JPH0428836A - Sliding material - Google Patents

Sliding material

Info

Publication number
JPH0428836A
JPH0428836A JP2134183A JP13418390A JPH0428836A JP H0428836 A JPH0428836 A JP H0428836A JP 2134183 A JP2134183 A JP 2134183A JP 13418390 A JP13418390 A JP 13418390A JP H0428836 A JPH0428836 A JP H0428836A
Authority
JP
Japan
Prior art keywords
lead
sliding
sliding material
sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2134183A
Other languages
Japanese (ja)
Other versions
JP2918292B2 (en
Inventor
Teruo Ohashi
照男 大橋
Yasuhisa Tanaka
靖久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2134183A priority Critical patent/JP2918292B2/en
Publication of JPH0428836A publication Critical patent/JPH0428836A/en
Application granted granted Critical
Publication of JP2918292B2 publication Critical patent/JP2918292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To reduce the wear amt. in a sliding material into a low one and to provide it with high loading capacity, by constituting a sliding material of a Cu base sintered alloy contg. Pb, In, Bi and Tl and letting the above Pb, etc., form a film as quasi-flaky fine grains. CONSTITUTION:This sliding material is constituted of a sintered allay contg. 5 to 60% soft metals of elements such as Pb, In, Bi and Tl having low solid soln. degree to Cu. The metals such as Pb are distributed into a Cu matrix as substantially quasi-flaky fine grains having <=10mum average grain size and show conformability, lubricity or the like. If required, the above compsn. is incorporated with <=15% Sn. The soft metals such as Pb form a film on the approximately whole face of the sliding face with the mating member under a boundary lubricating condition in the use. This sliding material is suitable for a bearing material for a high load-high output internal combustion engine and a bearing material used in a boundary lubricating area.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、内燃機関のメインジャーナル軸受、コンロッ
ド軸受などの滑り軸受、一般機械要素としてのブシュな
どに使用される摺動材料に関するものである。さらに詳
しく述べるならば本発明は銅を主成分として、鉛、イン
ジウムなどの軟質金属を添加元素とした銅系焼結摺動材
料に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a sliding material used for main journal bearings of internal combustion engines, sliding bearings such as connecting rod bearings, bushings as general machine elements, etc. . More specifically, the present invention relates to a copper-based sintered sliding material containing copper as a main component and soft metals such as lead and indium as additive elements.

[従来の技術] 従来、上記用途に使用される摺動材料は銅・鉛系ケルメ
ツト合金が一般的であるので、以下この銅・鉛合金の例
を主として説明する。
[Prior Art] Conventionally, the sliding material used for the above-mentioned purpose is generally a copper-lead based Kelmet alloy, and therefore an example of this copper-lead alloy will be mainly explained below.

従来、銅・鉛合金のバイメタル材は水またはガスアトマ
イズ法で作った粉末を鉄板上に散布し還元雰囲気中で焼
結して製造されていた。すべり軸受材料として使用され
る銅・鉛合金は銅に固溶しない鉛との合金であるために
、鉛は一種の介在物として働くため、その分布状態は微
細であるほど負荷能力を向上させることは容易に推定さ
れる。
Conventionally, copper-lead alloy bimetallic materials have been manufactured by scattering powder made by water or gas atomization onto an iron plate and sintering it in a reducing atmosphere. The copper-lead alloy used as a sliding bearing material is an alloy with lead that does not dissolve in copper, so lead acts as a type of inclusion, so the finer its distribution, the better the load capacity. is easily estimated.

しかし従来法ではPb相の大きさには粉末の凝固速度に
より定められる微細化の限界があり、焼結温度や時間の
条件の工夫をしても十分な微細化焼結組織は得られない
However, in the conventional method, there is a limit to the size of the Pb phase that can be refined depending on the solidification rate of the powder, and a sufficiently refined sintered structure cannot be obtained even if the sintering temperature and time conditions are modified.

近年自動車用エンジンを始めとして内燃機関の性能は著
しく向上し、その分、軸受への負荷も非常に厳しくなっ
ている状況ではより高負荷に耐える軸受として銅鉛合金
では鉛の分布をより微細なものにすることが求められる
ようになった。
In recent years, the performance of internal combustion engines, including automobile engines, has improved significantly, and as a result, the load on bearings has become extremely severe.Currently, copper-lead alloys have been developed with a finer distribution of lead to create bearings that can withstand even higher loads. It became necessary to make something happen.

銅・鉛合金軸受材料において銅マトリツクス内に分散し
た鉛相が潤滑金属として作用することは良(知られてい
るが、鉛の分布が微細な方がよいのか、粗い方がよいの
かについて賛否両輪あり、明解な答えはまだ得られてい
ない。
In copper-lead alloy bearing materials, it is well known that the lead phase dispersed within the copper matrix acts as a lubricating metal, but there are pros and cons as to whether it is better to have a finer or coarser distribution of lead. Yes, there is no clear answer yet.

銅・鉛焼結合金の鉛層を微細化することを開示する特許
として米国特許第4,818,628号がある。この特
許では、焼結を、誘導加熱により650℃以上で行う第
1段加熱と、850℃程度で炉内で行う第2段加熱とに
より行い、鉛粒径が平均で8μm以下、最大鉛粒径が4
4μm以下の微細組織を得ることが提案されている。こ
の米国特許では原料粉末は、147μm以下のものが好
ましいとされており、粉末の製法は言及されておらない
が、この粉末のサイズを考慮すると一般的なガスもしく
は水アトマイズ法であると考えられる。また、上記米国
特許第4,818,628号は、腐食の発生、進展がオ
ーバレイのクラックから始まってケルメツト中の鉛相に
達する時、鉛相が粗いと鉛相での腐食の進展が起こりや
すいことからケルメツト地の鉛相を微細にすることを提
案している。
There is US Patent No. 4,818,628 as a patent that discloses refining the lead layer of a copper-lead sintered alloy. In this patent, sintering is performed by induction heating at 650°C or higher and second stage heating at about 850°C in a furnace, and the average lead particle size is 8 μm or less. diameter is 4
It has been proposed to obtain a microstructure of 4 μm or less. This U.S. patent states that it is preferable that the raw material powder be 147 μm or less, and does not mention the powder manufacturing method, but considering the size of the powder, it is thought to be a common gas or water atomization method. . In addition, the above-mentioned U.S. Patent No. 4,818,628 discloses that when corrosion starts from cracks in the overlay and reaches the lead phase in Kelmet, if the lead phase is rough, corrosion tends to progress in the lead phase. Therefore, it is proposed to make the lead phase of Kelmet ground finer.

(発明が解決しようとする課題) 本発明者はアトマイズ合金粉をできるだけ微細化し、ま
た焼結条件を工夫して結晶粒成長の抑制しつつ焼結を行
って銅・鉛焼結体を作成し、その組織を観察し、以下の
知見を得た。すなわち、焼結体中の鉛相は銅マトリック
スの粒界に沿って凝固した網状形状が残っている。この
ような組織を有する焼結体の性能は微細化により多少の
向上が見られるが、従来の性能を大幅に凌駕する性能の
達成は出来ない。
(Problem to be Solved by the Invention) The present inventor created a copper-lead sintered body by making the atomized alloy powder as fine as possible, and by devising sintering conditions to perform sintering while suppressing grain growth. We observed the organization and obtained the following findings. That is, the lead phase in the sintered body remains in a network shape solidified along the grain boundaries of the copper matrix. Although the performance of a sintered body having such a structure is improved to some extent by miniaturization, it is not possible to achieve performance that greatly exceeds conventional performance.

(課題を解決するための手段) 本発明は、上記したような従来の焼結摺動材料の性能を
大幅に改良するものであり、Pb。
(Means for Solving the Problems) The present invention significantly improves the performance of the conventional sintered sliding materials as described above.

In、Bi、TIから選択された一種以上の成分を5〜
60%含有し、残部がCuおよび不可避的不純物からな
る焼結合金から構成され、前記Pb、In、Bi、Tl
などが平均粒径10μm以下の実質的に擬片状の微細粒
子として分散しており、境界潤滑条件下で相手軸との摺
動面略全面で皮膜を形成することを特徴とする。
5 to 100% of one or more components selected from In, Bi, and TI
60% of the Pb, In, Bi, Tl
etc. are dispersed as substantially pseudo-flake-like fine particles with an average particle diameter of 10 μm or less, and are characterized by forming a film on substantially the entire surface of the sliding surface with the mating shaft under boundary lubrication conditions.

さらに本発明はPb、In、Bi、TIから選択された
一種以上の成分を5〜60%、およびSnを15%以下
含有し、残部がCuおよび不可避的不純物からなる焼結
合金から構成され、前記Pb、In、Bi、Tlなどが
平均粒径10μm以下の実質的に擬片状の微細粒子とし
て分散しており、境界潤滑条件下で相手軸との摺動面略
全面で皮膜を形成することを特徴とする。
Furthermore, the present invention is composed of a sintered alloy containing 5 to 60% of one or more components selected from Pb, In, Bi, and TI, and 15% or less of Sn, with the remainder consisting of Cu and inevitable impurities, The above-mentioned Pb, In, Bi, Tl, etc. are dispersed as substantially pseudo-flake-like fine particles with an average particle size of 10 μm or less, and under boundary lubrication conditions, a film is formed on almost the entire sliding surface with the mating shaft. It is characterized by

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

先ず本発明の摺動材料の組成を説明する。本発明に係る
摺動材料はPb、In、Bi、TlなどのCuに対する
固溶度が少ない元素を軟質金属として含有する。これら
の金属はCuマトリックス中に分布してなじみ性、潤滑
性などを発揮する。
First, the composition of the sliding material of the present invention will be explained. The sliding material according to the present invention contains elements having low solid solubility in Cu, such as Pb, In, Bi, and Tl, as soft metals. These metals are distributed in the Cu matrix and exhibit conformability, lubricity, and the like.

軟質金属の含有量が5%(百分率は特に断らない限り重
量%である)未満であると上記の性能が不十分となり、
一方含有量が60%を超えると銅・鉛合金の強度が不十
分になり負荷能力が不十分となる。また、後述するよう
に本発明においてはPb、Inなどの相は微細な形状で
密集していることに関連してPb、In、Bi、TIな
どの含有量が5%未満であると軟質相が孤立し、散開し
て分散し、本発明による鉛等の連続層を摺動面に形成す
る効果を奏することができないので、上記した下限含有
量5%以上の添加が必要である。軟質金属の含有量は特
に耐疲労性・高負荷用の目的では好ましくは5〜30%
、より好ましくは8〜25%とするとよく、また境界潤
滑用の目的では、好ましくは20〜60%、より好まし
くは30〜50%とするとよい。
If the content of soft metal is less than 5% (percentages are by weight unless otherwise specified), the above performance will be insufficient;
On the other hand, if the content exceeds 60%, the strength of the copper-lead alloy will be insufficient and the load capacity will be insufficient. Furthermore, as will be described later, in the present invention, since phases such as Pb and In are densely packed in fine shapes, if the content of Pb, In, Bi, TI, etc. is less than 5%, a soft phase is observed. is isolated, spread out and dispersed, and the effect of forming a continuous layer of lead etc. on the sliding surface according to the present invention cannot be achieved, so it is necessary to add the above-mentioned lower limit content of 5% or more. The soft metal content is preferably 5 to 30%, especially for fatigue resistance and high load purposes.
, more preferably 8 to 25%, and for the purpose of boundary lubrication, preferably 20 to 60%, more preferably 30 to 50%.

上記した軟質金属の残部はCuおよび不純物である。C
uはマトリックスとして上記した軟質金属を均一微細に
分布させ、強固に支持するとともに摩擦により発生した
熱を逃がす熱の良導体の役割を担う。
The remainder of the soft metal described above is Cu and impurities. C
u distributes the above-mentioned soft metal uniformly and finely as a matrix, firmly supports it, and plays the role of a good thermal conductor that dissipates heat generated by friction.

ここで、従来のアトマイズ粉焼結ではpbの含有量を高
(すると材料自体の強度が低くなり、耐疲労性に劣り、
高負荷用としては十分な使用には耐えないが、本願の如
(、メカニカルアロイング法による粉末の焼結体ではC
u地自体が強化されるため高pb含有量が採用できる。
Here, in conventional atomized powder sintering, the content of PB is high (this results in lower strength of the material itself, poor fatigue resistance,
Although it cannot withstand sufficient use as a high-load application, the powder sintered body produced by the mechanical alloying method is
Since the substrate itself is strengthened, a high Pb content can be adopted.

この高pbがCuに比べ廉価のため材料コストの点でも
有利となる。
Since this high pb is cheaper than Cu, it is also advantageous in terms of material cost.

次に上記組成でさらにSnを15%以下添加することが
できる。SnはCu地を固溶強化する成分であり、15
%を超えると固溶限を超えた過剰金属間化合物によりC
u地を逆に脆くしてしまう。好ましくは0.5〜12%
のSn含有量がよい。
Next, 15% or less of Sn can be further added to the above composition. Sn is a component that solid-solution strengthens the Cu base, and is 15
%, C
On the contrary, it makes the U-shaped fabric brittle. Preferably 0.5-12%
The Sn content is good.

上言己した成分以外にSb、Fe、Ni、Mnなどを硬
質成分として各5%以下の少量を添加することができる
。これらの硬質成分は分散強化によって焼結体を強化し
、負荷能力を高める。さらに、Cu系摺動材の公知の副
成分を適宜、例えばPを1%以下、好ましくは0.00
1〜0.5%添加してもよい。
In addition to the above-mentioned components, Sb, Fe, Ni, Mn, etc. may be added as hard components in small amounts of 5% or less each. These hard components strengthen the sintered body through dispersion strengthening and increase the load capacity. Further, known subcomponents of the Cu-based sliding material may be added as appropriate, for example, P to 1% or less, preferably 0.00%.
It may be added in an amount of 1 to 0.5%.

以下、本発明が最も特徴とする焼結組織を説明する。The sintered structure, which is the most characteristic feature of the present invention, will be explained below.

従来の銅・鉛合金においては鋳造状態の鉛相が残存する
か、あるいは焼結中に鉛相が再溶融して銅の結晶粒界に
沿って再分布しており、網状に分布していた。しかし本
発明による鉛相はこのような鋳造・再溶融組織の痕跡が
な(、接片状を呈している。このような組織は従来銅・
鉛合金では類似した例がな(、鋳鉄においてMg添加し
た球状黒鉛と通常のねずみ鋳鉄の片状黒鉛の中間形状の
黒鉛に見られる(日本金属学会編「改訂5版、金属便覧
」第597頁参照)。この接片状鉛相は一般的な形状と
しては片状である(網状形態を有しない、長い形状であ
り、球状のように縦横比率が路間等でない)が、ぎざぎ
ざした形状、小さい突起を有する形状、局部的に太くな
っている形状、末端が枝別れした形状などの不規則形状
があるので「擬」片状と称する。
In conventional copper-lead alloys, the lead phase remains in the cast state, or the lead phase remelts during sintering and is redistributed along the copper grain boundaries, resulting in a net-like distribution. . However, the lead phase according to the present invention has no traces of such a casting/remelting structure (and exhibits a piece-like structure.
There is no similar example in lead alloys (found in graphite with an intermediate shape between Mg-added spheroidal graphite in cast iron and flaky graphite in ordinary gray cast iron (edited by the Japan Institute of Metals, "Revised 5th edition, Metal Handbook", p. 597). (Reference) This flake-like lead phase is generally flake-like (it does not have a net-like shape, it has a long shape, and the aspect ratio is not like that of a sphere), but it also has a jagged shape, They are called "pseudo" flakes because they have irregular shapes, such as shapes with small protrusions, locally thickened shapes, and shapes with branched ends.

本発明の鉛相は寸法が平均寸法が10μm以下である。The lead phase of the present invention has an average size of 10 μm or less in size.

鉛相の平均寸法10tLm以下は上述の接片状組織とと
もに本発明による鉛皮膜形成作用を奏するために必要な
条件である。これらの条件が満たされると、従来の網状
鉛相はCu結晶粒界を取り巻いているので、通常20〜
40μmの鋳造凝固したCu相の粒径とほぼ同じ間隔て
鉛相が散開して分散している。本発明においては鉛相は
鋳造組織では得られない接片状であるので、アトマイズ
粉よりも鉛相は遥かに密集しており、鉛相の平均間隔が
遥かに狭(なっている。
The average size of the lead phase of 10 tLm or less, together with the above-mentioned flaky structure, is a necessary condition for achieving the lead film forming effect according to the present invention. When these conditions are met, the conventional reticulated lead phase surrounds the Cu grain boundaries, so typically 20~
The lead phase is dispersed at approximately the same intervals as the grain size of the cast solidified Cu phase, which is 40 μm. In the present invention, the lead phase has a piece-like shape that cannot be obtained in a cast structure, so the lead phase is much more densely packed than in the atomized powder, and the average interval between the lead phases is much narrower.

以上鉛相を例をとって本発明の詳細な説明したがインジ
ウム、ビスマス、タリウムなどが添加元素である場合に
もメカニカルアロイング法により銅が硬質金属として、
インジウムなどが延性金属として作用し、kneadi
ng効果によりインジウムなどが光学顕微鏡では検出で
きないほど微細に分散した組織を作ることができる。な
お、本願で言うメカニカルアロイング法とは、狭義のメ
カニカルアロイングとメカニカルグラインディングの総
称である。
The present invention has been described in detail above using the lead phase as an example, but even when indium, bismuth, thallium, etc. are added elements, copper can be used as a hard metal by the mechanical alloying method.
Indium etc. act as a ductile metal,
Due to the NG effect, it is possible to create a structure in which indium and the like are so finely dispersed that they cannot be detected with an optical microscope. Note that the mechanical alloying method referred to in this application is a general term for mechanical alloying in a narrow sense and mechanical grinding.

上記した組織を作るためにはメカニカルアロイング法な
どの超微細組織を作る方法により得た粉末を焼結するこ
とが必要である。かかる方法により得た粉末の表面は非
常に活性であるので、焼結を行う際には焼結雰囲気条件
の点に注意しなければならない。焼結は、裏金上での一
次焼結、−次焼結粉の裏金への圧下、および二次焼結の
プロセスで行うことができる。
In order to create the above-described structure, it is necessary to sinter the powder obtained by a method for creating an ultrafine structure such as a mechanical alloying method. Since the surface of the powder obtained by this method is very active, care must be taken in the sintering atmosphere conditions when performing sintering. Sintering can be performed by a process of primary sintering on a backing metal, pressing down of the secondary sintered powder onto the backing metal, and secondary sintering.

以下、メカニカルアロイング粉焼結材に例をとって本発
明をさらに説明する。
Hereinafter, the present invention will be further explained using a mechanically alloyed powder sintered material as an example.

〔作用〕[Effect]

一定時間摺動させたメカニカルアロイング粉焼結材とア
トマイズ粉焼結材の摩擦面の観察を行ったところ、アト
マイズ粉焼結材の摺動試験後の表面は銅マトリックスの
金属光沢を呈しているが、メカニカルアロイング粉焼結
材の方は摩擦方向に延びた黒い縞模様が帯状に何本も観
察された。この黒い縞模様の境界部分を電子顕微鏡観察
、鉛のライン分析およびEPMAの観察結果からメカニ
カルアロイング粉焼結材に現れる黒い縞模様は鉛で、そ
れが摩擦方向に表面を覆っていることが分かった。
When we observed the friction surfaces of the mechanically alloyed powder sintered material and the atomized powder sintered material after sliding them for a certain period of time, we found that the surface of the atomized powder sintered material had a copper matrix metallic luster after the sliding test. However, in the case of the mechanically alloyed powder sintered material, a number of black stripes extending in the direction of friction were observed. Electron microscopy, lead line analysis, and EPMA observation of the boundaries of these black stripes indicate that the black stripes that appear on the mechanically alloyed powder sintered material are lead, and that they cover the surface in the friction direction. Do you get it.

ケルメツト合金で鉛が表面にしみ出してくることは一般
に知られていることであるが、従来のアトマイズ粉焼結
材では今回のメカニカルアロイング粉焼結材のように摩
擦面全面のかなりの部分を覆うほどにはならなかった。
It is generally known that lead oozes out onto the surface of Kelmet alloys, but in conventional atomized powder sintered materials, as in this mechanically alloyed powder sintered material, lead oozes out from a large portion of the entire friction surface. It wasn't enough to cover it.

今回の摺動試験は潤滑油として粘度の低い灯油を用いて
おり、速度も0.5 m/sと遅いので実験は境界潤滑
領域で行われている。したがって軸と試験片とが固体接
触する部分が存在し、その部分で鉛がしみだしたと考え
られる。
This sliding test used kerosene with low viscosity as the lubricant, and the speed was slow at 0.5 m/s, so the experiment was conducted in the boundary lubrication region. Therefore, it is thought that there was a part where the shaft and the test piece were in solid contact, and lead seeped out at that part.

メカニカルアロイング粉焼結材とアトマイズ粉焼結材と
では基地での鉛の分布状態が異なるため、そのしみ出し
方とそれが摺動方向へ流動して摩擦面を覆う様相に違っ
た結果を招いている。
Because the distribution of lead in the base is different between mechanically alloyed powder sintered material and atomized powder sintered material, the way it seeps out and the way it flows in the sliding direction and covers the friction surface have different results. I'm inviting you.

メカニカルアロイング粉焼結材とアトマイズ粉焼結材の
表面の鉛のしみ出しを観察した結果をそれぞれ第3図(
A)〜(D)および第4図(A)〜(D)に示す。図中
、A、B、C,Dはそれぞれ10分後、30分後、60
分後、120分後を示す。
Figure 3 shows the results of observing lead seepage on the surfaces of mechanically alloyed powder sintered material and atomized powder sintered material, respectively.
A) to (D) and FIGS. 4(A) to (D). In the figure, A, B, C, and D are respectively 10 minutes later, 30 minutes later, and 60 minutes later.
After 120 minutes.

メカニカルアロイング粉焼結材の鉛分布の細かいものは
摺動時間で10分に満たないうちから摩擦面に鉛のしみ
出しがあり(第3図(A)参照)、それらが表面を流動
しながら近傍の鉛のしみだし流動につながり、次々にそ
のつながりが成長し摩擦方向に一本の筋となって現れ、
そのすじ模様が集まって次第に摩擦面全面のかなりの部
分を覆う縞模様に成長する(第3図(D)参照)。
Mechanical alloyed powder sintered materials with a fine lead distribution will seep out onto the friction surface even after less than 10 minutes of sliding time (see Figure 3 (A)), and lead will flow on the surface. However, the nearby lead seeps out and connects to the flow, and the connections grow one after another and appear as a single line in the direction of friction.
The striped pattern gathers and gradually grows into a striped pattern that covers a considerable portion of the entire friction surface (see Fig. 3 (D)).

これに対し、アトマイズ粉焼結材では摺動面の大部分が
銅地として露出しており、わずかにpbの筋が観察され
るのみである。その摺動表面から見たpbの筋の面積率
は多(ても40%前後(30%pbとpbを多くした場
合)までにしかならない。
On the other hand, in the atomized powder sintered material, most of the sliding surface is exposed as a copper base, and only a few PB streaks are observed. The area ratio of the PB streaks seen from the sliding surface is only around 40% (when PB is increased by 30%).

一方、本願の如くメカニカルアロイング焼結材では、前
述の如く摺動面のかなりの部分なpbで覆う。本願では
、摺動面から見たpbの面積率が、摺動定常状態で略5
0%〜約100%である。この面積率は配合されるpb
量により左右されるが、通常は80〜95%となること
が多い。
On the other hand, in the mechanically alloyed sintered material as in the present application, a considerable portion of the sliding surface is covered with PB as described above. In this application, the area ratio of PB viewed from the sliding surface is approximately 5 in steady sliding state.
0% to about 100%. This area ratio is the combined pb
Although it depends on the amount, it is usually 80 to 95%.

以上の観察結果から、鉛相が密集して存在することが鉛
のしみ出し面積を本質的に高め、摺動面の略全面を鉛で
被覆することに重要な役割を果たしていることが分かる
。このように鉛相を密集させるためには鉛の添加量、鉛
相の寸法および形状を本発明が定義するところにより限
定することが必要である。
From the above observation results, it can be seen that the dense presence of the lead phase essentially increases the lead seepage area and plays an important role in covering almost the entire sliding surface with lead. In order to make the lead phase dense as described above, it is necessary to limit the amount of lead added and the size and shape of the lead phase as defined by the present invention.

以下、実施例によりさらに詳しく本発明を説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

〔実施例〕〔Example〕

水アトマイズ法で作った30%鉛を含む銅鉛合金粉末を
ステンレス製ボールを用いた高エネルギ型ボールミル(
アトライタ)にかけ、50時間のメカニカルアロイング
を行って微細合金粉を作った。ソノ組成は31.6%P
b、0.91%Sn、Fe<0.055.Ni<0.0
5%。
Copper-lead alloy powder containing 30% lead made by water atomization is processed using a high-energy ball mill using stainless steel balls (
Attritor) and mechanical alloying was performed for 50 hours to produce a fine alloy powder. Sono composition is 31.6%P
b, 0.91% Sn, Fe<0.055. Ni<0.0
5%.

Sb<0.05%、残部Cuであった。アトマイズ後の
合金粉およびメカニカルアロイング50時間後の合金粉
の電子顕微鏡写真とEPMAによる鉛の分布を調べた結
果、メカニカルアロイング合金粉では、鉛の分布をほと
んど識別できないほどに組織が細かく均一になっていた
Sb<0.05%, balance Cu. As a result of examining the lead distribution using EPMA and electron micrographs of the alloy powder after atomization and the alloy powder after 50 hours of mechanical alloying, it was found that the structure of the mechanically alloyed alloy powder was so fine and uniform that the distribution of lead could hardly be discerned. It had become.

メカニカルアロイング合金粉のX11回折結果は銅相手
と鉛相ともに各格子面のピーク位置の変化は認められず
銅と鉛とが原子の置換を起こすほどの合金化は起こって
いないことを示した。
The results of X11 diffraction of the mechanically alloyed alloy powder showed that no change in the peak position of each lattice plane was observed for both the copper partner and the lead phase, indicating that copper and lead were not alloyed to the extent of atomic substitution. .

このようにして得た合金粉を4〜5トン/cm”の加圧
力で直径13φ厚さ約3mmの円板形状の圧粉体にして
、水素ガス還元性雰囲気で700℃、60分間焼結し銅
・鉛焼結体を得た。
The alloy powder obtained in this way was made into a disc-shaped compact with a diameter of 13φ and a thickness of about 3mm under a pressure of 4 to 5 tons/cm" and sintered at 700°C for 60 minutes in a hydrogen gas reducing atmosphere. A copper-lead sintered body was obtained.

メカニカルアロイングを行っていないアトマイズ合金粉
についても同じ条件で焼結体を作り比較材とした。
A sintered body was also made under the same conditions using atomized alloy powder that had not been mechanically alloyed and used as a comparison material.

第1図、第2図はメカニカルアロイング合金粉の焼結組
織とアトマイズ合金粉の焼結組織の光学顕微鏡写真をそ
れぞれ示す。メカニカルアロイング粉の焼結組織が非常
に細かくなっており、アトマイズ粉焼結材はpbの網状
組織が見られる。これらの組織の画像解析にかけた結果
、鉛相の平均面積と平均粒径がメカニカルアロイング法
の焼結材の方がそれぞれおよそ1/3および1/8にな
っていることがわかった。
FIGS. 1 and 2 show optical micrographs of the sintered structure of the mechanically alloyed alloy powder and the sintered structure of the atomized alloy powder, respectively. The mechanically alloyed powder has a very fine sintered structure, and the atomized powder sintered material has a PB network structure. As a result of image analysis of these structures, it was found that the average area and average particle size of the lead phase in the mechanically alloyed sintered material were approximately 1/3 and 1/8, respectively.

(以下余白) 表1:画像解析による鉛相の平均面積と平均粒径、およ
び硬さ 機械的特性としての代表として測定した硬さはメカニカ
ルアロイング粉焼結材の方がアトマイズ粉焼結材より高
くなっており、pb分散僧を微細にしたことによる強化
が認められる。
(Leaving space below) Table 1: Average area, average particle size, and hardness of the lead phase determined by image analysis The hardness measured as a representative mechanical property of the mechanically alloyed powder sintered material is higher than that of the atomized powder sintered material. It is higher than that, and it is recognized that it is strengthened by making the PB dispersed particles finer.

また円筒平板試験機を用い、下記条件で摩擦係数および
摩耗量の測定を行った。
Furthermore, using a cylindrical plate testing machine, the friction coefficient and amount of wear were measured under the following conditions.

潤滑油:灯油バス 温度:室温 軸: 545C焼入れ材(直径45mm)軸表面粗さ:
RZ0.8μm 荷重: 9kg 軸回転数:273rpm 速度:0.5m/sec 時間;126分 アトマイズ粉焼結材とメカニカルアロイング粉焼結材の
摩耗量を第5図に、30%Pb−Cuに対するpbのし
み出し面積率を第6図にそれぞれ示す。摩耗量はアトマ
イズ粉焼結材よりメカニカルアロイング粉焼結材の方が
明らかに少なくかつ定常状態でのしみだし面積率も極め
て高くなっている。
Lubricating oil: Kerosene Bath temperature: Room temperature Shaft: 545C hardened material (diameter 45 mm) Shaft surface roughness:
RZ0.8 μm Load: 9 kg Shaft rotation speed: 273 rpm Speed: 0.5 m/sec Time: 126 minutes Figure 5 shows the wear amount of the atomized powder sintered material and the mechanically alloyed powder sintered material for 30% Pb-Cu. The seepage area ratio of pb is shown in FIG. The wear amount of the mechanically alloyed powder sintered material is clearly lower than that of the atomized powder sintered material, and the seepage area ratio in a steady state is also extremely high.

したがって、メカニカルアロイング粉焼結材は耐摩耗性
に優れており、これは軸と軸受との間で固体接触が起こ
ると接触部で温度が上昇し鉛がしみ出し、摩耗を抑制す
るためであると考えられる。
Therefore, mechanically alloyed powder sintered materials have excellent wear resistance, and this is because when solid contact occurs between the shaft and bearing, the temperature rises at the contact area and lead seeps out, suppressing wear. It is believed that there is.

[発明の効果] 以上説明したように本発明の焼結材料の材料特性は低摩
耗量と高負荷能力に特長があり、また軸受使用中には鉛
等の軟質金属が軸受の接触面略全面を被覆することに特
長がある。よって本発明の摺動材料は高負荷・高出力の
内燃機関用軸受材料や境界潤滑領域で使用される軸受材
料として好適である。
[Effects of the Invention] As explained above, the material properties of the sintered material of the present invention are low wear and high load capacity, and during the use of the bearing, soft metals such as lead spread over almost the entire contact surface of the bearing. The feature is that it covers. Therefore, the sliding material of the present invention is suitable as a bearing material for a high-load, high-output internal combustion engine or a bearing material used in a boundary lubrication region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の焼結材料の金属顕微鏡写真、第2図は
従来の焼結材料の金属顕微鏡写真、第3図(A)〜(D
)は本発明の摺動材料の摺動後の表面のpb組織を観察
した金属顕微鏡写真、 第4図(A)〜(D)は従来の摺動材料の摺動後の表面
のpb組織を観察した金属顕微鏡写真、第5図はメカニ
カルアロイング粉焼結材料とアトマイズ粉焼結材料の摩
耗量を示すグラフ、第6図はメカニカルアロイング粉焼
結材料とアトマイズ粉焼結材料のpbのしみ出し面積率
を示すグラフである。 特許出願人   大豊工業株式会社
Figure 1 is a metallurgical micrograph of the sintered material of the present invention, Figure 2 is a metallurgical microscope photograph of a conventional sintered material, and Figures 3 (A) to (D)
) is a metallurgical micrograph showing the PB structure on the surface of the sliding material of the present invention after sliding. Figures 4 (A) to (D) show the PB structure on the surface of the conventional sliding material after sliding. The observed metallographic micrographs, Figure 5 is a graph showing the wear amount of the mechanically alloyed powder sintered material and the atomized powder sintered material, and Figure 6 shows the PB of the mechanically alloyed powder sintered material and the atomized powder sintered material. It is a graph showing seepage area ratio. Patent applicant: Taiho Kogyo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 1.Pb,In,Bi,Tlから選択された一種以上の
成分を5〜60%含有し、残部がCuおよび不可避的不
純物からなる焼結合金から構成され、前記Pb,In,
Bi,Tlなどが平均粒径10μm以下の実質的に擬片
状の微細粒子として分散しており、境界潤滑条件下で相
手軸との摺動面略全面で皮膜を形成することを特徴とす
る摺動材料。
1. It is composed of a sintered alloy containing 5 to 60% of one or more components selected from Pb, In, Bi, and Tl, with the remainder consisting of Cu and inevitable impurities, and the Pb, In,
Bi, Tl, etc. are dispersed as substantially pseudo-fine particles with an average particle diameter of 10 μm or less, and a film is formed on almost the entire sliding surface with the mating shaft under boundary lubrication conditions. sliding material.
2.Pb,In,Bi,Tlから選択された一種以上の
成分を5〜60%、およびSnを15%以下含有し、残
部がCuおよび不可避的不純物からなる焼結合金から構
成され、前記Pb,In,Bi,Tlなどが平均粒径1
0μm以下の実質的に擬片状の微細粒子として分散して
おり、境界潤滑条件下で相手軸との摺動面略全面で皮膜
を形成することを特徴とする摺動材料。
2. It is composed of a sintered alloy containing 5 to 60% of one or more components selected from Pb, In, Bi, and Tl and 15% or less of Sn, with the remainder consisting of Cu and inevitable impurities, and the Pb, In , Bi, Tl, etc. have an average particle size of 1
A sliding material characterized in that it is dispersed as substantially pseudo-flake-like fine particles of 0 μm or less, and forms a film on substantially the entire sliding surface with a mating shaft under boundary lubrication conditions.
JP2134183A 1990-05-25 1990-05-25 Sliding material Expired - Fee Related JP2918292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2134183A JP2918292B2 (en) 1990-05-25 1990-05-25 Sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2134183A JP2918292B2 (en) 1990-05-25 1990-05-25 Sliding material

Publications (2)

Publication Number Publication Date
JPH0428836A true JPH0428836A (en) 1992-01-31
JP2918292B2 JP2918292B2 (en) 1999-07-12

Family

ID=15122382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2134183A Expired - Fee Related JP2918292B2 (en) 1990-05-25 1990-05-25 Sliding material

Country Status (1)

Country Link
JP (1) JP2918292B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060870A (en) * 2000-08-24 2002-02-28 Taiho Kogyo Co Ltd Cu-Pb BASED COPPER ALLOY HAVING FINE LEAD STRUCTURE AND PLAIN BEARING FOR INTERNAL COMBUSTION ENGINE
US6753092B2 (en) * 2001-11-01 2004-06-22 Daido Metal Company Ltd. Multilayer material and manufacturing method of the same
JP2005350722A (en) * 2004-06-10 2005-12-22 Taiho Kogyo Co Ltd Pb-FREE BEARING FOR FUEL INJECTION PUMP
US7678173B2 (en) 2004-01-15 2010-03-16 Taiho Kogyo Co., Ltd. Pb-free copper-alloy sliding material
WO2010030031A1 (en) * 2008-09-10 2010-03-18 大豊工業株式会社 SLIDING COMPONENT CONSISTING OF Pb-FREE Cu-Bi TYPE SINTERED MATERIAL
DE102007026832B4 (en) * 2006-06-09 2010-12-30 Ks Gleitlager Gmbh Multi-layered bearing
US7879453B2 (en) 2003-10-08 2011-02-01 Miba Gleitlager Gmbh Alloy, in particular for a bearing coating
DE102007013707B4 (en) * 2006-03-30 2011-03-24 Miba Gleitlager Gmbh bearing element
DE102011012086A1 (en) 2010-02-23 2011-08-25 Daido Metal Company Ltd., Aichi Sliding material based on copper
DE102012204967A1 (en) 2011-03-30 2012-10-04 Daido Metal Company Ltd. Copper-based sliding material
EP2561940A1 (en) 2011-08-22 2013-02-27 Daido Metal Company Ltd. Copper-based sliding material
EP2565285A1 (en) * 2011-08-30 2013-03-06 Daido Metal Company Ltd. Copper-based sliding material
JP5386373B2 (en) * 2008-01-23 2014-01-15 大豊工業株式会社 Method for producing sintered copper alloy sliding material and sintered copper alloy sliding material
US9434005B2 (en) 2007-05-15 2016-09-06 Taiho Kogyo Co., Ltd. Pb-free copper-alloy sliding material, and plain bearing
US10041148B2 (en) 2006-08-05 2018-08-07 Taiho Kogyo Co., Ltd. Pb-free copper alloy sliding material

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060870A (en) * 2000-08-24 2002-02-28 Taiho Kogyo Co Ltd Cu-Pb BASED COPPER ALLOY HAVING FINE LEAD STRUCTURE AND PLAIN BEARING FOR INTERNAL COMBUSTION ENGINE
US6753092B2 (en) * 2001-11-01 2004-06-22 Daido Metal Company Ltd. Multilayer material and manufacturing method of the same
US7879453B2 (en) 2003-10-08 2011-02-01 Miba Gleitlager Gmbh Alloy, in particular for a bearing coating
US8147981B2 (en) 2003-10-08 2012-04-03 Miba Gleitlager Gmbh Alloy, in particular for a bearing coating
US7678173B2 (en) 2004-01-15 2010-03-16 Taiho Kogyo Co., Ltd. Pb-free copper-alloy sliding material
JP2005350722A (en) * 2004-06-10 2005-12-22 Taiho Kogyo Co Ltd Pb-FREE BEARING FOR FUEL INJECTION PUMP
US7883588B2 (en) 2004-06-10 2011-02-08 Taiho Kogyo Co., Ltd. Pb-free bearing used for fuel-injection pump
DE102007013707B4 (en) * 2006-03-30 2011-03-24 Miba Gleitlager Gmbh bearing element
US7862902B2 (en) 2006-06-09 2011-01-04 Miba Gleitlager Gmbh Multi-layered bearing
DE102007026832B4 (en) * 2006-06-09 2010-12-30 Ks Gleitlager Gmbh Multi-layered bearing
DE102007026832C5 (en) * 2006-06-09 2019-10-02 Ks Gleitlager Gmbh Multi-layered bearing
US10041148B2 (en) 2006-08-05 2018-08-07 Taiho Kogyo Co., Ltd. Pb-free copper alloy sliding material
US9434005B2 (en) 2007-05-15 2016-09-06 Taiho Kogyo Co., Ltd. Pb-free copper-alloy sliding material, and plain bearing
JP5386373B2 (en) * 2008-01-23 2014-01-15 大豊工業株式会社 Method for producing sintered copper alloy sliding material and sintered copper alloy sliding material
US9669461B2 (en) 2008-01-23 2017-06-06 Taiho Kogyo Co., Ltd. Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material
US9028582B2 (en) 2008-01-23 2015-05-12 Taiho Kogyo Co., Ltd. Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material
JP5492089B2 (en) * 2008-09-10 2014-05-14 大豊工業株式会社 Pb-free Cu-Bi sintered material sliding parts
WO2010030031A1 (en) * 2008-09-10 2010-03-18 大豊工業株式会社 SLIDING COMPONENT CONSISTING OF Pb-FREE Cu-Bi TYPE SINTERED MATERIAL
US8871354B2 (en) 2010-02-23 2014-10-28 Daido Metal Company Ltd. Copper-based sliding material
DE102011012086A1 (en) 2010-02-23 2011-08-25 Daido Metal Company Ltd., Aichi Sliding material based on copper
DE102011012086B4 (en) * 2010-02-23 2013-12-24 Daido Metal Company Ltd. Sliding material based on copper
DE102012204967A1 (en) 2011-03-30 2012-10-04 Daido Metal Company Ltd. Copper-based sliding material
DE102012204967B4 (en) * 2011-03-30 2017-08-24 Daido Metal Company Ltd. Copper-based sliding material
EP2561940A1 (en) 2011-08-22 2013-02-27 Daido Metal Company Ltd. Copper-based sliding material
US8623517B2 (en) 2011-08-22 2014-01-07 Daido Metal Company Ltd. Copper-based sliding material
EP2565285A1 (en) * 2011-08-30 2013-03-06 Daido Metal Company Ltd. Copper-based sliding material
US8623518B2 (en) 2011-08-30 2014-01-07 Daido Metal Company Ltd. Copper-based sliding material

Also Published As

Publication number Publication date
JP2918292B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
JP3298634B2 (en) Sliding material
KR100814656B1 (en) Free copper alloy sliding material
US9657777B2 (en) Wear resistant lead free alloy bushing and method of making
JP5143827B2 (en) Method for producing Pb-free copper alloy sliding material
JP2652866B2 (en) Sintered material for oil-impregnated bearing and method for producing the same
JPH0428836A (en) Sliding material
JP3373709B2 (en) Copper-based sliding bearing materials and sliding bearings for internal combustion engines
JP5783303B2 (en) Copper-based sintered sliding member
JP3839740B2 (en) Sliding material
US4406857A (en) Alloy for antifriction bearing layer and process of forming an antifriction layer on steel supporting strip
EP2292805B1 (en) Bronze alloy, process for producing the same, and sliding member comprising bronze alloy
JP2013043997A (en) Copper-based sliding material
US6706126B2 (en) Aluminum alloy for sliding bearing and its production method
JP3292445B2 (en) Sliding material with excellent wear resistance
JP3042539B2 (en) Sliding material
JP3298636B2 (en) Sliding material
JP3057457B2 (en) Sliding member
JP3339780B2 (en) Sliding material with excellent wear resistance
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
JP6363931B2 (en) Copper alloy for slide bearing
JP2505632B2 (en) Sliding material
JPH0819945B2 (en) Multi-layer lead bronze bearing for high loads
JP2904355B2 (en) Manufacturing method of sintered sliding material
JP3838833B2 (en) Al-Bi based sintered bearing alloy and method for producing the same
JPS6253580B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees