JP2889371B2 - Method for producing A1 alloy mixed powder and sintered A1 alloy - Google Patents

Method for producing A1 alloy mixed powder and sintered A1 alloy

Info

Publication number
JP2889371B2
JP2889371B2 JP2334624A JP33462490A JP2889371B2 JP 2889371 B2 JP2889371 B2 JP 2889371B2 JP 2334624 A JP2334624 A JP 2334624A JP 33462490 A JP33462490 A JP 33462490A JP 2889371 B2 JP2889371 B2 JP 2889371B2
Authority
JP
Japan
Prior art keywords
powder
alloy
raw material
sintered
main raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2334624A
Other languages
Japanese (ja)
Other versions
JPH04176838A (en
Inventor
伸 三浦
洋一 広瀬
光明 佐藤
芳雄 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2334624A priority Critical patent/JP2889371B2/en
Publication of JPH04176838A publication Critical patent/JPH04176838A/en
Application granted granted Critical
Publication of JP2889371B2 publication Critical patent/JP2889371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は機械部品等に用いられる焼結Al合金用の原料
粉末、およびその原料粉末を用いた焼結Al合金部品の製
造方法に関する。
The present invention relates to a raw material powder for a sintered Al alloy used for machine parts and the like, and a method for producing a sintered Al alloy component using the raw material powder.

[従来の技術及び解決しようとする課題] 近年、事務機器、コンピューター関連機器の分野で
は、消費電力の低減、振動による騒音発生の防止、可搬
性の向上等の必要性から、軽量なAl合金部品の利用が増
えつつある。
[Related Art and Problems to be Solved] In recent years, in the field of office equipment and computer-related equipment, lightweight Al alloy parts have been required due to the need to reduce power consumption, prevent noise generation due to vibration, and improve portability. The use of is increasing.

このようなAl合金部品の製造法の一つに通常の圧粉成
形焼結法がある。本法は単純な工程でニアネットシェイ
プ精密部品が製造できるため、特にコスト面で大きな利
点をもっている。
One of the methods for producing such Al alloy parts is a normal green compacting and sintering method. This method has a great advantage, particularly in terms of cost, because a near net shape precision part can be manufactured by a simple process.

圧粉成形焼結法によるAl合金精密部品の製造方法とし
て、純Al粉末にAlと低融点の共晶を造るCu、Si、Mg等の
合金元素の単体粉末を配合した混合粉を原料として用い
液相焼結を利用する方法、いわゆる要素粉末混合法(Bl
ended elemental method)が良く知られている。しかし
ながらこの方法は、単体元素粉の融点が高いため液相を
生成しにくく、焼結後も未反応の元素粉が残留しやすく
良好な機械的性質の焼結体を得るのは難しいといった問
題点が存在した。
As a method of manufacturing Al alloy precision parts by green compaction sintering method, a mixed powder of pure Al powder mixed with a simple powder of alloy elements such as Cu, Si, Mg etc. that forms a eutectic with Al and a low melting point is used as a raw material A method using liquid phase sintering, a so-called elemental powder mixing method (Bl
The ended elemental method is well known. However, this method has a problem that it is difficult to generate a liquid phase due to the high melting point of the elemental element powder, and it is difficult for unreacted element powder to remain even after sintering and to obtain a sintered body having good mechanical properties. There was.

一方、合金元素をあらかじめ粉末に添加し、最終合金
組成となっている合金粉末を原料とする合金粉末法(Pr
ealloy method)の場合、粉末が硬質なため成形圧縮性
が悪く、通常の金型成形では良好な成形体を得ることが
できない。さらに粉末の融点が低いため焼結温度を十分
高くすることができず、拡散、焼結を良好に進行させる
ことができないという欠点がある。
On the other hand, alloy elements are added to the powder in advance, and the alloy powder method (Pr
In the case of the ealloy method, since the powder is hard, the molding compressibility is poor, and a good molded product cannot be obtained by ordinary molding. Furthermore, since the melting point of the powder is low, the sintering temperature cannot be sufficiently increased, and there is a disadvantage that diffusion and sintering cannot be favorably advanced.

さらに、前出の要素粉末混合法を改良した方法とし
て、合金元素を予めAlに合金化した母合金粉末を製造し
てこの母合金粉末を純Al粉末に配合した混合粉末を用い
る方法、いわゆる母合金法(Master alloy method)も
提案されている(例えば特開平1−294833)。この方法
では成形しやすい純Al粉末を主な原料粉末としており、
かつ合金元素は既にAlと合金化されており、しかも多く
の場合、多元系の低融点の共晶を生成しやすい組成に調
整されているため、液相焼結は進行しやすく、より優れ
た機械的性質の焼結体を得ることが可能となる。しかし
ながら上記母合金法でも用途によっては機械的性質、特
に延性が不十分であるといった問題点が存在した。特
に、部品形状によっては金型内へ粉末を均一供給し、か
つ均一に圧縮成形するのが難しく、局部的に密度が低く
なり機械的性質が低下する場合も少なくなく、そのよう
な場合にも十分な使用性能を維持するため、さらに特性
を改善する必要があった。
Furthermore, as an improved method of the element powder mixing method described above, a method of producing a mother alloy powder in which alloy elements are alloyed in advance with Al and using a mixed powder obtained by blending this mother alloy powder with pure Al powder, a so-called mother powder An alloy method (Master alloy method) has also been proposed (for example, JP-A-1-294833). In this method, pure Al powder that is easy to mold is used as the main raw material powder,
And since the alloying element is already alloyed with Al, and in many cases, the composition is adjusted to a composition that easily produces a multi-element low melting point eutectic, the liquid phase sintering proceeds easily, and A sintered body having mechanical properties can be obtained. However, the above-mentioned mother alloy method also has a problem that the mechanical properties, particularly the ductility, are insufficient depending on the use. In particular, depending on the part shape, it is difficult to uniformly supply the powder into the mold, and it is difficult to uniformly compress the powder, and it is not uncommon for the density to be locally low and the mechanical properties to be low. In order to maintain sufficient use performance, it was necessary to further improve the characteristics.

本発明は原料粉末の酸化被膜に起因する難焼結性の問
題を解決し、通常の圧粉成形焼結法により従来より良好
な機械的性質を有するAl精密部品を製造しようとするも
のである。
The present invention is intended to solve the problem of sinterability due to the oxide film of the raw material powder, and to manufacture an Al precision part having better mechanical properties than the conventional one by a normal compacting and sintering method. .

[課題を解決するための手段] 本発明は従来技術のかかる問題点を解決するため母合
金法における原料粉末を工夫した。第一に主原料粉末と
して従来用いられてきた純Al粉末を用いず、Alに少量の
Cuを添加したAl−Cu合金粉末を用いた。第二に焼結中に
液相を生成させ焼結を進行させる手法(いわゆる液相焼
結)を利用する観点から母合金粉末の組成、配合量の最
適化を行なった。これらの工夫により原料粉末を良好に
焼結、拡散させることが可能となり、従来より優れた機
械的性質を有する焼結Al合金を製造できることを見出し
本発明に至った。以下にその詳細を説明する。
[Means for Solving the Problems] The present invention has devised a raw material powder in the master alloy method in order to solve such a problem of the prior art. First, a small amount of Al is used without using pure Al powder that has been used as the main raw material powder.
Al-Cu alloy powder to which Cu was added was used. Secondly, the composition and the amount of the mother alloy powder were optimized from the viewpoint of utilizing a technique of generating a liquid phase during sintering and promoting sintering (so-called liquid phase sintering). By these measures, it has become possible to sinter and diffuse the raw material powder satisfactorily, and it has been found that a sintered Al alloy having superior mechanical properties can be produced, which has led to the present invention. The details will be described below.

始めに焼結Al合金の最終合金組成について説明する。 First, the final alloy composition of the sintered Al alloy will be described.

Alに添加する合金元素としては、Mg、Si、Cuを用い
た。
Mg, Si, and Cu were used as alloying elements to be added to Al.

MgとSiは共存下で時効硬化により焼結Al合金の強度を
向上させる。その効果はMg、Siの添加量がそれぞれ0.1w
t%(以下百分率は重量%で示す)未満ではほとんど認
められない。一方それらの添加量が2%を越えると過剰
添加により逆に強度、延性が低下する。従って有効な強
度向上の効果が得られる範囲として、Mg、Siの添加量は
それぞれ0.1〜2.0%とした。
Mg and Si improve the strength of sintered Al alloy by age hardening in the coexistence. The effect is that the added amount of Mg and Si is 0.1w each.
It is scarcely recognized below t% (percentages are given by weight%). On the other hand, if the added amount exceeds 2%, the strength and the ductility are reduced by excessive addition. Therefore, as a range in which the effect of effective strength improvement can be obtained, the addition amounts of Mg and Si are each set to 0.1 to 2.0%.

Cuも時効硬化により焼結体の強度を向上させる。後述
の通り、Cuは主原料粉末に0.1〜3%含まれる。従ってC
uの添加量の下限値は主原料粉末のそれと同じ0.1%であ
る。一方その添加量が6%を越えると未溶解の粗大なCu
化合物が残留し、逆に強度、延性が低下する。従って有
効な強度向上の効果が得られる範囲として、Cuの添加量
は0.1〜6.0%とした。
Cu also improves the strength of the sintered body by age hardening. As described later, 0.1 to 3% of Cu is contained in the main raw material powder. Therefore C
The lower limit of the amount of u added is 0.1%, which is the same as that of the main raw material powder. On the other hand, if the addition amount exceeds 6%, undissolved coarse Cu
The compound remains, and on the contrary, strength and ductility decrease. Therefore, the addition amount of Cu is set to 0.1 to 6.0% as a range in which the effect of effective strength improvement can be obtained.

本発明者らは以上の最終合金組成の範囲内で特長のあ
る合金として2種類の合金組成を考えた。その一つは強
度と延性がバランス良く優れ、かつ耐食性に優れた汎用
合金を目標としてAl−Mg−Si系をベースとし、それに0.
1〜1.5%の比較的少量のCuを添加した組成の合金である
(以後A合金と呼ぶ)。A合金は展伸材の6000系合金に
近いが、本発明者らの実験の結果、展伸材と比較してMg
よりSiを若干過剰に添加することにより安定して良好な
機械的性質が得られている。その組成はMg:0.1〜1.0
%、Si:0.5〜1.5%、Cu:0.1〜1.5%、さらに望ましくは
Mg:0.3〜0.7%、Si:0.8〜1.2%、Cu:0.3〜0.7%であ
る。主な用途はホルダー部品、プレート部品、その他弱
電機器、OA機器等の精密部品である。
The present inventors have considered two types of alloy compositions as distinctive alloys within the above range of the final alloy composition. One of them is based on Al-Mg-Si system with the aim of a general-purpose alloy with excellent balance of strength and ductility, and excellent corrosion resistance.
It is an alloy having a composition to which a relatively small amount of Cu of 1 to 1.5% is added (hereinafter referred to as A alloy). A alloy is similar to wrought alloy 6000 series alloy, but as a result of our experiments, Mg
By adding Si in a slightly excessive amount, good mechanical properties are stably obtained. Its composition is Mg: 0.1-1.0
%, Si: 0.5-1.5%, Cu: 0.1-1.5%, more preferably
Mg: 0.3-0.7%, Si: 0.8-1.2%, Cu: 0.3-0.7%. Main applications are holder parts, plate parts, and other precision parts such as light electrical equipment and office automation equipment.

他の一つは特に高強度を特長とし、そのためCuの添加
量を2〜6%と増やしたAl−Cu系の合金であり、展伸材
の2000系に相当する合金である(以後B合金と呼ぶ)。
その組成はMg:0.1〜1.5%、Si:0.1〜1.5%、Cu:2〜6
%、さらに望ましくはMg:0.1〜0.8%、Si:0.1〜0.8%、
Cu:3.5〜4.5%である。主な用途はよりコンロッド、ア
ーム部品等高強度を必要とする一般産業機械の精密部品
である。
The other is an Al-Cu-based alloy which is characterized by particularly high strength, and in which the added amount of Cu is increased to 2 to 6%, and which is an alloy corresponding to the 2,000 wrought material (hereinafter referred to as B-alloy). ).
Its composition is Mg: 0.1-1.5%, Si: 0.1-1.5%, Cu: 2-6.
%, More preferably Mg: 0.1-0.8%, Si: 0.1-0.8%,
Cu: 3.5-4.5%. The main applications are precision parts for general industrial machines that require higher strength, such as connecting rods and arm parts.

本発明の原料粉末は2種類以上の粉末を混合して造ら
れる。それら原料粉末の内、最も量の多い粉末を以下主
原料粉末と呼ぶ。またこれら原料粉末の内、少なくとも
1種類は母合金粉末である。以下それら主原料粉末と母
合金粉末の詳細について説明する。
The raw material powder of the present invention is produced by mixing two or more powders. Among these raw material powders, the powder with the largest amount is hereinafter referred to as main raw material powder. At least one of these raw material powders is a mother alloy powder. Hereinafter, the details of the main raw material powder and the mother alloy powder will be described.

始めに主原料粉末について説明する。 First, the main raw material powder will be described.

圧粉成形焼結法の主原料粉末には圧縮成形性が良好で
あること、焼結性が良好であること、充分高い温度で焼
結が可能であること、の3条件が必要とされる。
Three conditions are required for the main raw material powder of the compacting and sintering method: good compression moldability, good sinterability, and sintering at a sufficiently high temperature. .

従来、Al合金の圧粉成形焼結体用の主原料粉末として
は純Al粉末が用いられてきた。それに対し本発明者らは
主原料粉末である純Alに少量の合金元素を添加すること
により焼結性を改善し、そのことにより焼結Al合金の機
械的性質を改善する検討をおこなった。その結果、主原
料粉末として純Al粉末の代りにCuを少量添加したAl−Cu
合金粉末を用いることにより焼結性が改善され、焼結Al
合金の機械的性質が大きく向上することを見出し本発明
に至った。
Conventionally, pure Al powder has been used as a main raw material powder for a compacted sintered body of an Al alloy. On the other hand, the present inventors have studied to improve the sinterability by adding a small amount of alloy element to pure Al which is a main raw material powder, and thereby to improve the mechanical properties of the sintered Al alloy. As a result, Al-Cu with a small amount of Cu added instead of pure Al powder as the main raw material powder
The sinterability is improved by using the alloy powder, and the sintered Al
The inventors have found that the mechanical properties of the alloy are greatly improved, and have reached the present invention.

具体的には主原料粉末としてAlに0.1〜3%のCuを添
加したAl−Cu合金粉末を用いる。Cu添加量の範囲限定の
理由は以下の通りである。Cuの添加量が0.1%未満の場
合、焼結性改善の明確な効果が認められない。一方、Cu
の添加量が3%を越えると、焼結性改善の効果が飽和す
るだけでなく、粉末が硬くなるため粉末の圧縮成形性が
悪化し、そのため充分緻密な成形体が得られなくなる。
さらに粉末の融点が低下するため焼結温度を充分高くす
ることができず、そのことは焼結、拡散の進行を困難に
する。それらの結果良好な機械的性質を有した焼結Al合
金が得られなくなる。即ち、Cu添加量を0.1〜3%とす
ることにより、Cuの添加による焼結性改善の効果と良好
な圧縮成形性および充分高い温度での焼結が可能という
条件が満足される。
Specifically, an Al-Cu alloy powder obtained by adding 0.1 to 3% of Cu to Al is used as a main raw material powder. The reason for limiting the range of the Cu addition amount is as follows. When the addition amount of Cu is less than 0.1%, a clear effect of improving the sinterability is not recognized. On the other hand, Cu
If the addition amount exceeds 3%, not only the effect of improving the sinterability is saturated, but also the powder becomes hard, so that the compactibility of the powder is deteriorated, so that a sufficiently dense compact cannot be obtained.
Furthermore, since the melting point of the powder decreases, the sintering temperature cannot be increased sufficiently, which makes sintering and diffusion difficult. As a result, a sintered Al alloy having good mechanical properties cannot be obtained. That is, by setting the Cu addition amount to 0.1 to 3%, the effect of improving sinterability by adding Cu, good compression moldability, and sintering at a sufficiently high temperature are satisfied.

さらに主原料粉末にAi−Cu粉を用いる利点として、特
にB合金のようにCu量の多い組成の合金を製造する場
合、最終合金組成に必要なCu量を主原料粉末側と母合金
粉末側とから分けて供給することになり、それにより母
合金組成、配合量の設計の自由度が増すことも挙げられ
る。
Another advantage of using Ai-Cu powder as the main raw material powder is that when manufacturing an alloy having a high Cu content, such as an alloy B, the amount of Cu required for the final alloy composition is reduced by the main raw material powder side and the master alloy powder side. In addition, the degree of freedom in designing the mother alloy composition and the compounding amount is increased.

また上記主原料粉末の他の一つのグループはCu:0.1〜
3%含む組成に、さらにMn、Ni、Fe、Cr、Zr、Ti、V、
Pb、Bi、Snのうちから選ばれた少なくとも1種以上の合
金元素を0.1〜2wt%含み、残部が不可避的不純物を含む
Alからなる組成を有するものである。この主原料粉末は
強度向上、切削性向上等を目的とし、Cu、Mg、Si以外に
微量元素としてMn、Ni、Fe、Cr、Zr、Ti、V、Pb、Bi、
Snのうちから選ばれた少なくとも1種以上の合金元素を
全量で4wt%以下含み、残部がAlからなる組成を有する
焼結合金を得ることを目的としたものである。
Another group of the main raw material powder is Cu: 0.1 ~
Mn, Ni, Fe, Cr, Zr, Ti, V,
0.1 to 2 wt% of at least one alloy element selected from Pb, Bi, and Sn, with the balance containing unavoidable impurities
It has a composition of Al. This main raw material powder is intended to improve strength, machinability, etc., and as a trace element other than Cu, Mg, Si, Mn, Ni, Fe, Cr, Zr, Ti, V, Pb, Bi,
An object of the present invention is to obtain a sintered alloy containing at least one alloy element selected from Sn in a total amount of 4 wt% or less, with the balance being Al.

次に母合金粉末の組成の限定理由について説明する。 Next, the reasons for limiting the composition of the mother alloy powder will be described.

母合金粉末は焼結Al合金の強度向上に寄与するMg、S
i、Cuを供給し、焼結Al合金の最終合金組成を調整する
役割と、母合金粉末自らが焼結温度以下で融解し、ある
いは主原料粉末であるAl−Cu合金粉末との共晶反応によ
り液相を生成し焼結を促進させる役割を持つ。このよう
な役割を果すAl母合金としてはAl−Mg−SiやAl−Cu−Mg
−Si合金が考えられる。
Mother alloy powder contributes to improving the strength of sintered Al alloy
i, supplying Cu and adjusting the final alloy composition of the sintered Al alloy, and eutectic reaction between the master alloy powder itself and the Al-Cu alloy powder, which is the main raw material powder, melting below the sintering temperature Has the role of generating a liquid phase and promoting sintering. Al-Mg-Si or Al-Cu-Mg
-Si alloys are conceivable.

なお、母合金粉末は硬質のため、配合量が多くなると
圧縮成形性を害するため、高合金として所定の合金元素
量を少ない母合金粉末の配合量で供給できるようにする
ことが望ましい。さらに、経済的なAl合金粉末の製造方
法である大気アトマイジング法により容易に製造できる
ことも組成を決める要因として重要である。
In addition, since the master alloy powder is hard, a large amount impairs the compression moldability. Therefore, it is desirable that a predetermined alloy element amount can be supplied as a high alloy with a small amount of the mother alloy powder. Furthermore, it is also important as a factor for determining the composition that the aluminum alloy powder can be easily manufactured by the atmospheric atomizing method, which is an economical method for manufacturing an Al alloy powder.

以上の観点からA合金用の母合金粉末の組成範囲の下
限側の組成として、融点が低いAl−Mg−Si3元系合金の
共晶組成に近い組成であるMg:4%、Si:12%を下限値と
して選定した。一方、Mgは20%を越えると母合金の溶湯
の活性が増し、酸化爆発の危険性が増し、大気アトマイ
ジング法では製造が難しくなるため上限を20%以下とし
た。また、Siの量が30%を越えると、母合金の融解終了
温度(液相線温度)が上昇し、粉末製造時に母合金の溶
解・アトマイジングが難しくなる。また焼結時、共晶反
応による液相を生じにくくなる。そのためSiは30%以下
に限定した。従って母合金粉末の組成としては、Mg:4〜
20%、Si:12〜30%、残部Alであり、さらに望ましく
は、Mg:5〜15%、Si:15〜25%、残部Alである。
From the above viewpoints, as the lower limit of the composition range of the mother alloy powder for the A alloy, Mg: 4% and Si: 12%, which are compositions close to the eutectic composition of the Al-Mg-Si ternary alloy having a low melting point. Was selected as the lower limit. On the other hand, if Mg exceeds 20%, the activity of the molten metal of the master alloy increases, the risk of oxidation explosion increases, and it becomes difficult to produce by the atmospheric atomizing method, so the upper limit is set to 20% or less. On the other hand, when the amount of Si exceeds 30%, the melting end temperature (liquidus temperature) of the master alloy increases, and it becomes difficult to melt and atomize the master alloy during powder production. Further, at the time of sintering, it becomes difficult to generate a liquid phase due to the eutectic reaction. Therefore, the content of Si is limited to 30% or less. Therefore, the composition of the mother alloy powder, Mg: 4 ~
20%, Si: 12 to 30%, balance Al, more preferably Mg: 5 to 15%, Si: 15 to 25%, balance Al.

さらにこの母合金組成にCuを添加し、Al−Cu−Mg−Si
母合金とすることもできる。Cuの添加により母合金粉末
の融解開始温度(固相線温度)をさらに低下させ、その
温度を調節することが可能になる。そのことにより焼結
を促進させ、またCuの時効硬化元素としての役割とあい
まって焼結Al合金の機械的性質を一層改善することが可
能となる。ただしCuは主原料粉末からも供給されるた
め、目標とする最終合金組成によっては必ずしも母合金
粉末中に含める必要は無い。
Further, Cu was added to this mother alloy composition, and Al-Cu-Mg-Si
It can also be a mother alloy. The addition of Cu further lowers the melting onset temperature (solidus temperature) of the mother alloy powder, making it possible to adjust the temperature. This facilitates sintering, and further improves the mechanical properties of the sintered Al alloy in combination with the role of Cu as an age hardening element. However, since Cu is also supplied from the main raw material powder, it is not always necessary to include Cu in the mother alloy powder depending on the target final alloy composition.

Cuを含有させる場合母合金粉末の組成は2つに分けら
れる。これは前述のとうり最終合金組成が主にCu量の少
ないA合金と多いB合金とに分けられており、その各々
に適した母合金粉末組成が選定されるためである。
When Cu is contained, the composition of the mother alloy powder is divided into two. This is because, as described above, the final alloy composition is mainly divided into an A alloy having a small amount of Cu and a B alloy having a large amount of Cu, and a suitable mother alloy powder composition is selected for each of them.

A合金の場合、目標とする最終合金組成中のCu量が比
較的少ないため母合金粉末中に含有させるCu量も比較的
少なくて良い。したがって前述のAl−Mg−Si系の母合金
を基に、それに適当量のCuを加えた組成とした。A合金
の場合、多量のCuの添加は最終合金のCu量の増加につな
がり、Cuは強度の増加には有用ではあるが、耐食性を劣
化させるため、いたずらにCu量を増やすことは避けるべ
きで、その観点からCuの添加量としては30%以下が適当
と考えられる。従ってCu量の少ないA合金用の母合金粉
末の組成としてはMg:4〜20%、Si:12〜30%、Cu:1〜30
%、残部Al、さらに望ましくはMg:5〜15%、Si:15〜25
%、Cu:5〜15%、残部Alである。
In the case of alloy A, the amount of Cu contained in the mother alloy powder may be relatively small because the target amount of Cu in the final alloy composition is relatively small. Therefore, based on the above-mentioned Al-Mg-Si-based mother alloy, a composition was used in which an appropriate amount of Cu was added thereto. In the case of alloy A, the addition of a large amount of Cu leads to an increase in the amount of Cu in the final alloy, and although Cu is useful for increasing the strength, it should be avoided to increase the amount of Cu unnecessarily because it deteriorates the corrosion resistance. From this point of view, it is considered that 30% or less is appropriate as the addition amount of Cu. Accordingly, the composition of the mother alloy powder for the A alloy having a small amount of Cu is as follows: Mg: 4 to 20%, Si: 12 to 30%, Cu: 1 to 30%.
%, Balance Al, more preferably Mg: 5 to 15%, Si: 15 to 25
%, Cu: 5 to 15%, with the balance being Al.

一方高強度を狙ったB合金の場合、最終合金組成中の
Cu量を多くする必要があり、そのためには母合金粉末中
のCuは30%以上とする必要がある。一方50%以上では融
点が上昇し、溶解とアトマイジング作業が難しくなる。
MgとSiはともに母合金粉の融点を下げ液相焼結を生じや
すくするため、また焼結体の時効硬化のための合金化元
素として、それぞれ1%以上母合金粉末に添加する必要
がある。一方MgとSiはともに20%以上では、既に述べた
理由により、溶解アトマイジング作業を難しくするた
め、それぞれ20%以下とする必要がある。すなわちB合
金用の母合金粉末の組成としてはCu:30〜50%、Si:1〜2
0%、Mg:1〜20%であり、より望ましくはCu:30〜40%、
Si:1〜10%、Mg:1〜10%である。
On the other hand, in the case of B alloy aiming for high strength,
It is necessary to increase the amount of Cu, and for that purpose, Cu in the mother alloy powder needs to be 30% or more. On the other hand, if it is 50% or more, the melting point increases, and the melting and atomizing work becomes difficult.
Both Mg and Si must be added to the master alloy powder in an amount of 1% or more as alloying elements for lowering the melting point of the master alloy powder and facilitating liquid phase sintering, and as age hardening of the sintered body. . On the other hand, if both Mg and Si are 20% or more, it is necessary to set each to 20% or less in order to make the dissolving atomizing work difficult for the reasons described above. That is, the composition of the mother alloy powder for the B alloy is Cu: 30 to 50%, and Si: 1 to 2%.
0%, Mg: 1 to 20%, more preferably Cu: 30 to 40%,
Si: 1 to 10%, Mg: 1 to 10%.

さらに本発明の焼結Al合金用母合金粉末の他の一つの
グループは前記のMg:4〜20%、Si:12〜30%またはMg:4
〜20%、Si:12〜30%、Cu:1〜30%またはCu:30〜50%、
Si:1〜20%、Mg:1〜20%を含む組成に、さらにMn、Ni、
Fe、Cr、Zr、Ti、V、Pb、Bi、Snのうちから選ばれた少
なくとも1種以上の合金元素を0.1〜8wt%含み、残部が
不可避的不純物を含むAlからなる組成を有するものであ
る。この母合金粉末は強度向上、切削性向上等を目的と
し、Cu、Mg、Si以外に微量元素としてMn、Ni、Fe、Cr、
Zr、Ti、V、Pb、Bi、Snのうちから選ばれた少なくとも
1種以上の合金元素を全量で4wt%以下含み、残部がAl
からなる組成を有する焼結合金を得ることを目的とした
ものである。
Further, another group of the mother alloy powder for a sintered Al alloy of the present invention is the above Mg: 4 to 20%, Si: 12 to 30% or Mg: 4
~ 20%, Si: 12-30%, Cu: 1-30% or Cu: 30-50%,
Si: 1 to 20%, Mg: 1 to 20% containing composition, Mn, Ni,
Fe, Cr, Zr, Ti, V, Pb, Bi, Sn, containing at least one alloy element selected from the group consisting of 0.1 to 8 wt%, and the balance being Al having an unavoidable impurity. is there. This mother alloy powder is intended to improve strength, machinability, etc., and other than Cu, Mg, Si, as trace elements, Mn, Ni, Fe, Cr,
Contains at least one alloying element selected from among Zr, Ti, V, Pb, Bi, and Sn in a total amount of 4 wt% or less, with the balance being Al
The purpose is to obtain a sintered alloy having a composition consisting of

以上の通り、母合金粉末はAl−Mg−Si系、Al−Mg−Si
−Cu系の組成になる。その請求範囲内で組成を変えるこ
とにより、母合金の融解開始温度および主たるAl−Cu合
金原料粉末との反応で液相を生成する温度を調整するこ
とが可能になる。また母合金粉末の組成を調整すること
により、原料混合粉末中の母合金粉末の配合量の調整が
可能である。
As described above, the mother alloy powder is Al-Mg-Si based, Al-Mg-Si
-Cu based composition. By changing the composition within the scope of the claims, it becomes possible to adjust the melting start temperature of the mother alloy and the temperature at which a liquid phase is generated by the reaction with the main Al-Cu alloy raw material powder. Further, by adjusting the composition of the master alloy powder, the amount of the mother alloy powder in the raw material mixed powder can be adjusted.

この母合金粉末の配合量については、その量が少なす
ぎると液相焼結が不可欠な焼結Al合金において、充分な
液相量が確保できず良好な特性の焼結体を得ることが不
可能となる。一方、多すぎると圧縮成形性を害し、また
焼結時に生じる液相量が多くなりすぎ発汗現象により表
面性状が良好な焼結体が得られなくなる。そのような観
点から母合金の配合量は2%以上、15%以下、さらに望
ましくは3%以上、12%以下が適する。この範囲で最終
目標組成になるようにAl−Cu主原料粉末と母合金粉末と
を配合する。
If the amount of the mother alloy powder is too small, a sufficient amount of liquid phase cannot be secured in a sintered Al alloy in which liquid phase sintering is indispensable, and it is not possible to obtain a sintered body having good characteristics. It becomes possible. On the other hand, if it is too large, compression moldability is impaired, and the amount of liquid phase generated during sintering becomes too large, so that a sintered body having good surface properties cannot be obtained due to a sweating phenomenon. From such a viewpoint, the compounding amount of the master alloy is preferably 2% or more and 15% or less, more preferably 3% or more and 12% or less. The Al-Cu main raw material powder and the mother alloy powder are blended so as to have the final target composition in this range.

これら原料粉末の粒度は50メッシュ以下635メッシュ
以上が90%以上であることが望ましい。これは50メッシ
ュ以上の粉末が多いと金型への充填性が悪く、一方635
メッシュ以下の粉末が多いと流動性を害し、また成形時
に金型の隙間に入り込みカジリを生じやすいため適当で
ない。
The particle size of these raw material powders is desirably at least 90% at 50 mesh or less and 635 mesh or more. This is because if there are many powders of 50 mesh or more, the filling property to the mold is poor, while 635
If the amount of powder below the mesh is large, the fluidity is impaired, and the powder easily enters the gaps of the mold during molding, which is not suitable because it tends to cause galling.

さらに原料粉末をあらかじめ加熱焼鈍し軟化させ、粉
末の成型圧縮性をさらに向上させることもできる。
Further, the raw material powder may be heated and annealed in advance to soften the powder, thereby further improving the molding compressibility of the powder.

また上記合金粉末に潤滑剤を混合することにより粉末
同志の潤滑、粉末と金型壁面間の潤滑性を改善し、成形
性を高めることも可能である。潤滑材の混合量は0.2%
以下ではその効果が不十分であり、2%以上では効果が
飽和するだけでなく、粉末の流動性・成形性を害し、さ
らに潤滑剤は焼結時に揮発飛散し、不必要に焼結炉内あ
るいは真空焼結にあっては排気系を汚染するため0.2〜
2%とした。さらに好ましくは0.7〜1.8%である。潤滑
剤の種類としては、焼結温度以下で全て揮発飛散し、材
料特性に有害な影響の無いものが好ましい。そのような
観点からは金属塩系の潤滑材(例、ステアリン酸亜鉛、
ステアリン酸リチウム、ステアリン酸アルミニウムな
ど)よりも金属を含まない有機物系、例えばアミド系潤
滑材が望ましく、エチレンビスステアロアマイド等を最
適な潤滑材として挙げることができる。
Further, by mixing a lubricant with the alloy powder, it is possible to improve the lubrication between the powders, the lubricity between the powder and the mold wall surface, and enhance the formability. 0.2% lubrication
In the following, the effect is insufficient, and when it is 2% or more, the effect is not only saturated, but also impairs the fluidity and moldability of the powder, and the lubricant is volatilized and scattered during sintering, and is unnecessary in the sintering furnace. Alternatively, in vacuum sintering, 0.2 to
2%. More preferably, it is 0.7 to 1.8%. As the kind of the lubricant, it is preferable that all of the lubricant be volatilized and scattered below the sintering temperature and have no detrimental effect on the material properties. From such a point of view, metal salt-based lubricants (eg, zinc stearate,
An organic lubricant such as an amide lubricant, which does not contain a metal, is more preferable than lithium stearate, aluminum stearate, etc.).

また焼結体部品にさらに耐摩耗性、潤滑性、低熱膨張
率等の機能を付与するため、これら粉末にセラミック
ス、金属、Si、炭素あるいは固体潤滑材等の粒子、繊維
など焼結合金の第2相となる物質を混合することもでき
る。
In addition, in order to impart functions such as wear resistance, lubricity, and low coefficient of thermal expansion to sintered parts, these powders are made of sintered alloys such as ceramics, metal, Si, carbon or solid lubricants, and particles such as fibers. Two-phase substances can also be mixed.

次に上記原料粉末を用いて焼結Al合金を製造する方法
について説明する。
Next, a method for producing a sintered Al alloy using the above raw material powder will be described.

まず所望の合金組成の混合粉末原料を準備し、これを
加圧成形する。成形圧は2トン/cm2未満では成形体の
緻密化が足りず粉末同士の接触が不十分で、良好な焼結
体強度・延性が得られない。従って2トン/cm2以上で
成形する必要がある。一方、成形圧が高すぎる場合、ラ
ミネーションの発生、金型へのカジリ、金型の寿命の低
下等の問題が生じる。そのため実操業上8トン/cm2
越える成形圧は不適当である。従って成形は2〜8トン
/cm2で行なう。
First, a mixed powder raw material having a desired alloy composition is prepared, and is subjected to pressure molding. If the molding pressure is less than 2 ton / cm 2 , the compacts are not sufficiently densified and the powders are in insufficient contact with each other, so that good sintered body strength and ductility cannot be obtained. Therefore, it is necessary to mold at 2 ton / cm 2 or more. On the other hand, when the molding pressure is too high, problems such as generation of lamination, galling on the mold, and shortening of the life of the mold occur. Therefore, a molding pressure exceeding 8 tons / cm 2 is not suitable for practical operation. Therefore, molding is performed at 2 to 8 ton / cm 2 .

さらに原料粉末を70℃〜250℃に加熱した状態で成形
することにより成形体をより緻密化することも可能であ
る。
Further, by molding the raw material powder in a state of being heated to 70 ° C. to 250 ° C., it is possible to further densify the molded body.

焼結雰囲気については活性なAl合金粉末粒子の酸化を
防ぎ十分焼結を進行させるためには真空あるいは窒素ガ
ス、アルゴンガス雰囲気等の非酸化性雰囲気中で焼結す
る必要がある。真空で焼結する場合その真空度は0.1tor
r以下、望ましくは0.01torr以下にするのが良い。また
焼結炉の内部を真空置換後、減圧下で窒素ガス等の不活
性ガスを少量流しながら焼結することも、焼結体から発
生するガス成分を除去する効果を高める。なお窒素ガス
雰囲気あるいはアルゴンガス等の不活性雰囲気中で焼結
する場合はガスの純度が重要であり、特にガス中に含ま
れる水分は焼結部品の特性に悪影響を及ぼすため、露点
を十分低く管理する必要があり、望ましくは露点は−40
℃以下に保つ必要がある。
Regarding the sintering atmosphere, it is necessary to perform sintering in a vacuum or in a non-oxidizing atmosphere such as a nitrogen gas or argon gas atmosphere in order to prevent oxidation of the active Al alloy powder particles and sufficiently promote sintering. When sintering in vacuum, the degree of vacuum is 0.1 torr
r or less, desirably 0.01 torr or less. Further, sintering under a reduced pressure and flowing a small amount of an inert gas such as nitrogen gas after vacuum replacement of the inside of the sintering furnace also enhances the effect of removing gas components generated from the sintered body. When sintering in an inert atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere, the purity of the gas is important. In particular, the moisture contained in the gas has a bad influence on the characteristics of the sintered parts. Need to be controlled, preferably with a dew point of -40
It must be kept below ℃.

焼結温度は500℃より低いと元素の拡散が不十分であ
り、粉末同志の焼結が不十分となる。一方650℃より高
いと多量の液相が生成しあるいは粉末の溶融により、昇
温とともに部品形状を保てないため、500℃以上、650℃
以下で焼結する必要がある。
If the sintering temperature is lower than 500 ° C., the diffusion of elements is insufficient, and the sintering of the powders becomes insufficient. On the other hand, if the temperature is higher than 650 ° C, a large amount of liquid phase is generated or the powder cannot be melted, and the shape of the part cannot be maintained as the temperature rises.
It is necessary to sinter below.

またこうして得られた焼結体を再圧縮することができ
る。再圧縮の成形圧は3〜11トン/cm2が適当である。
再圧縮は寸法精度を向上させるために行う所謂サイジン
グの目的と、焼結体の機械的性質を向上させる目的とが
ある。後者の目的では再圧縮により焼結体をさらに緻密
化し、焼結体中のボアを潰し、新たに金属接触面を増加
させる。その際再圧縮体は加工硬化により強度が向上し
延性は低下する。それに対し再圧縮後、後述の熱処理を
施すことにより加工硬化の影響が除かれ、さらに一部焼
結・拡散が進行し、強度、延性とも向上する。本発明者
らの実施例によれば、焼結体に対し再圧縮+熱処理を施
すことにより強度は約20〜30%向上し、伸びは約1.4〜
4倍向上している。即ち再圧縮+熱処理の工程は焼結体
の機械的性質の向上に非常に有効で、特に延性の必要と
される各種アーム部品などの製造に適している。
Further, the sintered body thus obtained can be recompressed. An appropriate molding pressure for recompression is 3 to 11 tons / cm 2 .
Recompression has the purpose of so-called sizing for improving the dimensional accuracy and the purpose of improving the mechanical properties of the sintered body. For the latter purpose, the sintered body is further densified by recompression, the bore in the sintered body is crushed, and the metal contact surface is newly increased. At that time, the strength of the recompressed body is improved by work hardening, and the ductility is reduced. On the other hand, after the recompression, the effect of work hardening is removed by performing a heat treatment described below, and further sintering and diffusion partially proceed, and both strength and ductility are improved. According to the examples of the present inventors, by performing recompression and heat treatment on the sintered body, the strength is improved by about 20 to 30%, and the elongation is about 1.4 to
4 times improved. That is, the process of recompression and heat treatment is very effective for improving the mechanical properties of the sintered body, and is particularly suitable for manufacturing various arm parts and the like that require ductility.

さらに再圧縮により得られた成形体を再焼結すること
により機械的性質、特に延性を改善することができる。
再圧縮により緻密化した組織を再度焼結することにより
拡散・焼結を一層進行させることができる。その際の条
件は基本的には焼結の場合と同様で再焼結温度は500℃
以上が望ましい。
Further, mechanical properties, especially ductility, can be improved by re-sintering the compact obtained by re-compression.
Diffusion and sintering can be further advanced by sintering the structure densified by recompression again. The conditions at that time are basically the same as for sintering, and the resintering temperature is 500 ° C
The above is desirable.

またこれら焼結体の合金成分であるCu、Mg、Siは本来
熱処理により機械的性質の向上に寄与するものである。
したがって通常のAl合金同様、T6またはT4の溶体化−時
効処理を施しその機械的性質を調整、向上させることは
有効である。T6処理は特に高強度を必要とする場合有効
な熱処理であり、Al−Cu系合金に適用することにより、
引張強度35kgf/mm2以上を付与することが可能となる。T
4処理は適度の強度と良好な延性を兼ね供えた特性が必
要な場合有効な熱処理である。
Also, Cu, Mg, and Si, which are alloy components of these sintered bodies, originally contribute to improvement of mechanical properties by heat treatment.
Therefore, similarly to a normal Al alloy, it is effective to perform a solution-aging treatment of T6 or T4 to adjust and improve its mechanical properties. T6 treatment is an effective heat treatment especially when high strength is required.By applying it to Al-Cu alloy,
It is possible to provide a tensile strength of 35 kgf / mm 2 or more. T
The 4 treatment is an effective heat treatment when a property having both moderate strength and good ductility is required.

なお通常は成形、焼結、再圧縮後溶体化−時効処理に
より、実用上充分な特性を得ることが可能である。
Normally, practically sufficient characteristics can be obtained by forming, sintering, recompressing, and then solution-aging treatment.

[作用] 本発明はあらじめ少量のCuを含むAl−Cu合金粉末とAl
−Mg−Si母合金粉末あるいはAl−Mg−Si−Cu母合金粉末
とを使用することにより液相の生成を容易にし、もって
焼結性を改善し、焼結Al合金の機械的性質を著しく改善
させるものである。
[Action] The present invention relates to an Al-Cu alloy powder containing a small amount of Cu and Al
The use of -Mg-Si master alloy powder or Al-Mg-Si-Cu mother alloy powder facilitates generation of a liquid phase, thereby improving sinterability and significantly improving the mechanical properties of the sintered Al alloy. It will improve.

[発明の実施例] 以下本発明の実施例について説明する。Examples of the Invention Hereinafter, examples of the present invention will be described.

実施例 表1に示すAl合金主原料粉末および表2に示す母合金
粉末を大気アトマイズ法により製造し、それを篩分し10
0メッシュ篩下〜325メッシュ篩上の粉末を得た。それら
粉末を表3に示す配合比で配合し、さらにそれにアミド
系潤滑剤1%を加え原料粉末とした。それを成形圧4ト
ン/cm2でJIS Z2550に規定されている引張試験片形状に
成形した。その成形体を1〜3torr減圧窒素雰囲気下、5
70〜590℃で2時間焼結した。その焼結体にT6またはT4
熱処理を施した後、引張試験に供した。その結果を表4
に示す。次いでその焼結体の幾つかを5トン/cm2で再
圧縮した後T6またはT4熱処理を施し、引張試験に供し
た。その結果を表4に併せて示す。
Example An Al alloy main raw material powder shown in Table 1 and a master alloy powder shown in Table 2 were produced by an atmospheric atomization method, and sieved.
A powder under 0 mesh to 325 mesh was obtained. These powders were blended at the blending ratio shown in Table 3, and 1% of an amide-based lubricant was further added thereto to obtain a raw material powder. It was molded at a molding pressure of 4 tons / cm 2 into a tensile test specimen shape specified in JIS Z2550. The molded body is put in a nitrogen atmosphere of 1 to 3 torr
Sintered at 70-590 ° C for 2 hours. T6 or T4 for the sintered body
After the heat treatment, it was subjected to a tensile test. Table 4 shows the results.
Shown in Next, some of the sintered bodies were recompressed at 5 ton / cm 2 and then subjected to a T6 or T4 heat treatment and subjected to a tensile test. The results are shown in Table 4.

比較例1 Al−4%Cu粉末を大気アトマイズ法により製造し、そ
れを篩分し100メッシュ篩下〜325メッシュ篩上の粉末を
得た。それに表2の粉末Al−20%Si−10%Mg粉末を表3
に示すように配合し、さらにそれにアミド系潤滑剤1%
を加え原料粉末とした。それを実施例と同じ製造条件で
引張試験片とし試験に供した。結果を表4に示す。
Comparative Example 1 An Al-4% Cu powder was produced by an air atomizing method, which was sieved to obtain a powder on a screen below 100 mesh to a screen on 325 mesh. In addition, the powder Al-20% Si-10% Mg powder of Table 2
And amide-based lubricant 1%
Was added to obtain a raw material powder. It was used as a tensile test specimen under the same manufacturing conditions as in the examples and was subjected to the test. Table 4 shows the results.

比較例2 Al粉末を大気アトマイズ法により製造し、それを篩分
し100メッシュ篩下〜325メッシュ篩上の粉末を得た。そ
れに表2の粉末Al−20%Si−10%Cu−10%Mg粉末、Al−
6%Si−40%Cu−6%Mg粉末を表3に示すように配合
し、さらにそれにアミド系潤滑剤1%を加え原料粉末と
した。それを実施例と同じ製造条件で引張試験片とし試
験に供した。結果を表4に示す。
Comparative Example 2 An Al powder was produced by an air atomizing method, and the obtained powder was sieved to obtain a powder on a screen below 100 mesh to a screen on 325 mesh. In addition, the powder of Al-20% Si-10% Cu-10% Mg powder, Al-
6% Si-40% Cu-6% Mg powder was mixed as shown in Table 3, and 1% of an amide-based lubricant was further added thereto to obtain a raw material powder. It was used as a tensile test specimen under the same manufacturing conditions as in the examples and was subjected to the test. Table 4 shows the results.

比較例3 Al粉末を大気アトマイズ法により製造し、それを篩分
し100メッシュ篩下〜325メッシュ篩上の粉末を得た。そ
れに同じく100メッシュ篩下〜325メッシュ篩上に粒度を
調整したSi粉末、Cu粉末、Mg粉末を配合し、配合組成を
Al−1%Si−0.5%Cu−0.5%Mgとした。さらにそれにア
ミド系潤滑剤1%を加え原料粉末とした。それを実施例
と同じ製造条件で引張試験片とし試験に供した。結果を
表4に示す。
Comparative Example 3 An Al powder was produced by an air atomizing method, and the powder was sieved to obtain a powder on a screen below 100 mesh to a screen on 325 mesh. Also mix Si powder, Cu powder and Mg powder with adjusted particle size under 100 mesh sieve to 325 mesh sieve
Al-1% Si-0.5% Cu-0.5% Mg. Further, 1% of an amide-based lubricant was added thereto to obtain a raw material powder. It was used as a tensile test specimen under the same manufacturing conditions as in the examples and was subjected to the test. Table 4 shows the results.

表4より、本発明のA合金は焼結+T6処理したもので
引張強さ:22〜25kgf/mm2、伸び:3%以上と、従来知られ
ていた焼結合金の特性より強度、伸びとも優れていた。
From Table 4, it can be seen that the alloy A of the present invention was obtained by sintering + T6 treatment, and had a tensile strength of 22 to 25 kgf / mm 2 and an elongation of 3% or more. It was excellent.

さらにそれを再圧縮、熱処理した場合、A合金ではT6
処理で引張強さ:28〜33kgf/mm2、伸び:8%以上と強度、
延性ともにバランス良く特性が向上し、またT4処理では
伸び:23%以上と従来にない伸びのある材料が得られて
いる。一方B合金は焼結+T6処理したもので引張強さ:3
3〜35kgf/mm2、伸び:1.5%以上の特性が得られており、
強い強度を適当な伸びが得られている。さらにB合金は
再圧縮+T6処理で引張強さ:38〜41kgf/mm2と従来にない
優れた強度がえられている。また再圧縮+T4処理では引
張強さ:30kgf/mm2以上を保ちながら伸びは8%以上の優
れた値を示している。
Furthermore, when it is recompressed and heat-treated, T6
Tensile processing strength: 28~33kgf / mm 2, elongation: 8% or more and strength,
The properties are improved in a well-balanced manner in both ductility, and a material with an unprecedented elongation of at least 23% is obtained by T4 treatment. On the other hand, the B alloy was sintered + T6 and had a tensile strength of 3
Properties of 3 to 35 kgf / mm 2 , elongation: 1.5% or more are obtained.
Strong strength and proper elongation are obtained. Further B alloy recompression + T6 treated with tensile strength: 38~41kgf / mm 2 and no excellent strength to the prior are example. In the recompression + T4 treatment, the elongation shows an excellent value of 8% or more while maintaining the tensile strength of 30 kgf / mm 2 or more.

比較例1は主原料粉末にAl−4%Cu粉末を用いた例で
ある。Cuの添加量が多いため粉末の成形圧縮性が悪く、
ラミネーションが生じ実用になる成形体が得られていな
い。
Comparative Example 1 is an example in which Al-4% Cu powder was used as the main raw material powder. Due to the large amount of Cu added, the powder compressibility is poor,
Lamination occurs and a molded product that can be used practically has not been obtained.

比較例2は主原料粉末に純Al粉末を用いた従来の母合
金法の例である。比較例No.20は本発明例のA合金、No.
21は本発明例のB合金に相当する組成の例である。
Comparative Example 2 is an example of a conventional mother alloy method using pure Al powder as a main raw material powder. Comparative Example No. 20 is the alloy A of the present invention, No.
21 is an example of a composition corresponding to the alloy B of the present invention.

本発明例による焼結合金に比べ、強度、伸びとも低い
値である。
Both the strength and the elongation are lower than those of the sintered alloy according to the present invention.

比較例3はSi、Cu、Mgの合金元素の単体粉末を配合し
た要素粉末混合法の例である。強度、伸びともに低い値
しか得られていない。
Comparative Example 3 is an example of an element powder mixing method in which a simple powder of an alloy element of Si, Cu, and Mg is blended. Only low values were obtained for both strength and elongation.

[効果] 本発明によれば従来になく高強度、高延性のAl合金部
材を焼結法によって得ることができ、複雑形状の部品の
軽量化に寄与するところが大きい。
[Effects] According to the present invention, an Al alloy member having high strength and high ductility can be obtained by a sintering method, which greatly contributes to weight reduction of a component having a complicated shape.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 町田 芳雄 埼玉県秩父市大字下影森1505 昭和電工 株式会社秩父研究所内 (56)参考文献 特開 昭61−221307(JP,A) 特開 昭62−247044(JP,A) 特開 平1−230743(JP,A) 特開 昭52−153806(JP,A) 特開 平1−294833(JP,A) 特公 昭45−24207(JP,B1) (58)調査した分野(Int.Cl.6,DB名) C22C 21/00 - 21/18 C22C 1/04 B22F 1/00,3/10 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Machida 1505 Shimokagemori, Chichibu City, Saitama Prefecture Showa Denko Chichibu Laboratories Co., Ltd. 247044 (JP, A) JP-A-1-230743 (JP, A) JP-A-52-153806 (JP, A) JP-A-1-294833 (JP, A) JP-B-45-24207 (JP, B1) (58) Field surveyed (Int. Cl. 6 , DB name) C22C 21/00-21/18 C22C 1/04 B22F 1/00, 3/10

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Cu:0.1〜3.0wt%で残部が不可避的不純物
を含むAlからなる主原料粉末にMg:4〜20wt%、Si:12〜3
0wt%を含み残部が不可避的不純物を含むAlからなる母
合金粉末もしくはMg:4〜20wt%、Si:12〜30wt%、Cu:1
〜30wt%を含み残部が不可避的不純物を含むAlからなる
母合金粉末の内1種類または2種類を混合した粉末であ
って、混合粉末の組成がMg:0.1〜1.0wt%、Si:0.5〜1.5
wt%、Cu:0.1〜1.5wt%、残部が実質的にAlからなこと
を特徴とする焼結Al合金用Al合金混合粉末。
(1) A main raw material powder composed of Al: Cu: 0.1 to 3.0 wt% and the balance containing unavoidable impurities: Mg: 4 to 20 wt%, Si: 12 to 3 wt.
Master alloy powder or Mg consisting of Al containing 0 wt% and the balance containing unavoidable impurities, Mg: 4 to 20 wt%, Si: 12 to 30 wt%, Cu: 1
It is a powder obtained by mixing one or two of the mother alloy powders of Al containing up to 30 wt% and the balance containing unavoidable impurities, wherein the composition of the mixed powder is Mg: 0.1-1.0 wt%, Si: 0.5- 1.5
An Al alloy mixed powder for a sintered Al alloy, wherein wt%, Cu: 0.1 to 1.5 wt%, and the balance is substantially made of Al.
【請求項2】Cu:0.1〜3.0wt%で残部が不可避的不純物
を含むAlからなる主原料粉末にMg:1〜20wt%、Si:1〜20
wt%、Cu:30〜50wt%を含み、残部が不可避的不純物を
含むAlからなる母合金粉末を混合し、混合粉末の組成が
Mg:0.1〜1.5wt%、Si:0.1〜1.5wt%、Cu:2〜6wt%、残
部が実質的にAlからなることを特徴とする焼結Al合金用
Al合金混合粉末。
2. A main raw material powder composed of Al: Cu: 0.1 to 3.0 wt% and the balance containing unavoidable impurities: Mg: 1 to 20 wt%, Si: 1 to 20 wt.
wt%, Cu: 30 ~ 50wt%, the balance is mixed with a master alloy powder consisting of Al containing unavoidable impurities, the composition of the mixed powder is
Mg: 0.1-1.5wt%, Si: 0.1-1.5wt%, Cu: 2-6wt%, with the balance being substantially Al for sintered Al alloys
Al alloy mixed powder.
【請求項3】主原料粉末と母合金粉末を混合した混合粉
末であって、主原料粉末が請求項第1項に記載の主原料
粉末又は前記主原料粉末にさらに0.1〜2wt%のMn、Ni、
Fe、Cr、Zr、Ti、V、Pb、Bi、Snのうちから選ばれた少
なくとも1種類以上の元素を添加した主原料粉末であ
り、母合金粉末が請求項第1項に記載の母合金粉末また
は前記母合金粉末にさらに0.1〜8wt%のMn、Ni、Fe、C
r、Zr、Ti、V、Pb、Bi、Snのうちから選ばれた少なく
とも1種類以上の元素を添加した母合金粉末であり、混
合粉末の組成がMg:0.1〜1.0wt%、Si:0.5〜1.5wt%、C
u:0.1〜1.5wt%を含み、さらにMn、Ni、Fe、Cr、Zr、T
i、V、Pb、Bi、Snのうちから選ばれた1種類以上の合
金元素の全量が4%以下となる量を含み、残部が実質的
にAlからなることを特徴とする焼結Al合金用Al合金混合
粉末。
3. A mixed powder obtained by mixing a main raw material powder and a mother alloy powder, wherein the main raw material powder is 0.1% to 2% by weight of Mn, further added to the main raw material powder or the main raw material powder. Ni,
The mother alloy according to claim 1, wherein the mother alloy powder is a main raw material powder to which at least one element selected from the group consisting of Fe, Cr, Zr, Ti, V, Pb, Bi, and Sn is added. 0.1 to 8 wt% of Mn, Ni, Fe, C
r, Zr, Ti, V, Pb, Bi, Sn is a mother alloy powder to which at least one element selected from the group is added, and the composition of the mixed powder is Mg: 0.1 to 1.0 wt%, Si: 0.5 ~ 1.5wt%, C
u: 0.1 to 1.5 wt%, Mn, Ni, Fe, Cr, Zr, T
a sintered Al alloy containing one or more alloying elements selected from i, V, Pb, Bi, and Sn in an amount of 4% or less, with the balance being substantially Al Al alloy mixed powder for use.
【請求項4】主原料粉末と母合金粉末を混合した混合粉
末であって、主原料粉末が請求項第2項に記載の主原料
粉末又は前記主原料粉末にさらに0.1〜2wt%のMn、Ni、
Fe、Cr、Zr、Ti、V、Pb、Bi、Snのうちから選ばれた少
なくとも1種類以上の元素を添加した主原料粉末であ
り、母合金粉末が請求項第2項に記載の母合金粉末また
は前記母合金粉末にさらに0.1〜8wt%のMn、Ni、Fe、C
r、Zr、Ti、V、Pb、Bi、Snのうちから選ばれた少なく
とも1種類以上の元素を添加した母合金粉末であり、混
合粉末の組成がMg:0.1〜1.5wt%、Si:0.1〜1.5wt%、C
u:2〜6wt%を含み、さらにMn、Ni、Fe、Cr、Zr、Ti、
V、Pb、Bi、Snのうちから選ばれた1種類以上の合金元
素の全量が4%以下となる量を含み、残部が実質的にAl
からなることを特徴とする焼結Al合金用Al合金混合粉
末。
4. A mixed powder obtained by mixing a main raw material powder and a mother alloy powder, wherein the main raw material powder further contains 0.1 to 2 wt% of Mn, Ni,
The mother alloy according to claim 2, wherein the mother alloy is a main raw material powder to which at least one element selected from the group consisting of Fe, Cr, Zr, Ti, V, Pb, Bi and Sn is added. 0.1 to 8 wt% of Mn, Ni, Fe, C
A master alloy powder to which at least one element selected from the group consisting of r, Zr, Ti, V, Pb, Bi, and Sn is added, wherein the composition of the mixed powder is Mg: 0.1 to 1.5 wt%, Si: 0.1 ~ 1.5wt%, C
u: contains 2 to 6 wt%, and further contains Mn, Ni, Fe, Cr, Zr, Ti,
V, Pb, Bi, Sn, including the amount of one or more alloying elements selected from among the total amount of 4% or less, the balance is substantially Al
An Al alloy mixed powder for a sintered Al alloy, comprising:
【請求項5】請求項第1項から第4項のいずれかの1項
に記載の混合粉末に潤滑材を0.2〜2wt%混合したことを
特徴とする焼結Al合金用Al合金混合粉末。
5. An Al alloy mixed powder for a sintered Al alloy, wherein 0.2 to 2% by weight of a lubricant is mixed with the mixed powder according to any one of claims 1 to 4.
【請求項6】請求項第1項から第5項のいずれかの1項
に記載の混合粉末を2〜8トン/cm2の加圧力で圧粉成
形した後、圧粉体を非酸化性雰囲気の中で500〜650℃の
温度範囲で焼結することを特徴とする焼結Al合金の製造
方法。
6. A powder compact is molded from the mixed powder according to any one of claims 1 to 5 at a pressure of 2 to 8 ton / cm 2 , and then the powder compact is subjected to a non-oxidizing process. A method for producing a sintered Al alloy, comprising sintering in a temperature range of 500 to 650 ° C in an atmosphere.
【請求項7】請求項第1項から第5項のいずれかの1項
に記載の混合粉末を2〜8トン/cm2の加圧力で圧粉成
形した後、圧粉体を非酸化性雰囲気の中で500〜650℃の
温度範囲で焼結し、さらに該焼結合金を再度3〜11トン
/cm2の加圧力で再圧縮し、さらに溶体化−時効処理を
施すことを特徴とする焼結Al合金の製造方法。
7. A powder compact is molded from the mixed powder according to any one of claims 1 to 5 at a pressing force of 2 to 8 ton / cm 2 , and then the compact is non-oxidizing. Sintering in a temperature range of 500 to 650 ° C. in an atmosphere, further recompressing the sintered alloy again at a pressure of 3 to 11 tons / cm 2 , and further performing a solution-aging treatment. Method of producing sintered Al alloy.
JP2334624A 1989-12-29 1990-11-30 Method for producing A1 alloy mixed powder and sintered A1 alloy Expired - Lifetime JP2889371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2334624A JP2889371B2 (en) 1989-12-29 1990-11-30 Method for producing A1 alloy mixed powder and sintered A1 alloy

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP34293189 1989-12-29
JP1-342931 1989-12-29
JP20749690 1990-08-07
JP2-207496 1990-08-07
JP2334624A JP2889371B2 (en) 1989-12-29 1990-11-30 Method for producing A1 alloy mixed powder and sintered A1 alloy

Publications (2)

Publication Number Publication Date
JPH04176838A JPH04176838A (en) 1992-06-24
JP2889371B2 true JP2889371B2 (en) 1999-05-10

Family

ID=27328765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334624A Expired - Lifetime JP2889371B2 (en) 1989-12-29 1990-11-30 Method for producing A1 alloy mixed powder and sintered A1 alloy

Country Status (1)

Country Link
JP (1) JP2889371B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3028195A1 (en) * 2018-01-10 2019-07-10 Gkn Sinter Metals, Llc Method for improving fatigue strength on sized aluminum powder metal components
CN114787403B (en) * 2019-12-13 2023-08-04 轻材料与技术研究所有限责任公司 Powder aluminum material
CN114082967A (en) * 2020-08-06 2022-02-25 北京理工大学 Preparation method of aluminum-titanium-based multi-component alloy powder and obtained alloy powder

Also Published As

Publication number Publication date
JPH04176838A (en) 1992-06-24

Similar Documents

Publication Publication Date Title
EP0436952B1 (en) Aluminium-alloy powder, sintered aluminium-alloy, and method for producing the sintered aluminum-alloy
US4784690A (en) Low density tungsten alloy article and method for producing same
JP2761085B2 (en) Raw material powder for Al-Si based alloy powder sintered parts and method for producing sintered parts
CA2811754C (en) Aluminum powder metal alloying method
KR100970796B1 (en) Iron-based powder combination for powder metallurgy
US20190118255A1 (en) Aluminum Alloy Powder Metal With Transition Elements
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
JPH0120215B2 (en)
JP2889371B2 (en) Method for producing A1 alloy mixed powder and sintered A1 alloy
JP3869853B2 (en) Iron-based powder containing Mo, P, C
JPH029099B2 (en)
JPH05171321A (en) Titanium alloy for high density powder sintering
JP2798709B2 (en) Manufacturing method of aluminum alloy powder sintered parts
JP2695289B2 (en) Method for producing Al alloy mixed powder and Al alloy sintered body
JP3104309B2 (en) Manufacturing method of hot forged member made of Al-Si alloy with excellent toughness
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JP3246213B2 (en) Free graphite-precipitated iron-based sintered material with excellent strength and wear resistance
JPH07331356A (en) 3aluminum-iron dispersed reinforced aluminum alloy and powder and production thereof
JP3346310B2 (en) High strength iron-based sintered alloy
JP3250130B2 (en) Free graphite-precipitated iron-based sintered material with excellent strength and wear resistance
WO2023287981A1 (en) Powder metal composition with aluminum nitride mmc
WO2023137122A1 (en) Powder metallurgy counterpart to wrought aluminum alloy 6063
JP3346305B2 (en) High strength iron-based sintered alloy
JP3246212B2 (en) Abrasion-resistant free graphite-precipitated iron-based sintered material with excellent seizure resistance
WO2002027047A1 (en) Method for the production of an aluminium component