (350
℃) was repeated to prepare samples, and the hardness was measured. At this time, the precipitates precipitated in the base metal are sufficiently dispersed in the base metal by the above-mentioned rolling, thereby improving the mechanical properties of the entire alloy. That is, in a cast material having a composition within the range of the present invention, segregation occurs and the material becomes brittle. Figure 4 a shows Si
50% and other compositions within the range of the present invention, and Figure 5 a schematically shows the segregation state of Al-Mn alloy when Mn is 4.5%. It is shown as a diagram. Furthermore, FIGS. 4b and 5b show a state in the present invention in which the cast material of FIGS. 4a and 5a is rolled and the precipitated hard material is dispersed in the base material. In cast materials where hard materials exist in a segregated state,
Cracks and creases tend to occur in the segregated portions, resulting in poor mechanical properties such as brittleness, and generally, if the amount of the above-mentioned elements added exceeds 3%, it becomes unusable. In contrast, in the present invention, by adding more than 3% of the above elements, many hard substances are actively precipitated, and this is further rolled to disperse the segregated hard substances in the base material. (see Figures 4b and 5b), thereby improving mechanical properties such as brittleness and making it possible to put it into practical use. Next, for the samples whose hardness was measured above, these alloys were bonded to a backing steel plate to form a bimetallic material, which was annealed and then processed into a flat bearing and subjected to a friction test. This test result is
This corresponds to the results of a friction test conducted by directly processing the alloy into a flat bearing. For Alloys 9 to 11, comparative alloys were prepared using the same manufacturing method as the above-mentioned alloys, and the same tests were conducted using them as samples. FIG. 1 shows the results of measuring the hardness of Alloys 1 to 8 by Witzker's hardness. As is clear from these graphs, Alloys Nos. 1 to 8 according to the present invention have the same or higher hardness than Comparative Alloys Nos. 9 to 11. This is due to the hardness of the precipitates. Furthermore, as is clear from FIG. 2, in which the hardness of alloys to which Cu and/or Mg have been added is measured at elevated temperatures, there is little decrease in hardness even at high temperatures. This means that the bearing has load resistance and wear resistance even when used at high temperatures. Next, FIG. 3 shows the results of a friction test conducted on alloys 2, 4, and 7 according to the present invention and comparative alloys 9, 10, and 11. In this experiment, the shaft rotation speed was 1000 rpm, S55C hardened material was used as the shaft material, the shaft surface roughness was 1 μm, and the wear was measured when the load was increased under forced lubrication at a constant oil temperature (120°C). It is a graph showing the results of measuring the state of change in amount. According to this graph, compared to alloys 9, 10, and 11, which were comparative materials, alloys 2, 4, and 7 were found to have extremely small amounts of wear, indicating excellent wear resistance. This is recognized to be the effect of hard materials dispersed in the Al ground. It goes without saying that in the alloy composition according to the present invention, Al contains impurities that cannot be avoided by ordinary refining techniques. As mentioned above, the Al-Sn bearing alloy according to the present invention has a large amount of hard material dispersed in the base material by rolling, so it is less brittle than an alloy in which a large amount of hard material is segregated. It is possible to improve the mechanical properties such as, etc., and to make it possible to put it into practical use. Furthermore, adding Cu and/or Mg further improves high temperature strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るAl―Sn系軸受合金と比
較材の同種軸受合金の硬度の様子をプロツトした
グラフ。第2図は温度変化に伴なう硬度変化の様
子をプロツトしたグラフ。第3図は鋼軸に対して
同じく荷重を増加させた場合の摩耗量の変化の状
況を示すグラフ。第4図aはSiを5.0%とし、他
は本発明の範囲内の組成としたときのSiの偏析状
態を、同図bは同図aを圧延して偏析した硬質物
を母材中に分散させた状態を示す模式図。第5図
a,bはそれぞれMnを4.5%としたときの第4図
a,bに相当する模式図。
FIG. 1 is a graph plotting the hardness of the Al--Sn bearing alloy according to the present invention and a comparative bearing alloy of the same type. Figure 2 is a graph plotting changes in hardness due to temperature changes. Figure 3 is a graph showing changes in the amount of wear when the load is similarly increased on the steel shaft. Figure 4a shows the segregation state of Si when Si is 5.0% and other compositions are within the range of the present invention, and Figure 4b shows the hard material segregated by rolling the same figure a into the base material. A schematic diagram showing a dispersed state. Figures 5a and 5b are schematic diagrams corresponding to Figure 4a and b when Mn is 4.5%, respectively.

Claims (1)

【特許請求の範囲】 1 重量で錫3〜40%、鉛0.1〜5%、アンチモ
ン0.1〜3%未満、シリコン、ニツケル、マンガ
ン、鉄、ジルコニウム、モリブデン、コバルト、
バナジウム、ニオブの1種または2種以上を合計
で3.0%を越え10.0%以下、および残部が実質的
にアルミニウムからなるアルミニウム軸受合金で
あつて、かつ母材中に析出した硬質物を圧延によ
りその母材中に分散させたことを特徴とするアル
ミニウム軸受合金。 2 重量で錫3〜40%、鉛0.1〜5%、アンチモ
ン0.1〜3%未満、銅および(または)マグネシ
ウム0.1〜3%、シリコン、ニツケル、マンガ
ン、鉄、ジルコニウム、モリブデン、コバルト、
バナジウム、ニオブの1種または2種以上を合計
で3.0%を越え10.0%以下、および残部が実質的
にアルミニウムからなるアルミニウム軸受合金で
あつて、かつ母材中に析出した硬質物を圧延によ
りその母材中に分散させたことを特徴とするアル
ミニウム軸受合金。
[Claims] 1 3 to 40% tin, 0.1 to 5% lead, 0.1 to less than 3% antimony, silicon, nickel, manganese, iron, zirconium, molybdenum, cobalt,
An aluminum bearing alloy containing one or more of vanadium and niobium in a total of more than 3.0% and less than 10.0%, and the balance being substantially aluminum, and the hard material precipitated in the base material is removed by rolling. An aluminum bearing alloy characterized by being dispersed in the base material. 2. Tin 3-40%, lead 0.1-5%, antimony 0.1-3%, copper and/or magnesium 0.1-3%, silicon, nickel, manganese, iron, zirconium, molybdenum, cobalt,
An aluminum bearing alloy containing one or more of vanadium and niobium in a total of more than 3.0% and less than 10.0%, and the balance being substantially aluminum, and the hard material precipitated in the base material is removed by rolling. An aluminum bearing alloy characterized by being dispersed in the base material.
JP11148079A 1979-08-30 1979-08-30 Aluminum bearing alloy Granted JPS5635744A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11148079A JPS5635744A (en) 1979-08-30 1979-08-30 Aluminum bearing alloy
JP1524282A JPS6055582B2 (en) 1979-08-30 1982-02-01 aluminum bearing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11148079A JPS5635744A (en) 1979-08-30 1979-08-30 Aluminum bearing alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1524282A Division JPS6055582B2 (en) 1979-08-30 1982-02-01 aluminum bearing material

Publications (2)

Publication Number Publication Date
JPS5635744A JPS5635744A (en) 1981-04-08
JPS6143421B2 true JPS6143421B2 (en) 1986-09-27

Family

ID=14562315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11148079A Granted JPS5635744A (en) 1979-08-30 1979-08-30 Aluminum bearing alloy

Country Status (1)

Country Link
JP (1) JPS5635744A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586955A (en) * 1981-07-02 1983-01-14 Daido Metal Kogyo Kk Bearing aluminum alloy with superior fatigue resistance and nonseizing property
JPS58171545A (en) * 1982-03-31 1983-10-08 Daido Metal Kogyo Kk Bearing aluminum alloy
JPH0617529B2 (en) * 1986-03-18 1994-03-09 エヌデ−シ−株式会社 Al-Sn-Pb-Si bearing alloy
JPS6263637A (en) * 1985-09-17 1987-03-20 Taiho Kogyo Co Ltd Aluminum bearing alloy
JP2705781B2 (en) * 1991-02-08 1998-01-28 大同メタル工業 株式会社 Bearing metal for large engines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1445525A (en) * 1974-02-05 1976-08-11 Daido Metal Co Ltd Aluminium-based bearing alloys
JPS5212131A (en) * 1975-07-18 1977-01-29 Stauffer Chemical Co Substituted thiourea and miticide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1445525A (en) * 1974-02-05 1976-08-11 Daido Metal Co Ltd Aluminium-based bearing alloys
JPS5212131A (en) * 1975-07-18 1977-01-29 Stauffer Chemical Co Substituted thiourea and miticide

Also Published As

Publication number Publication date
JPS5635744A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
JP5253440B2 (en) Sliding bearings for turbochargers for internal combustion engines
JP3472284B2 (en) Aluminum bearing alloy
GB2103240A (en) Aluminium-based alloys suitable for use as bearing metals
JP3185219B2 (en) Aluminum bearing alloy
JPS6245302B2 (en)
JPS6263637A (en) Aluminum bearing alloy
JP2761181B2 (en) Tin-based white metal bearing alloy with excellent heat and fatigue resistance
JPS582578B2 (en) aluminum bearing alloy
JPS6143421B2 (en)
JPS6160906B2 (en)
JPS6055582B2 (en) aluminum bearing material
JPS6140026B2 (en)
JP3375802B2 (en) Brass sliding material
JP4422255B2 (en) Aluminum base bearing alloy
JPS5864333A (en) Aluminum alloy bearing
JP7376998B2 (en) Alloys for sliding parts, sliding parts, internal combustion engines, and automobiles
JPS6058774B2 (en) aluminum bearing alloy
JPS6140296B2 (en)
JPS58113342A (en) Bearing aluminum alloy
JPS6058775B2 (en) aluminum bearing material
US2375224A (en) Silver-thallium bearing
JPS5814866B2 (en) Al↓-Sn bearing alloy and bearing device
JPS6263638A (en) Aluminum bearing alloy
JPS61117244A (en) Sliding aluminum alloy
JPS6140297B2 (en)