JP6363931B2 - Copper alloy for slide bearing - Google Patents

Copper alloy for slide bearing Download PDF

Info

Publication number
JP6363931B2
JP6363931B2 JP2014209941A JP2014209941A JP6363931B2 JP 6363931 B2 JP6363931 B2 JP 6363931B2 JP 2014209941 A JP2014209941 A JP 2014209941A JP 2014209941 A JP2014209941 A JP 2014209941A JP 6363931 B2 JP6363931 B2 JP 6363931B2
Authority
JP
Japan
Prior art keywords
particles
hard
mass
phase
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014209941A
Other languages
Japanese (ja)
Other versions
JP2016079432A (en
Inventor
祐平 江端
祐平 江端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2014209941A priority Critical patent/JP6363931B2/en
Publication of JP2016079432A publication Critical patent/JP2016079432A/en
Application granted granted Critical
Publication of JP6363931B2 publication Critical patent/JP6363931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、すべり軸受用銅合金に関する。   The present invention relates to a copper alloy for a slide bearing.

摺動用銅合金に通常添加されているPbは摺動時の温度上昇によって摺動面において膨張・展伸する結果、Pbは摺動面を冷却すると同時に、その優れた自己潤滑作用により焼付きを防止する。さらに、Pbは軟質分散相であるから、なじみ性および異物埋収性を有している。しかしながら、Pbは硫酸以外の酸に腐食され易く、Cu合金中に粗大粒子として存在すると、軸受の負荷能力が低下するために、特許文献1(特公平8−19945号公報)では特定の計算式で表わされる微細粒子として分散させることを提案する。その式の意味は、0.1mm2(105μm2)の視野で観察される全Pb粒子の平均面積率が1個当たり0.1%以下であると解釈できる。この公報の実施例では、Cu-Pb-Snプレアロイ粉末が使用されており、焼結温度が低い方が微細Pb組織が得られると説明されているから、低温焼結によりPbの析出・成長を押さえる手法が採用されていると考えられる。 Pb, which is usually added to the sliding copper alloy, expands and expands on the sliding surface due to temperature rise during sliding. As a result, Pb cools the sliding surface and at the same time seizes due to its excellent self-lubricating action. To prevent. Furthermore, since Pb is a soft dispersed phase, it has conformability and foreign substance embeddability. However, Pb is easily corroded by acids other than sulfuric acid, and if it is present as coarse particles in a Cu alloy, the load capacity of the bearing is reduced. Therefore, in Patent Document 1 (Japanese Patent Publication No. 8-19945), a specific calculation formula is used. It is proposed to disperse as fine particles represented by The meaning of the formula can be interpreted that the average area ratio of all Pb particles observed in a visual field of 0.1 mm 2 (105 μm 2 ) is 0.1% or less per particle. In the examples of this publication, Cu-Pb-Sn prealloy powder is used, and it is explained that a finer Pb structure can be obtained when the sintering temperature is lower. It is thought that the method of holding down is adopted.

焼結銅合金の耐摩耗性を高めるために、Cr23,Mo2C,WC,VC,NbCなどの炭化物を硬質物として添加することは特許文献2(特公平7−9046号公報)より公知である。この公報によると、平均粒径が10〜100μmの銅合金粉末および平均粒径が5〜150μmの硬質物粉末をV型混合機で混合し、次に圧粉と焼結を行なっている。Pbは銅粒子の粒界に存在するとの説明(第4欄第21〜22行)は、PbはCuにほとんど固溶しないとの平衡状態図から導かれる知見と矛盾はしていない。 In order to improve the wear resistance of the sintered copper alloy, adding carbides such as Cr 2 C 3 , Mo 2 C, WC, VC, NbC as a hard material is disclosed in Patent Document 2 (Japanese Patent Publication No. 7-9046). More known. According to this publication, a copper alloy powder having an average particle diameter of 10 to 100 μm and a hard powder having an average particle diameter of 5 to 150 μm are mixed by a V-type mixer, and then compacted and sintered. The explanation that Pb exists at the grain boundaries of copper particles (column 4, lines 21 to 22) is consistent with the knowledge derived from the equilibrium diagram that Pb hardly dissolves in Cu.

Cu-Pb系焼結合金と同等の摺動特性を達成するPbフリー合金は特許文献3(特開平10−330868号公報)より公知であり、この公報の図から、Bi(合金)相の存在箇所は粒界3重点およびこの近傍の粒界であることが分かる。   A Pb-free alloy that achieves sliding properties equivalent to that of a Cu-Pb sintered alloy is known from Patent Document 3 (Japanese Patent Laid-Open No. 10-330868). From the figure of this publication, the presence of a Bi (alloy) phase It can be seen that the location is the grain boundary triple point and the grain boundary in the vicinity thereof.

焼結銅合金において、硬質物がPb、Bi相中に混在すると、Pb、Biの流出を防ぎ、Pb、Bi相がクッションになって、硬質物の相手軸攻撃性を緩和する;脱落した硬質物をPb、Bi相が再度捕捉し、アブレシブ摩耗を緩和することが特許文献4(特許第3421724号)にて提案されている。この特許では、硬質物はBi相中に包み込まれたような状態で存在するので、Bi相は硬質物よりも寸法が大きくなる。   In a sintered copper alloy, when hard materials are mixed in the Pb and Bi phases, the Pb and Bi phases are prevented from flowing out, and the Pb and Bi phases serve as cushions to mitigate the counter-attack attack of the hard materials; Patent Document 4 (Patent No. 3421724) proposes that the Pb and Bi phases are captured again to relieve abrasive wear. In this patent, since the hard material exists in a state of being encased in the Bi phase, the size of the Bi phase is larger than that of the hard material.

特許文献5(特開2001−220630号公報)は、Cu-Bi(Pb)系焼結合金において、耐摩耗性向上のために添加された金属間化合物がBiまたはPb相の周りに存在する組織とすることにより、摺動巾に金属間化合物が銅合金表面から突出し、Bi、Pb相およびCuマトリックスは凹んでオイル溜まりとなり、耐焼付性および耐疲労性に優れた摺動材料が得られることが開示されている。焼結条件の例としては、800〜920℃で約15分が挙げられている。   Patent Document 5 (Japanese Patent Laid-Open No. 2001-220630) describes a structure in which an intermetallic compound added to improve wear resistance exists around a Bi or Pb phase in a Cu-Bi (Pb) -based sintered alloy. As a result, an intermetallic compound protrudes from the surface of the copper alloy in the sliding width, the Bi, Pb phase and Cu matrix are recessed to form an oil pool, and a sliding material excellent in seizure resistance and fatigue resistance can be obtained. Is disclosed. As an example of sintering conditions, about 15 minutes are mentioned at 800-920 degreeC.

特許文献6(特許第4476634号)は、Cuマトリックス中に焼結性が優れたFe2P、Fe3P、FeB、Fe2B、Fe3BなどのFe系化合物を分散させることを開示している。Fe系化合物はCuマトリックスよりも硬質であるため、耐摩耗性、耐焼付き性を向上させることができる。 Patent Document 6 (Patent No. 4476634) discloses that an Fe-based compound such as Fe 2 P, Fe 3 P, FeB, Fe 2 B, and Fe 3 B having excellent sinterability is dispersed in a Cu matrix. ing. Since the Fe-based compound is harder than the Cu matrix, the wear resistance and seizure resistance can be improved.

特公平8−19945号公報Japanese Patent Publication No.8-19945 特公平7−9046号公報Japanese Patent Publication No. 7-9046 特開平10−330868号公報Japanese Patent Laid-Open No. 10-330868 特許第3421724号Japanese Patent No. 3421724 特開2001−220630号公報JP 2001-220630 A 特許第4476634号Japanese Patent No. 4476634

Cu合金中のPbおよびBiはCuマトリックスにほとんど固溶せず、また金属間化合物を生成しないため、Cuマトリックスとは別の相を形成する。摺動用銅合金のなじみ性はこの組織・性質を利用しているが、反面Pb、Bi相は低強度部分であるために、耐疲労性の低下を招いている。したがって、特許文献1が提案する低温焼結によるPb相の微細化はこの弊害を少なくするために有効である。しかしながら、Pbの成長を抑えるために必要な低温は、銅合金粒子どうしの結合力を低下させるという弊害もある。   Pb and Bi in the Cu alloy hardly dissolve in the Cu matrix and do not form an intermetallic compound, and thus form a phase different from the Cu matrix. The conformability of the sliding copper alloy utilizes this structure and properties, but on the other hand, the Pb and Bi phases are low-strength portions, leading to a decrease in fatigue resistance. Therefore, the refinement of the Pb phase by low-temperature sintering proposed in Patent Document 1 is effective for reducing this adverse effect. However, the low temperature necessary for suppressing the growth of Pb also has the adverse effect of reducing the bonding force between the copper alloy particles.

特許文献3,4,5で提案されているCu-Bi系合金中のBi相は高温中、あるいは劣化油中で使用した場合、Biの発汗や腐食が起きて、添加したBi量に対し、Bi量が減少してしまうため、摺動性能が低下する。また、Biは潤滑油に溶出することもある。しかし、Biが微細に分散していると、個々のBi相の体積が小さいため、発汗や腐食、流出によるBi量の減少を抑制できる。ただし、Biの微細分散と銅合金の焼結性とは相反する関係にある。   When the Bi phase in the Cu—Bi based alloy proposed in Patent Documents 3, 4, and 5 is used at high temperature or in deteriorated oil, sweating or corrosion of Bi occurs, and the added Bi amount Since the amount of Bi decreases, the sliding performance decreases. Bi may also elute into the lubricating oil. However, if Bi is finely dispersed, the volume of each Bi phase is small, so that it is possible to suppress a decrease in Bi amount due to sweating, corrosion, or outflow. However, the fine dispersion of Bi and the sinterability of the copper alloy are in a contradictory relationship.

また、特許文献4および特許文献5のBi含有Cu基合金では、焼結中にBi相が液相になるためCuマトリックス中の成分がBi相に拡散し易くなり、金属間化合物がそこで生成する。したがって、金属間化合物は常にBi相とCuマトリックスの境界に存在することになるために、Cuマトリックスによる金属間化合物の保持効果が少なくなる。特許文献5で提案された焼結銅合金では、通常の焼結では所望の組織状態が得られないので、所望組織を得るための長時間焼結を行っている。この結果、特許文献4の図2に示されているようにBi相が硬質物粒子よりも寸法が大きくなり、かつ後述する硬質物存在率がほぼ100%となっていると考えられる。また、特許文献5の図1においては、後述する硬質物接触率が高くなる。このようなBi相はCu-Bi系焼結合金の耐疲労性や耐食性を低下させる原因となる。   In addition, in the Bi-containing Cu-based alloys of Patent Document 4 and Patent Document 5, the Bi phase becomes a liquid phase during sintering, so that the components in the Cu matrix are easily diffused into the Bi phase, and an intermetallic compound is generated there. . Therefore, since the intermetallic compound always exists at the boundary between the Bi phase and the Cu matrix, the effect of holding the intermetallic compound by the Cu matrix is reduced. In the sintered copper alloy proposed in Patent Document 5, since a desired structure state cannot be obtained by ordinary sintering, sintering is performed for a long time to obtain a desired structure. As a result, as shown in FIG. 2 of Patent Document 4, it is considered that the size of the Bi phase is larger than that of the hard particles, and the hard material presence rate described later is almost 100%. Moreover, in FIG. 1 of patent document 5, the hard material contact rate mentioned later becomes high. Such a Bi phase causes a decrease in fatigue resistance and corrosion resistance of the Cu—Bi based sintered alloy.

さらに、特許文献7において、Fe2Pの硬質物粒子とFe3Pの硬質物粒子との双方がCuマトリックス中に分散していることが開示されているが、Fe2Pの硬質物粒子の周辺の焼結性と、Fe3Pの硬質物粒子の周辺の焼結性との間に差が生じるという問題があった。ここで、Fe2Pの硬質物粒子とFe3Pの硬質物粒子から周辺にPが拡散することにより、焼結温度を低くすることができるが、Fe3Pの方がFe2PよりもPを放出しにくいため、Fe3Pの硬質物粒子の周辺の焼結性がFe2Pの硬質物粒子の周辺の焼結性よりも悪くなるという問題があった。 Further, in Patent Document 7, both the Fe 2 P hard matter particles and the Fe 3 P of the hard matter particles It has been disclosed that are dispersed in the Cu matrix, the hard matter particles Fe 2 P There is a problem that a difference occurs between the peripheral sinterability and the peripheral sinterability of the Fe 3 P hard particles. Here, the diffusion of P from the hard particles of Fe 2 P and the hard particles of Fe 3 P to the periphery makes it possible to lower the sintering temperature, but Fe 3 P is lower than Fe 2 P. Since it is difficult to release P, there is a problem that the sinterability around the hard particles of Fe 3 P is worse than the sinterability around the hard particles of Fe 2 P.

(1)合金組成
本発明のCu-Bi系焼結合金において、Bi含有量が、1質量%未満であると耐焼付性が劣り、一方、30質量%を超えると強度が低下し、耐疲労性が劣るために、Bi含有量は1〜30質量%である。好ましいBi含有量は1〜15質量%である。さらに、Fe系化合物はBiとの濡れ性が低く、逆にCuとは濡れ性が高いので、Bi相と硬質物粒子が接する割合が小さく、Cuマトリックスに保持され易くなる。これにより、硬質物の脱落や欠けが生じにくくなり、耐摩耗性、耐焼付き性が低下するのを抑えることができる。硬質物の含有量が0.1質量%未満であると耐焼付性、耐摩耗性が劣り、一方、10質量%を超えると強度が低下し、耐疲労性が劣るとともに、相手材を傷つけたり、焼結性を低下させる。
(1) Alloy composition In the Cu-Bi sintered alloy of the present invention, if the Bi content is less than 1% by mass, seizure resistance is inferior. On the other hand, if it exceeds 30% by mass, the strength decreases and fatigue resistance Since Bi property is inferior, Bi content is 1-30 mass%. A preferable Bi content is 1 to 15% by mass . Furthermore, since the Fe-based compound has low wettability with Bi, and conversely with Cu, it has high wettability, so that the ratio of the Bi phase and the hard particles to be in contact with each other is small, and is easily held in the Cu matrix. As a result, it is difficult for the hard material to fall off or chip, and the wear resistance and seizure resistance can be prevented from decreasing. When the hard material content is less than 0.1% by mass, seizure resistance and wear resistance are inferior. On the other hand, when it exceeds 10% by mass, the strength decreases, fatigue resistance is inferior, and the mating material is damaged. Reduces sinterability.

また、本発明のCu-Bi系焼結合金において、硬質物粒子として、単一粒子内にFe2PとFe3Pとを含む粒子を含有する。単一粒子内にFe3PだけでなくFe2Pが含まれるようにしたため、Fe2PのPが容易に拡散し、硬質物粒子の周辺の焼結性を向上させることができる。すなわち、Fe3Pのみで構成される硬質物粒子を抑制でき、焼結性の悪い領域が局所的に形成されることを抑制できる。周辺の焼結性が悪い硬質物粒子を抑制できるため、低温で焼結を行っても均一な焼結を実現できる。本実施形態における硬質物粒子(粉末)をX線回折によって解析したところ、Fe2P:Fe3Pの重量比7:3であった。硬質物粒子の粒子径が大きくなるほど単一粒子内にFe2PとFe3Pとが含まれる確率が高くなり、粒子径が20μm以上のほぼ全ての硬質物粒子の粒子において単一粒子内にFe2PとFe3Pとが含まれることが分かった。また、粒子径が20μm以上の硬質物粒子の重量割合は全体の25%程度であった。このように、硬質物粒子として、単一粒子内にFe2PとFe3Pとを含む粒子を含有することにより、良好な焼結性を均一に得ることができる。 Further, the Cu—Bi based sintered alloy of the present invention contains particles containing Fe 2 P and Fe 3 P in a single particle as hard particles. Since not only Fe 3 P but also Fe 2 P is contained in a single particle, P of Fe 2 P diffuses easily, and the sinterability around the hard particles can be improved. That is, it is possible to suppress hard particles composed only of Fe 3 P and to suppress local formation of regions having poor sinterability. Since hard particles having poor sinterability in the periphery can be suppressed, uniform sintering can be realized even if sintering is performed at a low temperature. When the hard particles (powder) in this embodiment were analyzed by X-ray diffraction, the weight ratio of Fe 2 P: Fe 3 P was 7: 3. The larger the particle size of the hard particles, the higher the probability that Fe 2 P and Fe 3 P are contained in the single particle, and in almost all the hard particles having a particle size of 20 μm or more, It was found that Fe 2 P and Fe 3 P were included. The weight ratio of hard particles having a particle diameter of 20 μm or more was about 25% of the whole. Thus, by containing particles containing Fe 2 P and Fe 3 P in a single particle as hard particles, good sinterability can be obtained uniformly.

また、硬質物粒子として、単一粒子内にFe2PとFe3Pとを含む粒子を含有することにより、Fe2Pのみで構成される硬質物粒子を抑制でき、Pの拡散が過多となる領域が局所的に形成されることを抑制できる。従って、Pの拡散が過多となることにより、銅合金が脆くなる領域が局所的に形成されることを抑制できる。 Further, by containing particles containing Fe 2 P and Fe 3 P in a single particle as hard particles, hard particles composed only of Fe 2 P can be suppressed, and P diffusion is excessive. It can suppress that the area | region which becomes becomes formed locally. Accordingly, excessive diffusion of P can suppress local formation of a region in which the copper alloy becomes brittle.

前記組成の残部は不可避的不純物とCuである。不純物は通常のものであるが、その中でもPbも不純物レベルとなっている。必要により、銅合金への添加元素を添加してもよい。例えば、Cuの融点を下げ、焼結性を高めるPを0.5質量%以下添加することができる。P含有量が0.5質量%を超えると銅合金が脆くなる。また、強度および耐疲労性を高めるSnを1〜15質量%添加することができる。Sn含有量が1質量%未満であると、強度向上の効果が少なく、一方15質量%を超えると金属間化合物が生成し易くなり、合金が脆くなる。また、強度および耐食性を高めるために、0.1〜5%のNiを添加することもできる。Ni含有量が0.1%未満であると、強度向上の効果が少なく、一方5質量%を超えると金属間化合物が生成し易くなり、合金が脆くなる。これら元素はCuに合金化されて銅合金マトリックスを構成する。
さらに、銅合金に対する複合成分として、MoS2、黒鉛などの固体潤滑剤を5質量%以下添加することができる。
The balance of the composition is inevitable impurities and Cu. Impurities are normal, but Pb is also at the impurity level. If necessary, an additive element to the copper alloy may be added. For example, 0.5% by mass or less of P, which lowers the melting point of Cu and increases the sinterability, can be added. If the P content exceeds 0.5% by mass, the copper alloy becomes brittle. Moreover, 1-15 mass% of Sn which improves an intensity | strength and fatigue resistance can be added. When the Sn content is less than 1% by mass, the effect of improving the strength is small. On the other hand, when the Sn content exceeds 15% by mass, an intermetallic compound is easily generated and the alloy becomes brittle. Moreover, in order to improve intensity | strength and corrosion resistance, 0.1 to 5% of Ni can also be added. When the Ni content is less than 0.1%, the effect of improving the strength is small. On the other hand, when the Ni content exceeds 5% by mass, an intermetallic compound is easily generated and the alloy becomes brittle. These elements are alloyed with Cu to constitute a copper alloy matrix.
Furthermore, as a composite component for the copper alloy, a solid lubricant such as MoS 2 or graphite can be added in an amount of 5% by mass or less.

(2)合金組織
硬質物粒子の平均粒径は10〜50μmである。平均粒径が10μm未満であると、耐摩耗性に対する硬質物の効果が小さく、50μmを超えると焼結銅合金の強度が低下する。好ましい硬質物粒子の平均粒径は15〜30μmである。
本発明の合金組織は、銅合金の焼結中に硬質物粒子とBi相が接するような後者の流動をできるだけ阻止することである。
(2) Alloy structure The average particle diameter of the hard particles is 10 to 50 μm. When the average particle size is less than 10 μm, the effect of the hard material on the wear resistance is small, and when it exceeds 50 μm, the strength of the sintered copper alloy decreases. The average particle diameter of the preferable hard particles is 15 to 30 μm.
The alloy structure of the present invention is to prevent as much as possible the latter flow in which the hard particles and the Bi phase are in contact during the sintering of the copper alloy.

この結果を本発明の第一においては、Bi相の平均粒径(Bi相の円相当径)(DBi)は添加した硬質物の平均粒径(DH)より小さい(DBi<DH)ことである規定している。   According to this result, in the first aspect of the present invention, the average particle diameter of the Bi phase (the equivalent circle diameter of the Bi phase) (DBi) is smaller than the average particle diameter (DH) of the added hard material (DBi <DH). It prescribes.

また、本発明の第二においては、Bi相と接している硬質物粒子に関して、該硬質物粒子の全周に対するBi相の接触長さ割合が50%以下である硬質物粒子の存在割合が硬質物粒子個数の全体に対して70%以上であると規定している。ここで、「硬質物粒子の全周に対するBi相の接触長さ割合」を「硬質物接触比率」ということにする。硬質物接触比率が100%であると、特定の1個のBi相と接している1または2以上の硬質物粒子のそれぞれが、全周でBi相と接していることであり、これは、とりもなおさず、硬質物粒子がBi相中に埋め込まれている状態である。一方硬質物接触比率が100%未満であり、0でないとすると、硬質物粒子はBi相外にはみ出した部分を必ず有しており、この部分は銅合金と接していることになる。本発明において、硬質物接触比率を50%以下としたのは、硬質物粒子とBi相との接触をできるだけ少なくすることにより、それぞれの特性を十分に発揮させるためである。次に、50%以下の硬質物接触比率の硬質物粒子が硬質物全体に対して存在する個数割合を『硬質物存在率』ということにする。硬質物存在率が100%であると、すべての硬質物接触比率が50%以下である。一方、硬質物存在比率が0%であると、すべての硬質物粒子に関して硬質物接触比率が50%を超えることになる。
本発明においては硬質物存在比率を70%以上に限定したのは、接触が少ないBi相
と硬質物粒子を相対的に多くすることにより、それぞれの特性を十分に発揮させるためである。
Further, in the second aspect of the present invention, regarding the hard particles in contact with the Bi phase, the proportion of the hard particles having a Bi phase contact length ratio of 50% or less with respect to the entire circumference of the hard particles is hard. It is defined as 70% or more with respect to the total number of physical particles. Here, the “contact ratio of the Bi phase with respect to the entire circumference of the hard particles” is referred to as a “hard material contact ratio”. When the hard material contact ratio is 100%, each of one or more hard material particles in contact with a specific one Bi phase is in contact with the Bi phase on the entire circumference. Needless to say, the hard particles are embedded in the Bi phase. On the other hand, if the hard material contact ratio is less than 100% and is not 0, the hard material particles always have a portion protruding from the Bi phase, and this portion is in contact with the copper alloy. In the present invention, the reason why the hard material contact ratio is set to 50% or less is to sufficiently exhibit the respective characteristics by minimizing the contact between the hard material particles and the Bi phase. Next, the ratio of the number of hard particles having a hard material contact ratio of 50% or less with respect to the entire hard material is referred to as “hard material presence ratio”. When the hard material abundance ratio is 100%, all hard material contact ratios are 50% or less. On the other hand, if the hard material existence ratio is 0%, the hard material contact ratio exceeds 50% for all the hard material particles.
In the present invention, the hard material abundance ratio is limited to 70% or more in order to sufficiently exhibit the respective characteristics by relatively increasing the Bi phase and the hard material particles with less contact.

このような焼結過程をもたらすためには、Cu-Biプレアロイアトマイズ粉末あるいはCu(合金)アトマイズ粉末とCu-Bi合金粉末との混合粉末を焼結温度での保持時間が2分以下の短時間焼結を行なうことが好ましい。このような短時間焼結は特許文献6(特開2002−12902号公報)で本出願人が提案した高周波焼結により行なうことができる。   In order to bring about such a sintering process, Cu-Bi pre-alloy atomized powder or a mixed powder of Cu (alloy) atomized powder and Cu-Bi alloy powder has a short holding time of 2 minutes or less at the sintering temperature. It is preferable to perform time sintering. Such short-time sintering can be performed by high-frequency sintering proposed by the present applicant in Patent Document 6 (Japanese Patent Laid-Open No. 2002-12902).

(3)合金の性質
本発明の銅基焼結合金は、一般的にいうと、Bi相はなじみ性を発揮し、硬質物粒子がCuマトリックスに強固に保持され、その脱落が起こりがたく、耐摩耗性および耐焼付き性が向上するとともに、強度や耐疲労性が良好になる。
(イ)Bi相は焼結合金全体において微細に分散しているために、材料自体のバルク性質が耐疲労性、耐食性および強度の点で優れている。
(ロ)硬質物粒子は殆どがCuもしくは銅合金マトリックスに保持されているので、摺動面における材料は耐摩耗性に優れている。
(ハ)摺動面に存在するBi相によりPbフリーでも優れたなじみ性が達成される。
(ニ)微細に分散されたBi相が優れた非凝着性と耐焼付性をもたらす。
(ホ)単一粒子内にFe2PとFe3Pとを含む硬質物粒子が優れた焼結性をもたらす。
以下、実施例により本発明をより詳しく説明する。
(3) Properties of the alloy Generally speaking, in the copper-based sintered alloy of the present invention, the Bi phase exhibits the conformability, the hard particles are firmly held in the Cu matrix, and the drop-out hardly occurs. Abrasion resistance and seizure resistance are improved, and strength and fatigue resistance are improved.
(A) Since the Bi phase is finely dispersed in the entire sintered alloy, the bulk properties of the material itself are excellent in terms of fatigue resistance, corrosion resistance and strength.
(B) Since most of the hard particles are held in a Cu or copper alloy matrix, the material on the sliding surface is excellent in wear resistance.
(C) Excellent conformability is achieved even with Pb free due to the Bi phase existing on the sliding surface.
(D) The finely dispersed Bi phase provides excellent non-adhesiveness and seizure resistance.
(E) Hard particles containing Fe 2 P and Fe 3 P in a single particle provide excellent sinterability.
Hereinafter, the present invention will be described in more detail with reference to examples.

本発明の一実施例に係る焼結銅合金の顕微鏡組織を示す写真である(200倍)。It is a photograph which shows the microscope structure of the sintered copper alloy which concerns on one Example of this invention (200 times). 本発明の一実施例に係る焼結銅合金の顕微鏡組織を示す写真である(500倍)。It is a photograph which shows the microscope structure of the sintered copper alloy which concerns on one Example of this invention (500 times). 比較例に係る焼結銅合金の顕微鏡組織を示す写真である(200倍)。It is a photograph which shows the microscope structure of the sintered copper alloy which concerns on a comparative example (200 times). 比較例に係る焼結銅合金の顕微鏡組織を示す写真である(500倍)。It is a photograph which shows the microscope structure of the sintered copper alloy which concerns on a comparative example (500 times).

表1に組成を示すCu-Biプレアロイ合金粉末(粒径150μm以下、アトマイズ粉末)と硬質物粒子(平均粒径−表1に示す)を混合し、鋼板上に約1mmの厚さになるように散布した後、750〜900℃、焼結時間20〜1800秒、水素還元雰囲気中で1次焼結を行った。その後圧延を行い、同じ条件で2次焼結を行って得られた焼結材を供試材とした。焼結時間範囲内の長時間焼結はBi相の拡散を促進して本発明外の比較例を調製するための条件である。なお、FeとPとで構成される溶融金属(P:20wt%)を凝固させることにより硬質物粒子用のインゴットを形成し、当該硬質物粒子用のインゴットを塊状に粉砕し、ふるいによって粒径を揃えることにより粉末状の硬質物粒子を用意した。粉末状の硬質物粒子には、単一粒子がFe2Pのみ構成される粒子と、単一粒子がFe3Pのみ構成される粒子と、単一粒子がFe2PとFe3Pとで構成される粒子とが含まれる。 Cu-Bi pre-alloy alloy powder (particle size 150 μm or less, atomized powder) having a composition shown in Table 1 and hard particles (average particle size—shown in Table 1) are mixed so that the thickness of the steel plate is about 1 mm. Then, primary sintering was performed in a hydrogen reduction atmosphere at 750 to 900 ° C., sintering time 20 to 1800 seconds. Thereafter, rolling was performed, and a sintered material obtained by performing secondary sintering under the same conditions was used as a test material. Long-term sintering within the sintering time range is a condition for promoting the diffusion of the Bi phase and preparing a comparative example outside the present invention. The ingot for the hard particles is formed by solidifying the molten metal composed of Fe and P (P: 20 wt%), the ingot for the hard particles is crushed into a lump, and the particle size is obtained by sieving. Were prepared to prepare powdered hard particles. The powdered hard particles include particles composed of only Fe 2 P in a single particle, particles composed of only Fe 3 P in a single particle, and Fe 2 P and Fe 3 P in a single particle. And composed particles.

耐焼付性試験方法
前記方法により調製された銅合金表面をペーパーでラップして表面粗さ(十点平均粗さ)を1.0μm以下にした供試材に鋼球をあて、荷重をかけて一方向に滑らせる。滑らせた後の鋼球を観察し、鋼球に凝着しているCu合金の面積を測定する。凝着しやすい材料は耐焼付き性に劣るため、凝着面積が小さいものが耐焼付性に優れる。
試験機:スティックスリップ試験機
荷重:500g
軸材質:SUJ2
潤滑油:なし
温度:室温〜200℃漸増
Test method for seizure resistance The surface of the copper alloy prepared by the above method was wrapped with paper to make the surface roughness (ten-point average roughness) 1.0 μm or less. Slide in one direction. The steel ball after sliding is observed, and the area of the Cu alloy adhered to the steel ball is measured. A material that easily adheres is inferior in seizure resistance, and a material having a small adhesion area is excellent in seizure resistance.
Testing machine: Stick-slip testing machine Load: 500g
Shaft material: SUJ2
Lubricating oil: None Temperature: Room temperature to 200 ° C gradual increase

耐食性
供試材の表面を粗さ1.0μmに仕上げ、油中に浸漬し、前後の重量変化を測定する。重量減少量が少ないものが耐腐食性に優れる。
油種:劣化ATF
油温:180℃
時間:24h
The surface of the corrosion-resistant test material is finished to a roughness of 1.0 μm, immersed in oil, and the weight change before and after is measured. Those with a small weight loss have excellent corrosion resistance.
Oil type: Degraded ATF
Oil temperature: 180 ° C
Time: 24h

耐疲労性
疲労強度と引張強度はよい相関にあり、引張強度が高いものが耐疲労性に優れているため、Cu-Bi合金の材料強度(引張強度)をJISに準拠した引張試験により行ない、これを疲労強度の代替特性とした。
There is a good correlation between fatigue resistance fatigue strength and tensile strength, and those with high tensile strength are excellent in fatigue resistance, so the material strength (tensile strength) of the Cu-Bi alloy is determined by a tensile test based on JIS, This was used as an alternative characteristic of fatigue strength.

硬質物存在率並びに前記特性の試験の結果を表1に示す。   Table 1 shows the results of tests on the presence of hard materials and the above characteristics.

表1より本発明実施例は耐焼付性、耐疲労性および耐食性を兼備していることが明らかである。   From Table 1, it is clear that the examples of the present invention have seizure resistance, fatigue resistance and corrosion resistance.

図1および2に本発明実施例No.3の200倍および500倍の顕微鏡組織写真を示し、同様に図3および4に比較例No.3の200倍および500倍の顕微鏡組織写真を示す。前者の図1,2は硬質物とBi相の接触割合が少なく、後者の図3,4は硬質物とBi相の接触割合が大きいことが分かる。   1 and 2 show Example No. of the present invention. 3 and 200 times of micrographs are shown, and in FIGS. 3 shows micrographs of 200 and 500 magnifications. The former FIGS. 1 and 2 show that the contact ratio between the hard material and the Bi phase is small, and the latter FIGS. 3 and 4 show that the contact ratio between the hard material and the Bi phase is large.

本発明に係る焼結銅合金は、各種軸受、例えばAT(Automatic Transmission)用ブシュ、ピストンピンブシュなどに使用することができる。これらの用途に対して本発明が達成した高レベルのなじみ性、耐摩耗性、耐焼付性及び耐疲労性は有効に作用する。   The sintered copper alloy according to the present invention can be used for various bearings such as AT (Automatic Transmission) bushings and piston pin bushings. The high level of conformability, wear resistance, seizure resistance and fatigue resistance achieved by the present invention for these applications works effectively.

Claims (4)

Bi1〜30質量%および平均粒径が10〜50μmの硬質物粒子0.1〜10質量%を含有し、残部がCuおよび不可避的不純物からなる組成を有し、前記硬質物粒子より平均粒径が小さいBi相がCuマトリックス中に分散し、
前記硬質物粒子は、単一粒子がFe 2 Pのみで構成される粒子と、単一粒子がFe 3 Pのみで構成される粒子と、単一粒子がFe 2 PとFe 3 Pとで構成される粒子と、からなり、
前記硬質物粒子におけるFe2PとFe3Pの質量比がFe2P:Fe3P=4:1〜2:3である、
すべり軸受用銅合金。
Bi 1-30% by mass and an average particle size of 10-50 μm containing hard particles 0.1-10% by mass, the balance is composed of Cu and inevitable impurities, the average particle size than the hard particles A small Bi phase is dispersed in the Cu matrix,
The hard particles are composed of particles composed of only Fe 2 P, single particles composed of only Fe 3 P, and single particles composed of Fe 2 P and Fe 3 P. Composed of particles,
The mass ratio of Fe 2 P and Fe 3 P in the hard particles is Fe 2 P: Fe 3 P = 4: 1 to 2: 3,
Copper alloy for plain bearings.
Bi1〜30質量%と、Sn1〜15質量%、Ni0.5〜5質量%およびP0.5質量%以下からなる群の少なくとも1種と、平均粒径が10〜50μmの硬質物粒子0.1〜10質量%とを含有し、残部がCuおよび不可避的不純物からなる組成を有し、前記硬質物粒子より平均粒径が小さいBi相が銅合金マトリックス中に分散し、
前記硬質物粒子は、単一粒子がFe 2 Pのみで構成される粒子と、単一粒子がFe 3 Pのみで構成される粒子と、単一粒子がFe 2 PとFe 3 Pとで構成される粒子と、からなり、
前記硬質物粒子におけるFe2PとFe3Pの質量比がFe2P:Fe3P=4:1〜2:3である、
すべり軸受用銅合金。
Bi 1-30% by mass, Sn 1-15% by mass, Ni 0.5-5% by mass, and P0.5% by mass or less, and hard particles 0.1 having an average particle size of 10-50 μm And a Bi phase having a composition consisting of Cu and inevitable impurities, the average particle size being smaller than the hard particles, is dispersed in the copper alloy matrix,
The hard particles are composed of particles composed of only Fe 2 P, single particles composed of only Fe 3 P, and single particles composed of Fe 2 P and Fe 3 P. Composed of particles,
The mass ratio of Fe 2 P and Fe 3 P in the hard particles is Fe 2 P: Fe 3 P = 4: 1 to 2: 3,
Copper alloy for plain bearings.
Bi1〜30質量%および平均粒径が10〜50μmの硬質物粒子0.1〜10質量%を含有し、残部がCuおよび不可避的不純物からなる組成を有し、Bi相と接している前記硬質物粒子に関して、該硬質物粒子全周に対するBi相の接触長さ割合が50%以下である前記硬質物粒子の存在割合が前記硬質物粒子個数の全体に対して70%以上であり、
前記硬質物粒子は、単一粒子がFe 2 Pのみで構成される粒子と、単一粒子がFe 3 Pのみで構成される粒子と、単一粒子がFe 2 PとFe 3 Pとで構成される粒子と、からなり、
前記硬質物粒子におけるFe2PとFe3Pの質量比がFe2P:Fe3P=4:1〜2:3である、
すべり軸受用銅合金。
The hard material which contains Bi to 30% by mass and 0.1 to 10% by mass of hard particles having an average particle diameter of 10 to 50 μm, the balance being composed of Cu and inevitable impurities, and in contact with the Bi phase Regarding the product particles, the ratio of the Bi phase contact length to the entire circumference of the hard product particles is 50% or less, and the ratio of the hard product particles is 70% or more based on the total number of the hard product particles,
The hard particles are composed of particles composed of only Fe 2 P, single particles composed of only Fe 3 P, and single particles composed of Fe 2 P and Fe 3 P. Composed of particles,
The mass ratio of Fe 2 P and Fe 3 P in the hard particles is Fe 2 P: Fe 3 P = 4: 1 to 2: 3,
Copper alloy for plain bearings.
Bi1〜30質量%と、平均粒径が10〜50μmの硬質物粒子0.1〜10質量%と、Sn1〜15質量%、Ni0.5〜5質量%、および0.5質量%以下のPからなる群の少なくとも1種とを含有し、残部がCuおよび不可避的不純物からなる組成を有し、Bi相と接している前記硬質物粒子に関して、該硬質物粒子全周に対するBi相の接触長さ割合が50%以下である前記硬質物粒子の存在割合が前記硬質物粒子個数の全体に対して70%以上であり、
前記硬質物粒子は、単一粒子がFe 2 Pのみで構成される粒子と、単一粒子がFe 3 Pのみで構成される粒子と、単一粒子がFe 2 PとFe 3 Pとで構成される粒子と、からなり、
前記硬質物粒子におけるFe2PとFe3Pの質量比がFe2P:Fe3P=4:1〜2:3である、
すべり軸受用銅合金。
Bi 1-30% by mass, hard particles 0.1-10% by mass with an average particle size of 10-50 μm, Sn 1-15% by mass, Ni 0.5-5% by mass, and 0.5% by mass or less of P The hard phase particles containing at least one member of the group consisting of Cu and inevitable impurities, and in contact with the Bi phase, the Bi phase contact length with respect to the entire circumference of the hard phase particles The proportion of the hard particles having a thickness ratio of 50% or less is 70% or more with respect to the total number of the hard particles,
The hard particles are composed of particles composed of only Fe 2 P, single particles composed of only Fe 3 P, and single particles composed of Fe 2 P and Fe 3 P. Composed of particles,
The mass ratio of Fe 2 P and Fe 3 P in the hard particles is Fe 2 P: Fe 3 P = 4: 1 to 2: 3,
Copper alloy for plain bearings.
JP2014209941A 2014-10-14 2014-10-14 Copper alloy for slide bearing Active JP6363931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014209941A JP6363931B2 (en) 2014-10-14 2014-10-14 Copper alloy for slide bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014209941A JP6363931B2 (en) 2014-10-14 2014-10-14 Copper alloy for slide bearing

Publications (2)

Publication Number Publication Date
JP2016079432A JP2016079432A (en) 2016-05-16
JP6363931B2 true JP6363931B2 (en) 2018-07-25

Family

ID=55955902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014209941A Active JP6363931B2 (en) 2014-10-14 2014-10-14 Copper alloy for slide bearing

Country Status (1)

Country Link
JP (1) JP6363931B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7389601B2 (en) * 2019-09-26 2023-11-30 大同メタル工業株式会社 sliding member
JP7219198B2 (en) 2019-10-16 2023-02-07 大豊工業株式会社 Copper alloy sliding material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4476634B2 (en) * 2004-01-15 2010-06-09 大豊工業株式会社 Pb-free copper alloy sliding material
JP4410612B2 (en) * 2004-06-10 2010-02-03 大豊工業株式会社 Pb-free bearing for fuel injection pump
KR20090028638A (en) * 2006-08-05 2009-03-18 다이호 고교 가부시키가이샤 Lead-free copper alloy sliding material
US8679641B2 (en) * 2007-01-05 2014-03-25 David M. Saxton Wear resistant lead free alloy bushing and method of making
KR20110042365A (en) * 2008-09-10 2011-04-26 다이호 고교 가부시키가이샤 Sliding component consisting of pb-free cu-bi type sintered material

Also Published As

Publication number Publication date
JP2016079432A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP4476634B2 (en) Pb-free copper alloy sliding material
JP5143827B2 (en) Method for producing Pb-free copper alloy sliding material
JP5374722B2 (en) Abrasion-resistant lead-free alloy bushing and method for producing the same
KR102309320B1 (en) Copper alloy, use of a copper alloy, bearing having a copper alloy, and method for producing a bearing composed of a copper alloy
WO2010030031A1 (en) SLIDING COMPONENT CONSISTING OF Pb-FREE Cu-Bi TYPE SINTERED MATERIAL
JP5058276B2 (en) Copper-based sliding material
JP5289065B2 (en) Pb-free copper-based sintered sliding material
WO2012147780A1 (en) Sliding material, alloy for bearing, and multilayer metal material for bearing
JP5377557B2 (en) Copper-based sliding material
JP6363931B2 (en) Copper alloy for slide bearing
JP2013043997A (en) Copper-based sliding material
JP6360270B1 (en) Sintered friction material for brake
EP3521465B1 (en) Slide member and method for manufacturing same
JP3292445B2 (en) Sliding material with excellent wear resistance
JP5073925B2 (en) Lead-free copper-based sliding material
JP2006037178A (en) SLIDING MATERIAL SUPERIOR IN SEIZURE RESISTANCE MADE OF Pb-FREE COPPER ALLOY
JP2014196524A (en) Copper-based sliding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180629

R150 Certificate of patent or registration of utility model

Ref document number: 6363931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250