JPS5814866B2 - Al↓-Sn bearing alloy and bearing device - Google Patents

Al↓-Sn bearing alloy and bearing device

Info

Publication number
JPS5814866B2
JPS5814866B2 JP53084233A JP8423378A JPS5814866B2 JP S5814866 B2 JPS5814866 B2 JP S5814866B2 JP 53084233 A JP53084233 A JP 53084233A JP 8423378 A JP8423378 A JP 8423378A JP S5814866 B2 JPS5814866 B2 JP S5814866B2
Authority
JP
Japan
Prior art keywords
bearing
alloy
less
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53084233A
Other languages
Japanese (ja)
Other versions
JPS5511173A (en
Inventor
神谷庄司
奈良保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP53084233A priority Critical patent/JPS5814866B2/en
Priority to US06/047,336 priority patent/US4278740A/en
Priority to GB7923970A priority patent/GB2027050B/en
Priority to DE2928004A priority patent/DE2928004C3/en
Publication of JPS5511173A publication Critical patent/JPS5511173A/en
Priority to US06/136,619 priority patent/US4340649A/en
Priority to US06/227,876 priority patent/US4375499A/en
Priority to US06/228,640 priority patent/US4375500A/en
Publication of JPS5814866B2 publication Critical patent/JPS5814866B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/32Coating surfaces by attaching pre-existing layers, e.g. resin sheets or foils by adhesion to a substrate; Laminating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 本発明は、高温状態をこおけるSn粒子の成長および硬
さの低下が少なく、耐疲労性Qこ優れ、かつ耐摩耗性に
優れたAl−Sn系軸受合金および軸受装置Qこ関し、
鋳造後数回の圧延と焼鈍を行なった後使用する場合に好
適な軸受台金を提供するもので、特Qこ軸受(ことって
苛酷な条件が要求される球状黒鉛鋳鉄軸を相手材としで
使用しでも良好なAn−Sn系軸受合金を提供するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an Al-Sn bearing alloy and a bearing that exhibit little growth of Sn particles and decrease in hardness when subjected to high temperature conditions, excellent fatigue resistance (Q), and excellent wear resistance. Regarding equipment Q,
This product provides a bearing base metal suitable for use after several rounds of rolling and annealing after casting. An object of the present invention is to provide an An-Sn bearing alloy that is good even when used in

近年の自動車用内燃機関は、内燃機関の小型、高出力化
が要求され、かつ、排気ガス浄化対策のためのブローバ
イガス還元装置の取付が要求されるようtこなると、軸
受摺動材料はより高荷重、高温度の条件下で使用される
こととなり、このような悪条件下では従来の軸受摺動材
料は疲労破壊や異常摩耗を起こしてトラブルの要因とな
っていた。
In recent years, internal combustion engines for automobiles have been required to be smaller and have higher output, and also to be equipped with blow-by gas reduction devices for exhaust gas purification, so bearing sliding materials have become more important. These bearings are used under conditions of high load and high temperature, and under such adverse conditions, conventional bearing sliding materials suffer from fatigue failure and abnormal wear, causing trouble.

さらQこ、使用される軸(こついでも、低コスト化を図
るため従来の鍛造Qこよる軸から加工上安価な球状黒鉛
鋳鉄軸、あるいは軸粗さの大きい軸へと移行する傾向が
みられ、これらのことから、なお一層高温度下での耐疲
労性、耐焼付性の向上、さらeこ耐摩耗性の向上が要求
されろ。
Furthermore, in order to reduce costs, there is a tendency to shift from conventional forged Q-shaped shafts to spheroidal graphite cast iron shafts, which are cheaper to process, or to shafts with larger shaft roughness. For these reasons, there is a need for further improvements in fatigue resistance and seizure resistance under high temperatures, as well as further improvements in wear resistance.

従来のアルミニウム軸受合金としでは、主としUAl−
Sn系合金、例えは重量百分率でAl(残部) − S
n ( 3.5〜4.5 ) − Si ( 3.5〜
4.5 )−Cu ( 0.7 〜1.3 ) , A
.6 (残部)−Sn(4〜8)−Si ( 1 〜2
)−Cu(0.1〜2)−Ni ( 0.1〜1 )
, A7 (残部)−Sn(3〜40)−Pb ( 0
.1〜5 )−Cu ( 0.2〜2)−Sb(0.1
〜3)一Si(0.2〜3)−Ti(0.01〜1)
,All (残部)−Sn(15〜30) −Cu (
0.5 〜2) ,A.6 (残部) −Sn( 1
〜23 ) −Pb ( 1.5 〜9 )−Cu (
0.3 〜3 )−Si ( 1〜8 )等のA l
− S n系合金が使用されている。
Conventional aluminum bearing alloys are mainly UAl-
Sn-based alloy, e.g. Al (balance) - S in weight percentage
n (3.5~4.5) - Si (3.5~
4.5)-Cu (0.7-1.3), A
.. 6 (remainder)-Sn(4-8)-Si (1-2
)-Cu(0.1-2)-Ni(0.1-1)
, A7 (remainder)-Sn(3-40)-Pb (0
.. 1-5)-Cu(0.2-2)-Sb(0.1
~3)-Si(0.2-3)-Ti(0.01-1)
, All (remainder)-Sn(15-30)-Cu (
0.5 to 2),A. 6 (remainder) -Sn( 1
~23)-Pb(1.5~9)-Cu(
0.3-3)-Si(1-8) etc.
- Sn-based alloy is used.

しかし、これらのような従来合金は、上述の如く苛酷な
条件で自動車用内燃機関の軸受に使用された場合、内燃
機関の高負荷運転が継続したとき等に短時間で疲労破壊
の起ることがあった。
However, when conventional alloys such as these are used in the bearings of automobile internal combustion engines under the severe conditions mentioned above, fatigue failure may occur in a short period of time, such as when the internal combustion engine continues to operate under high load. was there.

これは内燃機関内のオイルが高負荷連続運転時に特に高
温となり、例えはオイルパン内のオイルの温度は130
°C〜150℃にも達するため、軸受けそのすべり面に
おいてかなり高温度になることが予想され、この結果従
来のAn−Sn系合金では高温下で硬さが急激に低下し
てSnの溶融や移動がおこり、このことが疲労強度も低
下させる原因であると考えられる。
This is because the oil in the internal combustion engine becomes particularly hot during continuous high-load operation, and for example, the temperature of the oil in the oil pan is 130℃.
°C to 150 °C, it is expected that the sliding surface of the bearing will be at a considerably high temperature.As a result, in conventional An-Sn alloys, the hardness rapidly decreases at high temperatures and the Sn melts. This movement is thought to be the cause of the decrease in fatigue strength.

本発明の発明者等が高温下での硬さの低下しない合金や
Snの動きにくい合金を内燃機関軸受の形状に加工し、
高油温下で動荷重疲労試験を行なった結果、疲労強度の
向上が認められたことは上記考察を裏付けている。
The inventors of the present invention processed an alloy whose hardness does not decrease under high temperatures and an alloy in which Sn does not easily move into the shape of an internal combustion engine bearing.
The above consideration is supported by the fact that an improvement in fatigue strength was observed as a result of a dynamic load fatigue test conducted under high oil temperature.

また、以上の高温硬さの低下に基く疲労強度の低下とは
別に、従来のA IJ − S n系合金では合金組織
におけるSn粒子の粗大化も疲労強度の低下の原因とな
っていろ。
In addition to the above reduction in fatigue strength due to the reduction in high-temperature hardness, in conventional AIJ-Sn alloys, coarsening of Sn particles in the alloy structure may also be a cause of reduction in fatigue strength.

すなわち、アルミニウム軸受合金は、Al−Sn系合金
を裏金鋼板に圧接して形成するものが一般的であるが、
両金属の接着強度を増すために、圧接後これを焼鈍する
工程が不可欠であり、一般的にはこの焼鈍は、Al−F
eの金属間化合物の析出する温度以下で、温度が高く時
間が長い程接着強度が犬となる。
In other words, aluminum bearing alloys are generally formed by press-welding an Al-Sn alloy to a backing steel plate.
In order to increase the adhesive strength of both metals, annealing is essential after pressure bonding, and generally this annealing is performed using Al-F.
Below the temperature at which intermetallic compounds precipitate, the higher the temperature and the longer the time, the worse the adhesive strength becomes.

ところが、従来のAl−Sn系合金は焼鈍によって高温
下におかれると、合金組織中でAl粒界およびSn粒子
の粗大化が進行してしまうという欠点があった。
However, conventional Al-Sn alloys have a drawback in that when subjected to high temperature during annealing, Al grain boundaries and Sn grains become coarser in the alloy structure.

つまり従来のアルミニウム軸受合金では裏金鋼板との接
着強度を増すために焼鈍すれば、Sn粒子の粗大化を招
き、この粗大化はAl−Sn系合金の疲労強度を低下さ
せる原因となっている。
In other words, when conventional aluminum bearing alloys are annealed to increase the adhesive strength with the backing steel plate, the Sn particles become coarser, and this coarsening causes a decrease in the fatigue strength of the Al-Sn alloy.

また、これら従来のAA−Sn系合金を球状黒鉛鋳鉄軸
と組合せて使用した場合、極端に摩耗を起し疲労破壊が
起きやすいという欠点がある。
Further, when these conventional AA-Sn alloys are used in combination with a spheroidal graphite cast iron shaft, there is a drawback that they cause extreme wear and are prone to fatigue failure.

本発明の発明者等は、A.g−Sn系合金に種々の添加
元素を加えてその高温硬さ、疲労強度について改良を進
めた結果、既にAlにSnの他所要量の(?r,および
Cu等を加えた合金を開発し、特許出願(特願昭52−
2690号)している。
The inventors of the present invention are A. As a result of adding various additive elements to g-Sn alloys and improving their high-temperature hardness and fatigue strength, we have already developed an alloy in which Al, Sn, and the required amount of (?r, Cu, etc.) are added. , Patent application (1972-
No. 2690).

さらにSn,CrおよびCu等の他、Pbおよび(また
は)Inを加え、耐疲労性を維持したまま、特になじみ
性を向上させた合金を開発し、特許出願(特願昭52−
18225号)している。
Furthermore, in addition to Sn, Cr, Cu, etc., Pb and/or In were added to develop an alloy with particularly improved conformability while maintaining fatigue resistance.
No. 18225).

本発明は、更に研究を進めた結果、上記のA7−Sn系
合金にSiおよびMn,Sb,Ti ,Ni,Fe ,
Zr ,Mo , Coの1種または2種以上を添加
し分散析出させることによって、硬さを更に高め、耐疲
労性、なじみ性を同等に維持したまま、耐摩耗性を著し
く向上させることのできる軸受材を見出してなされたも
のである。
As a result of further research, the present invention has developed the above A7-Sn alloy with Si, Mn, Sb, Ti, Ni, Fe,
By adding and dispersing and precipitating one or more of Zr, Mo, and Co, it is possible to further increase the hardness and significantly improve the wear resistance while maintaining the same fatigue resistance and conformability. This was achieved by discovering a bearing material.

この分散した析出物はヴイツカース硬さで数百にも達し
非常に硬いため、軸受の相手材すなわち軸よりもかなり
硬く、この硬い析出物が軸受の耐摩耗性を著しく向上さ
せる。
These dispersed precipitates are extremely hard, reaching hundreds of Witzkers' hardness, and are considerably harder than the bearing's mating material, ie, the shaft, and these hard precipitates significantly improve the wear resistance of the bearing.

本発明のAA−Sn系合金は重量百分率で3.5〜35
%のSnと、0. 1〜1.0 %のCrと、1〜10
%のSiとMn ,Sb , Ti ,Ni ,Fe
,Zr ,Mo ,Coの1種または2種以上を1〜1
0%でSiを含む総量が10%以下であり残部が本質的
に1よりなるAn−Sn系合金を基本とし、従来のAA
−Sn系合金にCrおよびS1およびMn,Sb,Ti
,Ni,Fe,Zr,Mo,Coの1種または2種以上
を添加することによってSnが微細化され、硬さが向上
し、特に高温状態におけるSnの移動と成長がほとんど
ないこと、また高温硬さの低下も少ないことが認められ
た。
The AA-Sn alloy of the present invention has a weight percentage of 3.5 to 35
% Sn and 0. 1-1.0% Cr and 1-10%
% Si and Mn, Sb, Ti, Ni, Fe
, Zr, Mo, Co or more
The conventional AA
-Cr and S1 and Mn, Sb, Ti in Sn-based alloy
By adding one or more of , Ni, Fe, Zr, Mo, and Co, Sn is made finer and the hardness is improved. It was also observed that the decrease in hardness was small.

このことは動荷重疲労試験を行なったところ、高油温下
での疲労強度の向上したことにより確認された。
This was confirmed by the improvement in fatigue strength under high oil temperature when a dynamic load fatigue test was conducted.

加えて耐摩耗性も向上していることが確認された。In addition, it was confirmed that wear resistance was also improved.

このようなA l−Sn系合金は軸受の摺動特性に大き
な影響をおよぼす相手材、すなわち軸を球状黒鉛鋳鉄材
としても好適な軸受台金材である。
Such an Al--Sn alloy is a suitable bearing base metal material for a mating material that has a great effect on the sliding characteristics of the bearing, that is, for the shaft, which is made of spheroidal graphite cast iron.

Snの含有量を重量百分率で3.5〜35%に限定した
理由は、Snは潤滑を主目的として添加される元素であ
るが、これを35%以上添加するとなじみ性、潤滑性は
向上するが硬さが低下し、これが35%以下では逆に軸
受台金としては硬くなり過き、なじみ性等に劣るからで
ある。
The reason for limiting the Sn content to 3.5 to 35% by weight is that Sn is an element added primarily for the purpose of lubrication, but adding 35% or more of Sn improves compatibility and lubricity. This is because the hardness decreases, and if this is less than 35%, it becomes too hard as a bearing base metal, resulting in poor conformability.

なお、このSnの添加量はSnを孤立分散させるために
は従来のAA−Sn系合金では15%程度が上限とされ
ており、その理由はこれを15%以上添加すると合金中
のSn粒子がAl中に弧立して分散できなくなり連続状
態で存在し始めろため、硬さが低下するからとされてい
たが、本発明では後述する他の元素の添加効果によって
、これを35%迄添加した場合でも実用上支障がなくな
った。
The upper limit of the amount of Sn added in conventional AA-Sn alloys is about 15% in order to isolate and disperse Sn, and the reason is that if more than 15% is added, the Sn particles in the alloy will It was thought that this was because the hardness would decrease because it could no longer be dispersed vertically in Al and would begin to exist in a continuous state, but in the present invention, it was added up to 35% due to the effects of adding other elements, which will be described later. However, there is no longer any practical problem in this case.

また、Snの添加量を3.5〜35%の範囲でどのよう
に定めるかは、用途に応じ適宜決定されるべきものであ
るが、一般的には軸受に加わる荷重(負荷)の犬なると
きはSn量を少なく、荷重の小なるときはSn量を多く
すると良い。
In addition, how to determine the amount of Sn added within the range of 3.5 to 35% should be determined appropriately depending on the application, but in general, it depends on the amount of load applied to the bearing. When the load is small, it is better to reduce the amount of Sn, and when the load is small, it is better to increase the amount of Sn.

また別の観点からは、焼付きが懸念される状態で使用さ
れるときはS’n量を多く、この心配のないときはSn
量を少なくするのが良い。
From another point of view, the amount of S'n should be increased when used in conditions where there is a concern about seizure, and when there is no concern, the amount of S'n should be increased.
It is better to reduce the amount.

しかし最近は高油温により軸受が高温になり、これか原
因で軸受が変形し焼付、疲労を起すことが問題であるの
で、高温での変形が少ないという点からもSn量を定め
る必要もある。
However, recently, bearings have become hot due to high oil temperatures, and this has caused the problem of bearing deformation, seizure, and fatigue, so it is also necessary to determine the amount of Sn from the viewpoint of minimizing deformation at high temperatures. .

Crは硬さの上昇と高温時の軟化を防ぐ点、および焼鈍
によってもSn粒子の粗大化を招かないという点につい
て特に添加効果が高い。
Cr is particularly effective in preventing increase in hardness and softening at high temperatures, and in not causing coarsening of Sn particles even during annealing.

まず硬さの上昇と高温時の軟化防止について述べると、
このCrの添加量が重量百分率で0.1%以下では高温
硬さの改良は期待できず、1.0%以上添加すると、後
述するようにAll−Cr金属間化合物が細かく均一に
分散することができなくなり、添加効果が薄れることか
ら、その添加量を0.1〜1.0%に限定したものであ
る。
First, let's talk about increasing hardness and preventing softening at high temperatures.
If the amount of Cr added is less than 0.1% by weight, no improvement in high-temperature hardness can be expected; if it is added more than 1.0%, the All-Cr intermetallic compound will be finely and uniformly dispersed as described later. The amount of addition is limited to 0.1 to 1.0% because the effect of addition is weakened.

この高温硬さの向上についてさらに詳述すると、Crは
A[中に固溶することによってA7の再結晶温度を上げ
、かつ固溶すること自体でAl地の硬さを上昇させるが
、これと同時に数回の圧延によっても鋳造時に比して硬
さが上昇する。
To explain this improvement in high-temperature hardness in more detail, Cr increases the recrystallization temperature of A7 by forming a solid solution in A, and the solid solution itself increases the hardness of the Al base. At the same time, rolling several times also increases the hardness compared to when casting.

再結晶温度を上げることは、内燃機関の軸受がさらされ
る高温領域でも安定した機械的性質を維持させるために
効果があり、特に硬さについては、高温下での硬さの低
下を少なくして高温領域での軸受強度の向上をもたらす
Increasing the recrystallization temperature is effective in maintaining stable mechanical properties even in the high-temperature range that internal combustion engine bearings are exposed to. Improves bearing strength in high temperature areas.

また固溶限を過ぎて析出ずるA IJ − C rの金
属間化合物は、ヴイツカース硬さで約370を示し、こ
のためこの化合物が細かく分散することは高温硬さの維
持を助けるので、これが適量分散することは良い効果を
生ずる。
In addition, the intermetallic compound of AIJ-Cr that precipitates past the solid solubility limit has a Witzkars hardness of approximately 370, and fine dispersion of this compound helps maintain high-temperature hardness, so it is necessary to Dispersion produces positive effects.

ここに適量の範囲は前述のように1.0%以下を意味し
、この範囲であれは上記析出物は均一かつ微細であって
硬さの上昇が得られる0 次に、Cr添加によるSn粒子の粗大化阻止効果につい
て述べる。
As mentioned above, the appropriate amount range here means 1.0% or less, and within this range, the above-mentioned precipitates are uniform and fine and an increase in hardness can be obtained.Next, Sn particles by adding Cr The effect of preventing coarsening will be described.

Sn粒子の粗大化はA l− S n系合金が高温下に
おかれた場合A7粒界およびSn粒子の移動が起るため
に生ずる現象であるが、Crは上記のようにA lj
− C rの金属間化合物の析出物を作り、この析出物
がA7地金中に細かく分散して存在するため、この金属
間化合物が直接的にはAl粒界の移動を妨げ、同時にA
l結晶粒の成長を妨げてSn粒子の移動、つまりSn粒
子の粗大化を防ぐからであると考えられる。
The coarsening of Sn particles is a phenomenon that occurs when an Al-Sn alloy is exposed to high temperatures due to movement of A7 grain boundaries and Sn particles, but as mentioned above, Cr
- Precipitates of intermetallic compounds of Cr are formed, and these precipitates exist finely dispersed in the A7 metal, so these intermetallic compounds directly prevent the movement of Al grain boundaries, and at the same time
This is thought to be because it prevents the growth of l crystal grains and prevents the movement of Sn particles, that is, the coarsening of Sn particles.

このことは圧延・焼鈍の繰り返しによって微細化された
Sn粒子をそのままに保つことにつながり、前記種々の
効果を持つのである。
This leads to keeping the Sn particles, which have been made fine by repeated rolling and annealing, as they are, resulting in the various effects described above.

またこのような現象はSnの量が少ない場合でも認めら
れるが、比較的Sn量の多い場合(約10楚以上)にお
いて大きな効果があり、特にSnが連続して存在し始め
る約15%以上において顕著な効果があらわれる。
Although this phenomenon is observed even when the amount of Sn is small, it has a large effect when the amount of Sn is relatively large (approximately 10 so or more), especially when Sn starts to exist continuously at about 15% or more. A remarkable effect appears.

またSn粒子が微細なまま保持されて、Al地金中に存
在するということは、同時に232゜Cという低い融点
をもつSn粒子の高温下での溶出現象を防止するために
も効果的であると考えられ、この観点からしても硬さの
低下防止の効果が首肯される。
Furthermore, the fact that the Sn particles remain fine and exist in the Al base metal is also effective in preventing the elution phenomenon of Sn particles, which have a low melting point of 232°C, at high temperatures. From this point of view, the effect of preventing a decrease in hardness is confirmed.

なお、以上は焼鈍に関してSn粒子の粗大化阻止効果を
述べたものであるが、本軸受材科の使用環境が焼鈍に匹
敵するような高温状態である場合にもそのまま妥当し、
従って高温硬さの低下防止を通じ、疲労強度の向上を図
ることができる。
The above is a description of the effect of inhibiting the coarsening of Sn particles with respect to annealing, but this also applies when the environment in which this bearing material is used is at a high temperature comparable to that of annealing.
Therefore, fatigue strength can be improved by preventing a decrease in high-temperature hardness.

次にSi ,Mn,Sb,Ti ,N夏,Fe,Zr,
Mo,Coを添加することについて述べる。
Next, Si, Mn, Sb, Ti, Natsu, Fe, Zr,
The addition of Mo and Co will be described.

これらの元素は主に耐摩耗性を向上させる目的で添加す
るものであるが、なかでもSiはそれ自体の硬さおよび
S1と他の元素との金属間化合物の硬さが高いこと、並
びに鋳造性に優れている。
These elements are added mainly for the purpose of improving wear resistance, but among them, Si has a high hardness itself and the hardness of the intermetallic compound between S1 and other elements, and it is difficult to cast. Excellent in sex.

更にその他の元素すなわちMn , Sb , Ti
,Ni ,Fe,Zr,Mo,Co の1種または2種
以上を添加することができろ。
Furthermore, other elements such as Mn, Sb, Ti
, Ni 2 , Fe, Zr, Mo, Co 2 or more can be added.

上述のように、これらの元素はSiと共に主として耐摩
耗性を向上させる目的で添加されるものであるが、S1
に次いでMn ,sbが上記各性能に優れ、次にTi,
Ni,Zrが続き、最後がFe,Mo,Coとなる。
As mentioned above, these elements are added together with Si mainly for the purpose of improving wear resistance, but S1
Next, Mn and sb are excellent in each of the above performances, followed by Ti,
Ni and Zr follow, and finally Fe, Mo, and Co.

Siに加えるこれらの元素の含有量は各々の元素で1〜
10%とし、さらにこれらの元素とSiとの添加総量は
10%以下である。
The content of these elements added to Si is 1 to 1 for each element.
10%, and the total amount of these elements and Si added is 10% or less.

各々の元素で1〜10%とした理由は、1%以下では析
出量が少なく、耐摩耗性の効果が発揮されなく、10%
以上になると析出物が多くなり過ぎ、圧延性が悪くなっ
て圧延・焼鈍の繰り返しが困難となりSn粒子の微細化
が妨げられるからである。
The reason for setting each element at 1 to 10% is that if it is less than 1%, the amount of precipitation will be small and the wear resistance effect will not be exhibited.
This is because if the amount exceeds the amount, the amount of precipitates becomes too large, and the rolling properties become poor, making it difficult to repeat rolling and annealing, and thereby hindering the miniaturization of Sn particles.

S1を含むこれら元素の析出物の形態としては、これら
添加元素単体からなる析出物、これら添加元素相互の金
属間化合物からなる析出物、これら添加元素とAlとの
金属間化合物からなる析出物、これら添加元素相互の金
属間化合物とAAとの金属間化合物からなる析出物とが
あるが、どの形態で析出物を形成しても耐摩耗性に効果
がある。
The forms of precipitates of these elements containing S1 include precipitates consisting of these additive elements alone, precipitates consisting of intermetallic compounds of these additive elements, precipitates consisting of intermetallic compounds of these additive elements and Al, There are precipitates made of intermetallic compounds of these additive elements and AA, but any form of precipitates is effective in improving wear resistance.

これら析出物はヴイツカース硬さで数百にも達し、非常
に硬いため、軸との摩擦による軸受の摩耗をこれらの析
出物により著しく減少させることができ、これら析出物
がAl地金中に適量分散することは良い効果を生ずる。
These precipitates are extremely hard, reaching several hundred in Witzkars hardness, and can significantly reduce the wear of the bearing due to friction with the shaft. Dispersion produces positive effects.

上記Aa−Sn系合金は一般的に裏金鋼板上に川接して
軸受形状として使用されることが多く、特に球状黒鉛鋳
鉄軸に対して使用すると著しい効果がある。
The above Aa-Sn alloy is generally used in the form of a bearing by being in contact with a backing steel plate, and is particularly effective when used for a spheroidal graphite cast iron shaft.

すなわち、軸受にとって相手材質は軸受性能を大きく左
右し、例えば従来のAl−Sn系軸受と球状黒鉛鋳鉄軸
と組合わせて使用すると耐焼付性、耐摩耗性等の軸受注
能を著しく阻害する。
That is, the mating material for a bearing greatly influences bearing performance. For example, when a conventional Al-Sn bearing is used in combination with a spheroidal graphite cast iron shaft, the bearing performance such as seizure resistance and wear resistance is significantly impaired.

そしてまた昨今、鋼軸に替わり加工安価な球状黒鉛鋳鉄
軸が多く使われるようになってきた。
Recently, spheroidal graphite cast iron shafts, which are cheaper to process, have been increasingly used in place of steel shafts.

ところが、球状黒鉛鋳鉄は軟質な黒鉛が鉄地中に点在し
ていて、このためこの軸を研削するとその黒鉛の周囲に
鋭い刃形をもった研摩パリが発生する。
However, in spheroidal graphite cast iron, soft graphite is scattered in the iron base, and for this reason, when this shaft is ground, grinding chips with sharp edges are generated around the graphite.

このような研摩パリの発生した軸を相手に、油膜厚さと
軸および軸受而粗さとか同じになる程度の高荷重下で軸
受を摺動させろと、軸より軟かい軸受而は切削されるこ
とになり、この状況が進行すると軸受入而粗さが粗くな
ったり、軸と軸受とのクリアランスが増大したりして、
しいては油膜が構成されなくなったり、油膜破断により
油膜か構成されなくなったりしてその結果、軸と軸受と
の直接接触つまり金属接触がより多く起り焼付に十るO ところか本発明に係る合金は球状黒鉛銑鉄軸のパリより
も硬い析出物すなイつち、SI1およびMn,Sb,T
i ,Ni ,Fe,Zr,Mo,Coの1種または2
種以上を添加して生成される析出物をAl地中に分散さ
せ、これらの析出物により球状黒鉛鋳鉄軸の研摩パリを
取り去る効果およびこれらの析出物が移着、凝着現象を
起こしにくくする効果とをも待たせてあり、これにより
軸受表面の摩耗の進行は比較的短時間で抑えられ、安定
した油膜が構成されるようになりこの結果球状黒鉛鋳鉄
軸に対して特に耐摩耗性を向上させることが認められろ
In order to slide the bearing under such a high load that the thickness of the oil film is the same as the roughness of the shaft and bearing, the shaft that is softer than the shaft will be cut. As this situation progresses, the roughness of the bearing insertion may become rougher, and the clearance between the shaft and bearing may increase.
As a result, the oil film may no longer be formed, or the oil film may no longer be formed due to oil film rupture, and as a result, direct contact between the shaft and the bearing, that is, metal contact, occurs more frequently, which may lead to seizure. are precipitates harder than the spheroidal graphite pig iron shaft, i.e., SI1 and Mn, Sb, T.
One or two of i, Ni, Fe, Zr, Mo, Co
The precipitates produced by adding more than one seed are dispersed in the Al ground, and these precipitates have the effect of removing the polishing particles of the spheroidal graphite cast iron shaft and making it difficult for these precipitates to migrate and adhere. As a result, the progress of wear on the bearing surface is suppressed in a relatively short period of time, and a stable oil film is formed, resulting in improved wear resistance especially for spheroidal graphite cast iron shafts. Be allowed to improve.

次に本発明は、Al−Sn系合金の上記組成に加えて、
さらにCuおよび(または)Mgを重量百分率でOを含
まない3%以下添力目し、このA,l −Sn系合金を
裏金鋼板に圧接してなるものであって、このCuおよび
(または)Mgは高温下での硬さの低下をより小さくす
るために添加したものである。
Next, the present invention provides, in addition to the above composition of the Al-Sn alloy,
Furthermore, Cu and/or Mg are added in a weight percentage of 3% or less, excluding O, and this A,l-Sn alloy is pressure-bonded to a backing steel plate, and the Cu and/or Mg is added to further reduce the decrease in hardness at high temperatures.

硬さの低下防止も同時に図るためには、これを0.5〜
3.0%とすることが好ましい。
In order to prevent the decrease in hardness at the same time, this should be set to 0.5~
It is preferable to set it to 3.0%.

特に好ましい添加割合は20%以下である。A particularly preferable addition ratio is 20% or less.

0.5%以下では硬さの上昇はそれ程期待できす、30
%以上添力目すると硬くなりすぎ圧延性を阻害するうえ
耐食性が低下する。
If it is less than 0.5%, a significant increase in hardness can be expected, 30
Addition of more than % will make the steel too hard, inhibiting rolling properties and reducing corrosion resistance.

またこのCuおよび(または)Mgの硬さに関する効果
はCrと同時に添加して生じるもので、Cuおよび(ま
たは)Mg単独では高温下での硬さの上昇の効果が期待
できない。
Further, the effect of Cu and/or Mg on hardness is produced when Cr is added simultaneously, and Cu and/or Mg alone cannot be expected to have the effect of increasing hardness at high temperatures.

すなイつちCuおよひ(または)MgはA7中に添加し
た場合に圧延時の硬さの上昇が大きく、同一圧延率でも
他の元素を添カロしたA.l材料に比し、硬さの上昇は
顕著であるが、200゜C近く迄加熱すると容易に軟化
し、高温硬さの維持は期待できない。
In other words, when Cu and/or Mg are added to A7, the hardness during rolling increases significantly, and even at the same rolling rate, A. Although the increase in hardness is remarkable compared to the 1 material, it easily softens when heated to nearly 200°C, and it cannot be expected to maintain high-temperature hardness.

これに対してCrとCuおよび(または)Mgを同時に
添力目すると、Cuおよび(または)Mgの添加効果に
よって圧延時に高くなった硬さが、焼鈍してもCrの添
加効果によりあまり低下しない。
On the other hand, when Cr and Cu and/or Mg are added at the same time, the hardness that increases during rolling due to the addition effect of Cu and/or Mg does not decrease much due to the addition effect of Cr even during annealing. .

このため硬さの高いAl−Sn系合金が得られ、かつこ
の硬さは高温下においても従来のこの種の合金のように
大きく低下することがない。
Therefore, an Al-Sn alloy with high hardness can be obtained, and the hardness does not decrease significantly even at high temperatures unlike conventional alloys of this type.

さらに、本発明は、Pb,Bi,Inの1種以上を0を
含まず9%まで添加したもので、Snの潤滑金属として
の性質を改良したものである。
Furthermore, the present invention improves the properties of Sn as a lubricating metal by adding up to 9% of one or more of Pb, Bi, and In, excluding zero.

このPb,Bi,InはCrと一緒に添力■したときに
効果が認められる。
The effect is recognized when Pb, Bi, and In are added together with Cr.

すなわち従来Al−So系合金の中にCれらの元素を添
加することは考えられ、また一部行なわれているが、こ
れらの添カロ元素を単独で加えると、A#−Sn系合金
中へ合金化されてしまうためSnの融点が低くなってし
まうという欠点が避けられない。
In other words, adding these elements to Al-So alloys has been thought of and has been done in some cases, but if these elements are added alone, The disadvantage that the melting point of Sn becomes low because it is alloyed with Sn is unavoidable.

このため従来のAl−Sn系合金は低温でSnの溶融と
移動が起こり易くなる結果、粗大なSn粒に成長しやす
く、これを軸受として使用すると、高負荷運転か連続し
たとき部分的に溶融して剥離することもありうる。
For this reason, in conventional Al-Sn alloys, Sn easily melts and moves at low temperatures, and as a result, it tends to grow into coarse Sn grains. It can also cause peeling.

これに対し本発明のように、Crを加えることによって
Sn粒を微細化し、かつその組織を高温でも維持できる
ようにしておくと、Pb,Bi ,Inを1種または2
種以上力日えても上記のような弊害は生ぜずにSnの潤
滑性を改善することができ、高い疲労強度の必要とされ
る軸受にも使用可能となり、さらに耐疲労に力口えてな
じみ性の向上も図ることができる。
On the other hand, as in the present invention, if the Sn grains are made finer by adding Cr and the structure is maintained even at high temperatures, one or two types of Pb, Bi, and In can be added.
It is possible to improve the lubricity of Sn without causing the above-mentioned adverse effects even after being subjected to stress for more than a day, and it can be used in bearings that require high fatigue strength.It also has improved fatigue resistance and conformability. It is also possible to improve the

このような効果を得ろことのできるPb,Bi,Inの
1種または2種以上の添加量はOを含まない9%以下で
あり、好ましくは含有Sn量に対し約15%以下程度が
よい。
The amount of one or more of Pb, Bi, and In that can be added to obtain such an effect is 9% or less excluding O, and preferably about 15% or less based on the amount of Sn contained.

なおPb,Bi,Inの1種または2種以上を合わせて
9%以下としてもよい。
Note that the total amount of one or more of Pb, Bi, and In may be 9% or less.

さらにSnとPb ,Bi ,Inの合計添加量は35
%以内がよい。
Furthermore, the total amount of Sn, Pb, Bi, and In added is 35
It is better to be within %.

このPb,Bi,Inの1種または2種以上は、上記C
uおよび(または)Mgとともに加えてもよい。
One or more of these Pb, Bi, and In are the above C
May be added together with u and/or Mg.

これは高温硬さの低下をより少なくすると同時にSnの
潤滑性を改善することかできる。
This can further reduce the decrease in high temperature hardness and at the same time improve the lubricity of Sn.

この効果の生じる理由は上述したところと同じである。The reason why this effect occurs is the same as described above.

上記糾成のA7軸受合金は、主に自動車用内燃機関のす
べり軸受として使用されるが、この場合裏金鋼板に圧接
して用いるのか普通であり、この圧接後には接着強度を
増すために焼鈍を行なっている。
The above-mentioned A7 bearing alloy is mainly used as a sliding bearing for internal combustion engines in automobiles, but in this case it is usually used by pressure-welding to a backing steel plate, and after this pressure-welding, it is annealed to increase the adhesive strength. I am doing it.

ところが前述のように従来のAl−Sn系合金組織中の
A7粒界およびSn粒子の移動か生じ、Sn粒子が粗大
化するため、硬さの低下、Sn粒子の溶出等の欠点が生
じていた。
However, as mentioned above, movement of the A7 grain boundaries and Sn particles in the conventional Al-Sn alloy structure occurs, causing the Sn particles to become coarser, resulting in drawbacks such as decreased hardness and elution of Sn particles. .

これに対し本発明では、圧延、焼鈍の工程から生じるA
l−Cr金属間化合物の析出物がAA粒界の移動を妨げ
るとともにAl結晶粒の成長を阻止するので、焼鈍によ
る上記悪影響を生じることがなく、このため焼鈍温度を
上げてAl−Sn系合金と裏金鋼板との接着強度を増す
ことができる。
In contrast, in the present invention, A generated from the rolling and annealing steps is
Since the precipitates of the l-Cr intermetallic compound impede the movement of the AA grain boundaries and inhibit the growth of the Al crystal grains, the above-mentioned adverse effects due to annealing do not occur, and therefore the annealing temperature can be raised to improve the Al-Sn alloy. It is possible to increase the adhesive strength between the metal plate and the backing steel plate.

なおこのことは、本合金が焼鈍に匹敵する高温下に置か
れる場合にもそのまま妥当するから、軟化の防止を通じ
疲労強度の向上に寄与できることも同時に意味している
This also applies when the present alloy is placed under high temperatures comparable to annealing, so it also means that it can contribute to improving fatigue strength by preventing softening.

さらに耐摩耗性の向上にも効果があることが認められ、
特に球状黒鉛鋳鉄軸に使用した場合大きな効果がある。
Furthermore, it has been recognized that it is effective in improving wear resistance.
It is particularly effective when used on spheroidal graphite cast iron shafts.

次に実施例によって本発明を説明する。Next, the present invention will be explained by examples.

第1図から、第4図は本発明に係る合金1〜41、比較
用としてa−gの化学成分値およびそれぞれの試験結果
を示すものである。
FIG. 1 to FIG. 4 show the chemical composition values and test results of alloys 1 to 41 according to the present invention and a to g for comparison.

合金1から41迄は、ガス炉においてA7地金を溶解し
次にA13−Cr母合金やAn−Cu母合金、All−
Mg母合金、Al−Si母合金、A l−Mn母合金A
l−Sb母合金、A 13 − T i母合金、Al−
Fe母合金、AI!−Zr母合金、AA−Co母合金等
を目的成分に応じて溶解し最後にSnおよびPb,Bi
,Inを添力目したのち脱ガス処理をし、金型に鋳造を
行なったもので、その後圧延と焼鈍(350℃〕を繰り
返して試料を作り、高温硬さの測定を行った。
Alloys 1 to 41 are produced by melting A7 base metal in a gas furnace and then melting A13-Cr master alloy, An-Cu master alloy, All-
Mg master alloy, Al-Si master alloy, Al-Mn master alloy A
l-Sb master alloy, A13-Ti master alloy, Al-
Fe master alloy, AI! -Zr master alloy, AA-Co master alloy, etc. are melted according to the target components, and finally Sn, Pb, Bi
, In was applied, degassed, and cast into a mold. After that, rolling and annealing (at 350° C.) were repeated to prepare samples, and the high-temperature hardness was measured.

次にこの試料をさらに圧延し、その後これらの合金と裏
金鋼板とを圧接してバイメタル材トシ、これを焼鈍した
後平面軸受に加工して各種試験を行なった。
Next, this sample was further rolled, and then these alloys and a backing steel plate were pressed together to form a bimetallic material, which was then annealed and processed into a flat bearing, and various tests were conducted.

また合金a−gは、比較材の合金を上記合金と同一製造
法で作成して試料とし、同一の試験を行った。
For alloys a to g, comparative alloys were prepared using the same manufacturing method as the above-mentioned alloys and used as samples, and the same tests were conducted.

第1図ないし第4図の実験結果として示す硬さは、上記
各合金の常温における硬さと200℃における硬さとを
ビツカース硬度で測定した結果を示すものである。
The hardness shown as the experimental results in FIGS. 1 to 4 is the result of measuring the hardness of each of the above-mentioned alloys at room temperature and hardness at 200° C. using the Vickers hardness.

また第5図は、特に合金2,9およびa,cについて、
上記温度のほかに100℃および140℃におけろビツ
カース硬さをも測定し、温度上昇に応じた硬さの変化の
度合いを示したものである。
In addition, FIG. 5 particularly shows alloys 2, 9, a, and c.
In addition to the above temperatures, the Vickers hardness was also measured at 100°C and 140°C to show the degree of change in hardness as the temperature rose.

第1図ないし第4図、特に第5図から理解されるように
、Crを含まない合金a,cは温度の上昇と共に急激に
その硬度が低下するのに対し、本発明の合金2,9は温
度上昇に伴う硬度低下の程度がゆるやかであり、したが
って温度の変化に伴う軸受状態の変化を少なくできると
いう効果がある。
As can be understood from FIGS. 1 to 4, especially FIG. 5, the hardness of alloys a and c that do not contain Cr decreases rapidly as the temperature rises, whereas the hardness of alloys 2 and 9 of the present invention decreases rapidly as the temperature rises. The hardness decreases slowly as the temperature rises, and therefore has the effect of reducing changes in the bearing condition due to changes in temperature.

また合金組織の上からは、本発明に係る合金1ないし4
1は、裏金鋼板との接合後の焼鈍を経ても、Sn粒子の
粗大化は認められなかった。
Further, from above the alloy structure, alloys 1 to 4 according to the present invention
In No. 1, no coarsening of Sn particles was observed even after annealing after joining with the backing steel plate.

次に、第1図ないし第4図におけろ耐焼付性は、次の試
験条件Aの下に行なったもので、50K2/7の荷重か
ら30分毎に50K5+/fflずつ荷重を増加させ、
上記各合金から成る軸受が焼付に至ったときの荷重を測
定したものである。
Next, the seizure resistance in Figures 1 to 4 was conducted under the following test conditions A, where the load was increased by 50K5+/ffl every 30 minutes from a load of 50K2/7.
The load at which the bearing made of each of the above alloys reached seizure was measured.

(試験条件A) ジャーナル型焼付試,験機 相 手 材 球状黒鉛鋳鉄軸 油 種 SAE IOW〜30 軸粗サ0.4〜0.6μmRz i’由 温 140+2.5°C軸回転
数 1000rpm 軸 径 52mmφ 軸硬度Hv200〜300 荷 重 5 0 K5’/7/ 3 0 m i
n軸受粗サ 1 〜1. 8 μmRz 軸受径52朋φ×20mm(幅) 第1図ないし第4図の実験結果に示されろように、Mn
,Sb,Ti ,Ni ,Fe,Zr,Mo,Co の
1種又は2種以上を添加した本発明の合金1〜41は比
較材の合金aM−gに対し高い焼付而圧を有している。
(Test conditions A) Journal type seizure test, test equipment Partner material Spheroidal graphite cast iron shaft oil Type SAE IOW ~ 30 Shaft roughness 0.4 ~ 0.6 μm Rz i' Temperature 140 + 2.5°C Shaft rotation speed 1000 rpm Shaft diameter 52mmφ Shaft hardness Hv200~300 Load 50K5'/7/30m i
n Bearing roughness 1 to 1. 8 μmRz Bearing diameter 52 mm φ x 20 mm (width) As shown in the experimental results in Figures 1 to 4, Mn
, Sb, Ti, Ni, Fe, Zr, Mo, Co, etc. Alloys 1 to 41 of the present invention have a higher baking pressure than the comparative alloy aM-g. .

次に、第1図ないし第4図における耐疲労性の試験は、
下記の試験条件Bの下に行なったもので、鉄鋼材料の疲
労状況を知る107回応力繰り返し条件で耐疲労面圧を
測定したものである。
Next, the fatigue resistance test in Figures 1 to 4 is as follows:
This test was conducted under the following test condition B, and the fatigue surface pressure was measured under the condition of 107 stress repetitions, which determines the fatigue state of steel materials.

また第6図は、合金2,9およびa,cについて、油温
を140°Cの他に80℃および120’Cに変化させ
た点を除いて同一の試験条件で疲労面圧を測定した結果
を示すものである。
Figure 6 shows the fatigue surface pressure of Alloys 2, 9, a, and c under the same test conditions except that the oil temperature was changed from 140°C to 80°C and 120'C. This shows the results.

(試験条件B) 交番荷重試験機 相 手 材 S55C焼入れ軸 油 種 SAEIOW−30 軸粗サ0.8μmRz 油 温 1400±25℃ 油 圧 5Ky/7 軸回転数 300Orpm 軸 径 52In7ILφ 軸硬度Hv500〜600 軸受粗サ 1〜1. 8 μmRz 軸受径52mmφX20#llX(幅) 第6図から明らかなように合金2,9およびa,Cとも
温度が高い程耐疲労面圧が低下するが、本発明に係る合
金2,9は耐疲労面圧の低下の程度が比較材の合金a,
c程大きくなく、かつ合金2,9と合金a,cは低温側
の耐疲労面圧での差はそれ程大きくないが、高温側の耐
疲労面圧は合金2,9が合金a,cを凌駕していること
が明瞭に認められる。
(Test conditions B) Alternating load tester partner Material S55C hardened shaft oil Type SAEIOW-30 Shaft roughness 0.8μmRz Oil temperature 1400±25℃ Oil pressure 5Ky/7 Shaft rotation speed 300Orpm Shaft diameter 52In7ILφ Shaft hardness Hv500-600 Bearing Coarse 1-1. 8 μmRz Bearing diameter 52 mm φ The degree of decrease in fatigue surface pressure was compared to alloy a,
Alloys 2 and 9 are not as large as Alloys a and c, and the difference in fatigue resistance surface pressure on the low temperature side is not that large. It is clearly recognized that they are superior to each other.

なお、第6図は本発明に係る合金を代表させて合金2,
9比較材の合金を代表させてa,Cを挙げたものである
が、他の合金も同様の傾向を示す結果が得られている(
第1図ないし第4図参照)。
Note that FIG. 6 shows alloys 2, 2, and 2 representing alloys according to the present invention.
9.Although a and C are listed as representative alloys for comparison, results showing similar trends have been obtained for other alloys (
(See Figures 1 to 4).

さらに第1図は、本発明に係る合金41と従来合金fに
ついて、荷重を増加させた場合の摩擦トルクの変化の状
態を測定した結果を示すグラフである。
Furthermore, FIG. 1 is a graph showing the results of measuring changes in friction torque when the load is increased for alloy 41 according to the present invention and conventional alloy f.

この実験は、上述の試験条件Aにおいて、相手材をS5
5C焼入れ軸、その硬度をHv 6 0 0〜700と
した点を除いて他は同一の条件としたもので、荷重を増
力目させろ途中の状況をオシログラフで測定している。
In this experiment, the mating material was S5 under the above test condition A.
The conditions were the same except for the 5C hardened shaft and its hardness of Hv 600 to 700, and the conditions were measured using an oscillograph while the load was being increased.

このグラフによれは、従来の合金fでは荷重を増力目さ
せる度に摩擦トルクはピークの発生を伴って大きく変動
しつつ増加しているのに対し、本発明の合金41ではピ
ークを伴う程大きな変動は認められず滑らかに変動して
いる。
This graph shows that in the conventional alloy f, the friction torque increases with a large fluctuation accompanied by the generation of a peak every time the load is increased, whereas in the alloy 41 of the present invention, the friction torque increases as the peak occurs. No fluctuations were observed and the fluctuations were smooth.

これは本発明の合金41が合金fに対してなじみ性に優
れ、かつ焼付の生じにくいことを示していろ。
This indicates that alloy 41 of the present invention has excellent compatibility with alloy f and is less prone to seizure.

すなわち従来の合金fにみられる変動の大きなピーク波
形は、摺動面の油膜が部分的に破壊され、固体接触が生
じこれが繰り返されろと全体破壊(焼付)を生じろこと
を意味しており、このような波形を生じない本発明合金
41はなじみ性および耐焼付荷重が高い。
In other words, the peak waveform with large fluctuations seen in conventional alloy f means that the oil film on the sliding surface is partially destroyed, solid contact occurs, and if this is repeated, total destruction (seizure) will occur. The alloy 41 of the present invention, which does not produce such corrugations, has high conformability and seizure load resistance.

次に、第1図ないし第4図における耐摩耗性の実験は次
の試験条件Cで行なったもので、テスト時間経過後の摩
耗量を測定したものである。
Next, the wear resistance experiments shown in FIGS. 1 to 4 were conducted under the following test conditions C, and the amount of wear after the test time had elapsed was measured.

(試験条件C) 摩耗試験機 相 手 材 球状黒鉛鋳鉄軸 軸粗サ0.8 〜0.9μmRz 油 種 流動パラフィン 軸回転数 100Orpm 軸 径 4Qmm 軸硬度Hv 2 0 0〜3 0 0 荷 重 25Kp/7 テス1・時間5Hrs また第8図は合金2,9およびa,cを代表として、上
記試験条件Cのうち、相手材をS55C焼入れ軸、その
硬度をHv600〜700、荷重を1tから30分毎に
1tずつ増加させた点を異ならせて摩耗量を測定した結
果を示すものである。
(Test conditions C) Wear tester partner material Spheroidal graphite cast iron Shaft shaft roughness 0.8 to 0.9 μm Rz Oil type Liquid paraffin Shaft rotation speed 100 Orpm Shaft diameter 4Qmm Shaft hardness Hv 200 to 300 Load 25Kp/ 7 Test 1・Time 5Hrs In addition, Figure 8 shows Alloys 2, 9, a, and c as representatives, and under the above test conditions C, the mating material was an S55C hardened shaft, the hardness was Hv600-700, and the load was 1t for 30 minutes. This figure shows the results of measuring the amount of wear at different points where the wear amount was increased by 1 t for each time.

第1図ないし第4図および第8図の結果に示されろよう
に、本発明合金は摩耗量が極めて少ないことが認められ
、優れた耐摩耗性を示している。
As shown in the results shown in FIGS. 1 to 4 and 8, the alloy of the present invention was found to have an extremely small amount of wear, indicating excellent wear resistance.

これはSiおよびMn,Sb,Ti,Ni,Fe,Zr
,Mo,Coの1種以上の添加効果であることが認めら
れる。
This is Si and Mn, Sb, Ti, Ni, Fe, Zr
, Mo, and Co.

以上の通り本発明に係るA IJ − S n系軸受合
金は、Cr添加による硬さの向上、高温硬さの低下防止
、Sn粒子の粗大化阻止効果、これらを通じての耐疲労
性の向上、SiおよびMn ,Sb ,Ti ,Ni
,Fe,Zr,Mo,Coの1種以上の添加による耐摩
耗性の向上に加え、特に球状黒鉛鋳鉄軸を使用する場合
において、耐摩耗性、耐焼付性の向上、またCrととも
に添力目して効果のあるPb,Bi,Inによるなじみ
性の向上、耐焼付性の向上を図ることができ、ざらにC
uおよび(または)Mgを加えれば高温強度がより向上
する。
As described above, the AIJ-S n-based bearing alloy according to the present invention improves hardness by adding Cr, prevents a decrease in high-temperature hardness, prevents coarsening of Sn particles, improves fatigue resistance through these, and improves fatigue resistance through the addition of Cr. and Mn, Sb, Ti, Ni
In addition to improving wear resistance by adding one or more of ,Fe, Zr, Mo, and Co, especially when using a spheroidal graphite cast iron shaft, it also improves wear resistance and seizure resistance. It is possible to improve conformability and seizure resistance by using Pb, Bi, and In, which are effective in
Addition of u and/or Mg further improves high temperature strength.

また裏金鋼板との圧接後の圧延焼鈍を高温度長時間で行
なえるので、両者の密着性を高めることができる。
Further, since rolling annealing after pressure bonding with the backing steel plate can be performed at high temperature for a long time, the adhesion between the two can be improved.

なお、本文中で使用した各元素記号は次の通りである。The symbols of each element used in the text are as follows.

AA (アルミニウム)、Sn (スズ)、Cr (ク
ロム)、Cu (銅)、Mg (マグネシウム)、pb
(鉛)、Bi (ビスマス)、In(インジウム)、
Si (ケイ素)、Mn (マンガン)、sb (アン
チモン)、Ti (チタン)、Ni(ニッケル)、Fe
(鉄)、Zr (ジルコニウム)、Mo(モリブデン
)、Co (コバルト)。
AA (aluminum), Sn (tin), Cr (chromium), Cu (copper), Mg (magnesium), pb
(Lead), Bi (Bismuth), In (Indium),
Si (silicon), Mn (manganese), sb (antimony), Ti (titanium), Ni (nickel), Fe
(iron), Zr (zirconium), Mo (molybdenum), Co (cobalt).

また、本発明に係る合金組成において、Al中には通常
の精錬技術ではどうしても避けられない不純物が含まれ
ることは勿論である。
Furthermore, in the alloy composition according to the present invention, it goes without saying that Al contains impurities that cannot be avoided by ordinary refining techniques.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図は、本発明に係るAn−Sn系軸受合
金と比較材の同種軸受合金とのそれぞれの化学成分値並
びにそれぞれの試験結果を示す図表。 第5図は本発明合金4,1の温度変化に伴なう硬度変化
の様子をプロットしたグラフ、第6図は本発明合金4,
7について耐疲労面圧の変化をプロツトしたグラフ、第
7図は同じく荷重を変化させた時の摩擦トルクの変化の
状態を示すグラフ、第8図は、鋼軸に対して同じく荷重
を増力目させた場合の摩耗量の変化を示すグラフである
FIGS. 1 to 4 are charts showing the chemical composition values and test results of the An-Sn bearing alloy according to the present invention and a comparative bearing alloy of the same type. Figure 5 is a graph plotting changes in hardness with temperature changes for Inventive Alloys 4 and 1, and Figure 6 is a graph plotting changes in hardness with temperature changes for Inventive Alloys 4 and 1.
Figure 7 is a graph plotting the change in fatigue resistance surface pressure for 7. Figure 7 is a graph showing the change in friction torque when the load is changed. Figure 8 is a graph plotting the change in friction torque when the load is changed. It is a graph showing the change in the amount of wear when

Claims (1)

【特許請求の範囲】 1 重量百分率でSn35〜35%,CrO.:L〜1
.0%Sil 〜10%、およびMn,Sb,Ti,N
i,Fe,Zr,Mo,Coの1種または2種以上を1
〜10%でその総量が10%以下、および残部が本質的
fこAlからなるAl−Sn系軸受合金。 2 %許請求の範囲第1項記載の合金に裏金鋼板を圧接
しでなる複合A#−Sn系軸受合金材。 3 内燃機関の軸受装置fこおいで、軸材質を球状黒鉛
鋳鉄材とし、軸受材質として重量百分率でSn3.5
〜35%, Cr O.1〜1.0%,Sil〜10%
およびMn ,Sb,Ti ,Ni ,Fe ,Zr,
Mo ,Coの1種または2種以上を1〜10%でその
総量が10%以下、および残部が本質的なAlからなる
Al−Sn 系合金からなる軸受で構成された内燃機
関の軸受装置。 4 特許請求の範囲第3項1こおいで、軸受を同項記載
の軸受材質Qこ裏金鋼板を圧接しでなる複合Al−Sn
系軸受合金材料で構成された内燃機関の軸受装置。 5 重量百分率でSn 3.5 〜3 5%,Cr0.
1〜1.0%,Sil〜lO%およびMn , Sb
,Ti ,N I y F e + Z r p Mo
t Coの1種または2種以上を1〜10%でその総
量が10%以下、Cuおよび(または)Mg3.0%以
下(0を含まない)、および残部が本質的QこA4から
なるA.6−Sn系軸受合金。 6 特許請求の範囲第5項記載の合金(こ裏金鋼板を圧
接しでなる複合AA−Sn系軸受合金材。 7 内燃機関の軸受装置Qこおいで、軸材質を球状黒鉛
鋳鉄材とし、軸受材質として重量百分率でSn 3.
5 〜3 5%, Cr O.1〜1.0%,Sil〜
10%およびMn , Sb , Ti ,Ni ,
Fe ,Zr,Mo ,Co の1種または2種以上を
1〜10%でその総量が10%以下、Cuおよひ(また
は)Mg3.0%以下(0を含まない)、および残部が
本質的なAlからなるA7−Sn系合金からなる軸愛で
構成された内燃機関の軸受装置。 8 特許請求の範囲第7項Qこおいで、軸受を同項記載
の軸受材質に裏金鋼板を圧接しでなる複合Al3−Sn
系軸受合金材料で構成された内燃機関の軸受装置。 9 ス量百分率でSn3.5 〜35%,Cr0.1〜
1.0%,Sil 〜10%,およびMn,Sb,Ti
,Ni ,Fe,Zr,Mo,Co の1種または2
種以上を1〜10%でその総量が10%以下、Pb,B
i,Inの1種または2種以上を9%以下(0を含まな
い)、および残部が本質的eこAlからなるAl−Sn
系軸受合金。 10特許請求の範囲第9項記載の合金Qこ裏金鋼板を圧
接しでなる複合Al−Sn系軸受合金材。 11 内燃機関の軸受装置においで、軸材質として球
状黒鉛鋳鉄材を、軸受材質として重量百分率でSn 3
. 5〜3 5%, Cr O.1〜1.0%,Si
l〜10%およびMn,Sb,Ti ,Ni ,Fe,
Zr,Mo , Coの1種または2種以上を1〜10
%でその総量が10%以下、Pb,Bi,Inの1種ま
たは2種以上を9%以下(0を含まない)、および残部
が本質的なAdからなるAl−Sn系合金からなる軸愛
で構成された内燃機関の軸受装置。 12特許請求の範囲第11項においで、軸受を同項記載
の軸受材質に裏金鋼板を圧接しでなる複合Al−Sn系
軸受合金材料で構成された内燃機関の軸受装置。 13重量百分率でSn3.5 〜35%,CrO.1〜
1.0%,Sil〜lO%およびMn,Sb,Ti,N
i , Fe , Zr ,Mo , Coの1種また
は2種以上を1〜10%でその総量が10%以下、Pb
,Bi ,Inの1種または2種以上を9%以下(0を
含まない),Cuおよび(または)Mg3%以下(Oを
含まない)、および残部が本質的QこAlからなるAl
l−Sn系軸受合金。 14特許請求の範囲第13項記載の合金1こ裏金鋼板を
圧接しでなる複合AA−Sn系軸受合金材。 15内燃機関の軸受装置Qこおいで、軸材質として球状
黒鉛鋳鉄材を、軸受材質として重量百分率でSn3.5
〜35%, Cr O.1〜1.0%,81 1〜10
%およびMn ,Sb,Ti ,Ni ,Fe ,Z
r,Mo ,Co の1種または2種以上を1〜10%
でその総量が10%以下、Pb,Bi,In の1種
または2種以上を9楚以下(0を含まない)、Cuおよ
び(または)Mg3%以下(0を含まない)、および残
部が本質的tこAlからなるAl−Sn系合金からなる
軸受で構成された内燃機関の軸受装置。 16特許請求の範囲第15項Qこおいで、軸受を同項記
載の軸受材質Qこ裏金鋼板を圧接しでなる複合Al−S
n系軸受合金材料で構成された内燃機関の軸受装置。
[Claims] 1 Sn 35-35%, CrO. :L~1
.. 0%Sil to 10%, and Mn, Sb, Ti, N
One or more of i, Fe, Zr, Mo, Co in one
-10%, the total amount of which is 10% or less, and the remainder essentially consists of Al-Sn bearing alloy. 2% A composite A#-Sn bearing alloy material made by press-welding a backing steel plate to the alloy described in claim 1. 3 In a bearing device f for an internal combustion engine, the shaft material is spheroidal graphite cast iron, and the bearing material is Sn3.5 in weight percentage.
~35%, CrO. 1~1.0%, Sil~10%
and Mn, Sb, Ti, Ni, Fe, Zr,
A bearing device for an internal combustion engine comprising a bearing made of an Al-Sn alloy containing one or more of Mo and Co in a total amount of 10% or less, and the balance being essentially Al. 4 In Claim 3, Item 1, the bearing is made of a composite Al-Sn material made by press-welding a backing metal steel plate to the bearing material Q described in the same claim.
Bearing devices for internal combustion engines made of bearing alloy materials. 5 Sn 3.5 to 35% by weight percentage, Cr0.
1-1.0%, Sil-IO% and Mn, Sb
, Ti , N I y Fe + Z r p Mo
A containing 1 to 10% of one or more types of Co, the total amount of which is 10% or less, Cu and/or Mg 3.0% or less (not including 0), and the remainder consisting of essentially Q-A4. .. 6-Sn bearing alloy. 6. The alloy according to claim 5 (composite AA-Sn bearing alloy material made by press-welding back metal steel plates). 7. In a bearing device Q for an internal combustion engine, the shaft material is spheroidal graphite cast iron, and the bearing material is Sn in weight percentage as 3.
5-35%, CrO. 1~1.0%, Sil~
10% and Mn, Sb, Ti, Ni,
1 to 10% of one or more of Fe, Zr, Mo, and Co, the total amount of which is 10% or less, Cu and/or Mg 3.0% or less (not including 0), and the remainder is essential. A bearing device for an internal combustion engine that is constructed of a shaft made of an A7-Sn alloy made of aluminum. 8 Claim 7 Q: A bearing is made of a composite Al3-Sn made by press-welding a backing steel plate to the bearing material described in the same claim.
Bearing devices for internal combustion engines made of bearing alloy materials. 9 Sn3.5~35%, Cr0.1~35%
1.0%, Sil ~10%, and Mn, Sb, Ti
, Ni, Fe, Zr, Mo, Co, or two of them.
1 to 10% of seeds or more, the total amount is 10% or less, Pb, B
Al-Sn containing 9% or less (not including 0) of one or more of In, and the remainder essentially consisting of Al.
bearing alloy. 10. A composite Al-Sn bearing alloy material made by press-welding a metal backing steel plate to the alloy Q described in claim 9. 11 In a bearing device for an internal combustion engine, spheroidal graphite cast iron is used as the shaft material, and Sn 3 is used as the bearing material in weight percentage.
.. 5-35%, CrO. 1-1.0%, Si
l~10% and Mn, Sb, Ti, Ni, Fe,
1 to 10 of one or more of Zr, Mo, and Co
%, the total amount of which is 10% or less, 9% or less (not including 0) of one or more of Pb, Bi, and In, and the balance being essentially Ad. A bearing device for an internal combustion engine consisting of. 12. A bearing device for an internal combustion engine according to claim 11, wherein the bearing is made of a composite Al-Sn bearing alloy material made by press-welding a backing steel plate to the bearing material described in the same claim. 13 weight percent Sn3.5-35%, CrO. 1~
1.0%, Sil~IO% and Mn, Sb, Ti, N
1 to 10% of one or more of i, Fe, Zr, Mo, Co in a total amount of 10% or less, Pb
, Bi, In, 9% or less (does not contain 0), Cu and/or Mg 3% or less (does not contain O), and the remainder is essentially Q-Al.
l-Sn bearing alloy. 14. A composite AA-Sn bearing alloy material made by press-welding the alloy 1 described in claim 13 with a backing steel plate. 15 In the internal combustion engine bearing device Q, the shaft material is spheroidal graphite cast iron material, and the bearing material is Sn3.5 in weight percentage.
~35%, CrO. 1-1.0%, 81 1-10
% and Mn, Sb, Ti, Ni, Fe, Z
1 to 10% of one or more of r, Mo, Co
The total amount is 10% or less, one or more of Pb, Bi, and In is 9 Chu or less (not including 0), Cu and/or Mg is 3% or less (not including 0), and the balance is essential. A bearing device for an internal combustion engine comprising a bearing made of an Al-Sn alloy made of aluminum. 16 Claims No. 15 (Q) The bearing is made of a composite Al-S made by press-welding a backing metal steel plate to the bearing material (Q) described in the same claim.
A bearing device for an internal combustion engine made of n-series bearing alloy material.
JP53084233A 1978-07-11 1978-07-11 Al↓-Sn bearing alloy and bearing device Expired JPS5814866B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP53084233A JPS5814866B2 (en) 1978-07-11 1978-07-11 Al↓-Sn bearing alloy and bearing device
US06/047,336 US4278740A (en) 1978-07-11 1979-06-11 Aluminum-tin base bearing alloy and composite
GB7923970A GB2027050B (en) 1978-07-11 1979-07-10 Aluminium-tin base bearing alloy
DE2928004A DE2928004C3 (en) 1978-07-11 1979-07-11 Use of a tin-containing aluminum alloy
US06/136,619 US4340649A (en) 1978-07-11 1980-04-02 Aluminum-tin base bearing alloy and composite
US06/227,876 US4375499A (en) 1978-07-11 1981-01-23 Aluminum-tin base bearing alloy and composite
US06/228,640 US4375500A (en) 1978-07-11 1981-01-26 Aluminum-tin base bearing alloy and composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53084233A JPS5814866B2 (en) 1978-07-11 1978-07-11 Al↓-Sn bearing alloy and bearing device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP3464682A Division JPS57185951A (en) 1982-03-05 1982-03-05 Al-sn alloy for bearing and bearing device
JP3464782A Division JPS57185952A (en) 1982-03-05 1982-03-05 Al-sn alloy for bearing and bearing device

Publications (2)

Publication Number Publication Date
JPS5511173A JPS5511173A (en) 1980-01-25
JPS5814866B2 true JPS5814866B2 (en) 1983-03-22

Family

ID=13824747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53084233A Expired JPS5814866B2 (en) 1978-07-11 1978-07-11 Al↓-Sn bearing alloy and bearing device

Country Status (1)

Country Link
JP (1) JPS5814866B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113341A (en) * 1981-12-26 1983-07-06 Toyota Motor Corp Bearing aluminum alloy
JPS6023616A (en) * 1983-07-19 1985-02-06 日本ピラ−工業株式会社 Bolt support structure between insulating joining member

Also Published As

Publication number Publication date
JPS5511173A (en) 1980-01-25

Similar Documents

Publication Publication Date Title
US4278740A (en) Aluminum-tin base bearing alloy and composite
WO1981002025A1 (en) Aluminum-based alloy bearing
US4789607A (en) Aluminum bearing alloy and two-layer bearing material having bearing layer of aluminum bearing alloy therein
JP3472284B2 (en) Aluminum bearing alloy
JPS6263637A (en) Aluminum bearing alloy
JPS582578B2 (en) aluminum bearing alloy
JPS6160906B2 (en)
JPS6156305B2 (en)
US4296183A (en) Al-Sn Base bearing alloy and composite
JPS6144140B2 (en)
JPS5814866B2 (en) Al↓-Sn bearing alloy and bearing device
JP4422255B2 (en) Aluminum base bearing alloy
JPS5844140B2 (en) Composite sliding material
GB2066846A (en) Aluminum-tin base bearing alloy
JPS6242983B2 (en)
GB2067220A (en) Aluminium-tin base bearing alloy
JPS6212298B2 (en)
JPS6143421B2 (en)
JPS6055582B2 (en) aluminum bearing material
JPS6140297B2 (en)
GB2067219A (en) Aluminium-tin base bearing alloys
JPS6140298B2 (en)
JPS6140026B2 (en)
JPS62217B2 (en)
JPS5818985B2 (en) Al-Sn bearing alloy