JP2695289B2 - Method for producing Al alloy mixed powder and Al alloy sintered body - Google Patents

Method for producing Al alloy mixed powder and Al alloy sintered body

Info

Publication number
JP2695289B2
JP2695289B2 JP2334623A JP33462390A JP2695289B2 JP 2695289 B2 JP2695289 B2 JP 2695289B2 JP 2334623 A JP2334623 A JP 2334623A JP 33462390 A JP33462390 A JP 33462390A JP 2695289 B2 JP2695289 B2 JP 2695289B2
Authority
JP
Japan
Prior art keywords
powder
alloy
sintered body
pure
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2334623A
Other languages
Japanese (ja)
Other versions
JPH04202601A (en
Inventor
伸 三浦
洋一 広瀬
芳雄 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2334623A priority Critical patent/JP2695289B2/en
Publication of JPH04202601A publication Critical patent/JPH04202601A/en
Application granted granted Critical
Publication of JP2695289B2 publication Critical patent/JP2695289B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は機械部品等に用いられるAl合金焼結体用の原
料となるAl合金混合粉末およびそれらを用いたAl合金焼
結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to an Al alloy mixed powder as a raw material for an Al alloy sintered body used for machine parts and the like, and a method for producing an Al alloy sintered body using the same. Regarding

[従来の技術及び解決しようとする課題] 最近、事務機器、コンピューター関連機器の分野で
は、消費電力の低減、振動による騒音発生の防止、可搬
性の向上等の必要性から軽量なAl合金部品の利用が増え
つつある。
[Prior Art and Problems to be Solved] Recently, in the field of office equipment and computer-related equipment, it is necessary to reduce the weight of aluminum alloy parts because of the necessity of reducing power consumption, preventing noise due to vibration, and improving portability. Usage is increasing.

従来Al合金の複雑形状部品の製造方法としてはダイキ
ャスト法が一般的であった。しかしながらダイキャスト
法では3次元的な複雑形状部品が造れるという利点があ
る一方で、寸法精度が不十分で、また型抜きのためのテ
ーパーをつける必要があり、鋳造後高コストの機械加工
を必要とする場合が少なくない。またブローホール等の
鋳造欠陥のため、特性面で信頼性に欠けるといった問題
が存在した。
Conventionally, a die-casting method has been generally used as a method for producing a complex-shaped component of an Al alloy. However, while the die-casting method has the advantage that three-dimensionally complex parts can be manufactured, the dimensional accuracy is insufficient, and it is necessary to taper for die cutting, requiring high-cost machining after casting. In many cases In addition, due to casting defects such as blowholes, there was a problem that the reliability was poor in terms of characteristics.

別の方法としては、溶製インゴットを出発原料とした
展伸材を素材とし、旋盤等による機械加工で製造する方
法も採用されている。しかしながらかなりの工数の機械
加工を必要とし、しかも加工歩留りが低く、結果的に部
品の価格を高める原因となっていた。
As another method, there has been adopted a method in which a wrought material starting from a molten ingot is used as a raw material and is manufactured by machining using a lathe or the like. However, it requires a considerable number of man-hours for machining, and the machining yield is low, resulting in an increase in the price of parts.

このような問題点を解決するために、ニアネットシェ
イプ法としての特長を活かせる粉末冶金法で製造する方
法についても試みられている(例えばASTM Designatio
n:B595-84参照)。
In order to solve such a problem, a method of manufacturing by a powder metallurgy method that can make use of the features of the near net shape method has been tried (for example, ASTM Designatio).
n: B595-84).

粉末を金型成形しそれを焼結する通常の圧粉成形焼結
法は、単純なプロセスでニアネットシェイプ部品が製造
できるため、特にコスト面で大きな利点をもっている。
The conventional green compacting and sintering method of molding a powder and sintering the powder has a great advantage, particularly in terms of cost, because a near net shape part can be manufactured by a simple process.

このようなAl合金焼結体部品の製造方法として、純Al
粉末にAlと低融点の共晶を造るCu、Si、Mg等の合金元素
の単体粉末を配合した混合粉を原料として用い液相焼結
を利用するいわゆる要素粉末混合法(Blended elementa
l method)が良く知られている。しかしながらこの方法
は、単体元素粉の融点が高いため液相を生成しにくく、
焼結後も未反応の元素粉が残留しやすく良好な機械的性
質の焼結体を得るのは難しいといった問題点が存在し
た。
As a method of manufacturing such an Al alloy sintered body part, pure Al
A so-called blended elementa mixing method that uses liquid phase sintering using a mixed powder that is a powder of a single powder of an alloying element such as Cu, Si, or Mg that forms a low melting point eutectic with Al
l method) is well known. However, this method is unlikely to produce a liquid phase because the melting point of the elemental element powder is high,
There is a problem that unreacted element powder is likely to remain after sintering and it is difficult to obtain a sintered body having good mechanical properties.

一方、合金元素をあらかじめ粉末に添加し、最終合金
組成となっている合金粉末を原料とする合金粉末法(Pr
ealloy method)の場合、粉末が硬質なため成形圧縮性
が悪く、通常の金型成形では良好な成形体を得ることが
できない。さらに粉末の融点が低いため焼結温度を十分
高くすることができず、拡散、焼結を良好に進行させる
ことができないという欠点がある。
On the other hand, the alloy powder method (Pr
In the case of the ealloy method), since the powder is hard, the molding compressibility is poor, and it is not possible to obtain a good molded product by ordinary mold molding. Furthermore, since the melting point of the powder is low, the sintering temperature cannot be raised sufficiently, and diffusion and sintering cannot be satisfactorily advanced.

さらに、前出の要素粉末混合法を改良した方法とし
て、合金化元素を予めAlに合金化した母合金粉末を製造
してこの母合金粉末を純Al粉末に配合した混合粉末を用
いる方法、いわゆる母合金法(Master alloy method)
も提案されている(例えば特開平1-294833)。この方法
では成形しやすい純Al粉末を主原料としており、かつ合
金化元素は既にAlと合金化されており、しかも多くの場
合、多元系の低融点の共晶を生成しやすい組成に調整さ
れているため、液相焼結は進行しやすく、より優れた機
械的性質の焼結体を得ることが可能となる。
Further, as a method of improving the above element powder mixing method, a method of using a mixed powder prepared by producing a mother alloy powder in which an alloying element is previously alloyed with Al and mixing this mother alloy powder with pure Al powder, so-called Master alloy method
Has also been proposed (for example, Japanese Patent Laid-Open No. 1-294833). In this method, pure Al powder that is easy to mold is used as the main raw material, and the alloying element has already been alloyed with Al, and in many cases, it is adjusted to a composition that easily forms a multi-component low-melting eutectic. Therefore, the liquid phase sintering is likely to proceed, and it becomes possible to obtain a sintered body having more excellent mechanical properties.

しかしながら上記母合金法でも複雑形状の部品を製造
する場合、粉末の流動性が悪く金型内に均一に充填され
ず、成形焼結体の部位により密度が低くなるといった問
題点も存在した。さらに母合金粉末は溶融して拡散消失
し、比較的大きなボアとして残留するため機械的性質、
特に延性が劣り、また表面性状が劣るといった問題点も
存在した。
However, even when the above-mentioned mother alloy method is used to produce a component having a complicated shape, there is a problem in that the fluidity of the powder is poor and the powder is not uniformly filled in the mold, and the density becomes low depending on the site of the molded sintered body. In addition, the master alloy powder melts, diffuses and disappears, and remains as a relatively large bore, resulting in mechanical properties,
In particular, there are problems that ductility is poor and surface properties are poor.

[課題を解決するための手段] 圧粉成形焼結法の中で母合金法はニアネットシェイプ
法としての特徴を活かせ、しかも比較的良好な機械的性
質のAl合金焼結体を得ることが可能である。しかしなが
らこのような母合金法でも用途によっては機械的性質あ
るいは表面性状が不十分なため本発明者らはさらに特性
改善に努め、母合金法における主たる原料粉末としての
純Al粉末と母合金粉末の粒径を厳密に制御することによ
り、混合粉末の流動性を改善し、成形しやすく、かつ焼
結体の機械的性質と表面性状の良好なAl合金焼結体が得
られることを見出し本発明に至った。
[Means for Solving the Problems] Among the compacting and sintering methods, the master alloy method can take advantage of the characteristics of the near net shape method and can obtain an Al alloy sintered body having relatively good mechanical properties. It is possible. However, even in such a mother alloy method, the mechanical properties or surface properties are insufficient depending on the application, and therefore the present inventors sought to further improve the characteristics, and the pure Al powder and the mother alloy powder as the main raw material powder in the mother alloy method were used. It has been found that by strictly controlling the particle size, it is possible to improve the fluidity of the mixed powder, facilitate molding, and obtain an Al alloy sintered body having good mechanical properties and surface properties of the sintered body. Came to.

すなわち本発明は純Al粉末にAl母合金粉末を混合した
Al合金焼結体を製造するための原料粉末であって、純Al
粉末の平均粒径が53μm以上、105μm以下であり、母
合金粉末の平均粒径が63μm以下であって、かつ両者の
平均粒径の差が20μm以上であることを特徴とするAl合
金混合粉末を使用することを要旨とする。
That is, the present invention is a mixture of pure Al powder and Al master alloy powder.
A raw material powder for producing an Al alloy sintered body, which is pure Al
An Al alloy mixed powder characterized in that the average particle size of the powder is 53 μm or more and 105 μm or less, the average particle size of the mother alloy powder is 63 μm or less, and the difference between the average particle sizes of the two is 20 μm or more. The point is to use.

以下にその詳細について述べる。 The details are described below.

始めに主原料粉末として用いる純Al粉末の粒径を限定
した理由について説明する。
First, the reason for limiting the particle size of the pure Al powder used as the main raw material powder will be described.

圧粉成形焼結法においてはまず金型の凹みに原料粉末を
供給しプレス成形するため、粉末の流動性は良好である
ことが必要とされる。流動性が悪いと狭部に粉末が充填
しにくく、また部位による充填率の変動の原因となり、
さらに部品毎の充填量も異なり、それらは成形体の部位
による密度のバラツキ、個々の成形体の重さ、したがっ
て寸法のバラツキとなって、これらは製品の品質を低
下、ひいては不良率の増加の原因となる。そのような問
題をなくすためには原料としての混合粉末の粒径は大き
い方が望ましい。
In the powder compacting and sintering method, the raw material powder is first supplied into the recess of the mold and press-molded, so that the fluidity of the powder is required to be good. Poor fluidity makes it difficult for the powder to fill the narrow part, and also causes the filling rate to vary depending on the part.
Furthermore, the filling amount for each part is also different, which causes variations in density depending on the parts of the molded product, weight of individual molded products, and therefore variations in dimensions, which reduce the product quality and eventually increase the defective rate. Cause. In order to eliminate such a problem, it is desirable that the particle size of the mixed powder as a raw material is large.

特に流動性には混合粉末のうち量的に多い主原料粉末と
して用いる純Al粉末の粒径の影響が大きく、その粒径を
大きくすることにより混合粉全体の流動性を向上できる
ことを見出した。すなわち以上の観点から純Al粉末の平
均粒径を53μm以上とした。一方、母合金法においては
合金元素は母合金粉末として供給するため、焼結工程に
おいて粉末同志の結合に加えて、純Al粉末中に合金元素
を拡散均一化させる必要がある。しかし純Al粉末の粒径
が大きくなると焼結により合金元素を拡散均一化するの
に要する時間が長くなり、このことはAl合金焼結体の製
造において最もコスト的に比率の高い焼結費用をさらに
増大させ経済的でなくなる。このような理由から純Al粉
末の平均粒径を105μm以下とした。以上延べてきたよ
うに良好な流動性を保ち、かつ拡散均一化に要する時間
を短縮する観点から純Al粉末の平均粒径を53μm以上、
105μm以下とした。
In particular, it was found that the fluidity is greatly influenced by the particle size of pure Al powder used as the main raw material powder in a large amount among the mixed powders, and the fluidity of the entire mixed powder can be improved by increasing the particle size. That is, from the above viewpoint, the average particle size of the pure Al powder is set to 53 μm or more. On the other hand, in the mother alloy method, since the alloy elements are supplied as mother alloy powder, it is necessary to make the alloy elements diffuse and uniform in the pure Al powder in addition to the bonding of the powders in the sintering process. However, as the particle size of pure Al powder increases, the time required to diffuse and homogenize the alloying elements by sintering increases, which means that the cost of sintering is the highest in terms of cost in the production of Al alloy sintered compacts. Further increase and become economical. For this reason, the average particle size of the pure Al powder is set to 105 μm or less. From the viewpoint of maintaining good fluidity as described above and shortening the time required for uniform diffusion, the average particle size of pure Al powder is 53 μm or more,
It was set to 105 μm or less.

次に母合金粉末の平均粒径の限定理由について述べ
る。
Next, the reasons for limiting the average particle size of the mother alloy powder will be described.

母合金粉末は焼結過程で溶融して純Al粉の表面に漏れ広
がり、さらに純Al粉内に拡散消失するため、元の母合金
粉の跡のほとんどはポアすなわち流出孔として残留す
る。これらのポアは切り欠き効果により焼結体の機械的
性質を低下させる。またこれらのポアは焼結体の表面に
も存在し、表面性状を低下させ商品価値を損う原因とな
る。このような原因による機械的性質、表明性状の低下
を防止するためには母合金粉末の平均粒径を小さくすれ
ばよく、そのような観点から母合金粉末の平均粒径を63
μm以下とし、かつ純Al粉末の平均粒径より20μm以上
小さくした。混合粉末中における母合金粉末の配合量は
多くの場合3%から12%程度であり、純Al粉末に比べて
量的に少ないため、母合金粉末の粒径を小さくしても流
動性への悪影響は少ない。このような方法により混合粉
末の流動性が良好で、成形しやすくしかも焼結体の機械
的性質、表面性状の良好な焼結体を得ることが可能とな
る。
Since the mother alloy powder is melted in the sintering process, leaks and spreads on the surface of the pure Al powder, and diffuses and disappears in the pure Al powder, most of the traces of the original mother alloy powder remain as pores, that is, outflow holes. These pores reduce the mechanical properties of the sintered body due to the notch effect. Further, these pores are also present on the surface of the sintered body, which deteriorates the surface properties and reduces the commercial value. In order to prevent deterioration of mechanical properties and manifestation properties due to such causes, the average particle size of the master alloy powder may be reduced. From such a viewpoint, the average particle size of the master alloy powder should be 63
The average grain size of the pure Al powder is 20 μm or more. In most cases, the amount of the master alloy powder in the mixed powder is about 3% to 12%, which is smaller than that of the pure Al powder. There are few adverse effects. By such a method, it becomes possible to obtain a sintered body in which the mixed powder has good fluidity, is easy to mold, and has good mechanical properties and surface properties.

さらに、請求項第2項において母合金粉末の最大粒径
を規定した理由は特に切り欠き靱性や疲労強度には材料
中に存在する最大粒径の流出孔により特性が左右され、
そのような流出孔の最大径は母合金粉末の最大粒径にほ
ぼ比例するため、最大粒径を105μmに限定した。また
混合粉末の流動性には平均粒度とともに全体の粉末の中
に占める微粉の割合の影響も大きく、そのため44μ以下
の粉末の比率を3%以下に限定した。
Further, the reason why the maximum grain size of the mother alloy powder is defined in claim 2 is that the notch toughness and fatigue strength are affected by the maximum grain size outflow holes existing in the material.
Since the maximum diameter of such outflow holes is almost proportional to the maximum particle diameter of the mother alloy powder, the maximum particle diameter was limited to 105 μm. Further, the flowability of the mixed powder is greatly influenced by the ratio of the fine powder in the whole powder together with the average particle size, so that the ratio of the powder of 44 μ or less is limited to 3% or less.

ここで粉末の平均粒径とは累積粒度分布が50%となる
粒径である。また経済的な量産方法である大気アトマイ
ジング法で得られる純Al粉末、Al合金粉末の場合、粉末
の形状は球状ではなく不定形となり、その場合の粒径と
は球に換算した時の直径にほぼ等しく、あるいは最大粒
径とは篩分け法における篩の目開きに相当するものであ
る。
Here, the average particle size of the powder is a particle size at which the cumulative particle size distribution is 50%. In the case of pure Al powder and Al alloy powder obtained by the atmospheric atomizing method, which is an economical mass production method, the shape of the powder is not spherical but irregular, and the particle size in that case is the diameter when converted to sphere. Is almost equal to, or the maximum particle size corresponds to the opening of the sieve in the sieving method.

次に母合金粉末の組成について述べる。 Next, the composition of the mother alloy powder will be described.

母合金粉末は時効析出強化に寄与するMg、Si、あるい
はCuを添加する役割と同時に、それら自体が焼結温度以
下で融解を始め、あるいは主たる原料粉末である純Al−
粉末との共晶反応により液相を生成し焼結を促進する役
割を持つ。そのような目的を果すため、母合金粉末の組
成範囲の低濃度側の組成としてはAl-Si-Mg 3元系合金の
共晶組成に近い組成が望ましく、具体的にはSi:12%以
上、Mgは4%以上が望ましい。また母合金粉末は高合金
であり硬質のため、その配合量を多くすると成形性を害
する。そのため、より少ない配合量で所定の合金元素量
を添加するためには母合金粉末にはより多くの合金化元
素を含有させた方が有利となる。一方、Siは30%を越
え、Mgは20%を越えると、合金の融解が終了する温度す
なわち液相線における温度が上昇し、粉末製造時の溶解
が難しくなり、また焼結時の共晶生成反応も生じにくく
なるため、Siは30%以下、Mgは20%以下とする必要があ
る。また、Mgはその増加にともない溶湯の活性が増し酸
化しやすくなり、経済的なAl合金粉の製造方法である大
気アトマイジング法では製造が極めて難しくなるため、
そのような観点からもMgは20%以下とすべきである。
The mother alloy powder plays a role of adding Mg, Si, or Cu that contributes to aging precipitation strengthening, and at the same time, itself starts melting at a sintering temperature or lower, or pure Al- which is a main raw material powder.
It plays the role of promoting the sintering by generating a liquid phase by the eutectic reaction with the powder. In order to achieve such an object, it is desirable that the composition on the low concentration side of the composition range of the mother alloy powder be close to the eutectic composition of the Al-Si-Mg ternary alloy, specifically, Si: 12% or more. , Mg is preferably 4% or more. Further, since the mother alloy powder is a high alloy and hard, increasing the blending amount impairs the formability. Therefore, in order to add a predetermined amount of alloying elements with a smaller blending amount, it is advantageous to add more alloying elements to the mother alloy powder. On the other hand, if the Si content exceeds 30% and the Mg content exceeds 20%, the temperature at the end of melting of the alloy, that is, the temperature in the liquidus increases, making it difficult to melt during powder production and eutectic during sintering. Since the formation reaction is less likely to occur, it is necessary to set Si to 30% or less and Mg to 20% or less. In addition, Mg increases the activity of the molten metal with its increase and is easily oxidized, and it becomes extremely difficult to manufacture by the atmospheric atomizing method, which is an economical Al alloy powder manufacturing method,
From such a viewpoint, Mg should be 20% or less.

さらにこの母合金粉末にCuを適当量添加することによ
り、母合金粉末の融解開始温度(固相線温度)をさらに
低下させることが可能となり、焼結を促進させ、ひいて
は焼結体の機械的性質を一層改善することが可能とな
る。そのためより好ましい母合金の組成としては5%以
上のCuの添加が望ましい。また、CuはAl合金において強
力な時効硬化元素であり、特に高強度のAl合金を得よう
とする場合極めて有効な合金元素であり、焼結体のCu濃
度を高める目的で母合金粉末についても積極的に高める
ことが望ましい。しかしながら多量にCuを添加すると焼
結体の耐食性が劣化し、延性も低下する。またCuを添加
する場合は母合金粉末中のCuが45%を越えると、母合金
の融解終了温度(液相線温度)が上昇し、粉末の製造が
難しくなるため45%以下とするのが望ましい。
Furthermore, by adding an appropriate amount of Cu to this master alloy powder, it becomes possible to further lower the melting start temperature (solidus temperature) of the master alloy powder, which promotes sintering and eventually the mechanical properties of the sintered body. It is possible to further improve the property. Therefore, as a more preferable mother alloy composition, addition of 5% or more of Cu is desirable. Further, Cu is a strong age hardening element in the Al alloy, and is an extremely effective alloy element particularly when trying to obtain a high-strength Al alloy, and the mother alloy powder is also used for the purpose of increasing the Cu concentration in the sintered body. It is desirable to actively increase. However, when Cu is added in a large amount, the corrosion resistance of the sintered body deteriorates and the ductility also decreases. When Cu is added, if the Cu content in the master alloy powder exceeds 45%, the melting end temperature (liquidus temperature) of the master alloy rises, making it difficult to manufacture the powder. desirable.

以上述べてきたように母合金粉末はAl-Si-Mg系あるい
はAl-Si-Cu-Mg系が適当であり、母合金粉末の組成とし
て、Si:12〜30%、Mg:4〜20%、残部Al、さらにCuを添
加する場合はCu:5〜45%が適当と考えられる。
As described above, the master alloy powder is preferably Al-Si-Mg system or Al-Si-Cu-Mg system, the composition of the master alloy powder, Si: 12 ~ 30%, Mg: 4 ~ 20% When adding the balance Al and further Cu, Cu: 5 to 45% is considered to be appropriate.

その他母合金粉末としてAl-Mg系合金、Al-Si系合金、Al
-Cu系二元系合金あるいはAl-Cu-Mg、Al-Si-Cu三元系合
金等のAl合金粉中から選ばれる1種類あるいは2種類以
上の母合金粉末を配合することも可能である。
Other mother alloy powders such as Al-Mg alloys, Al-Si alloys, Al
-Cu-based binary alloys or Al-Cu-Mg, Al-Si-Cu ternary alloys and other Al alloy powders can be blended with one or more master alloy powders. .

次に純Al粉末に配合する母合金粉末の配合量について
述べる。
Next, the blending amount of the master alloy powder blended with the pure Al powder will be described.

AlにMg、Siを加え、さらに必要に応じてCuを添加した
組成とすることにより、母合金の融解開始温度および純
Al粉末との反応で液相を生成する温度を調整することが
可能になる。またこれらの元素の合金量を調整すること
により、原料混合粉末中の母合金の配合量の調整範囲を
広げることが可能になる。
By adding Mg and Si to Al, and further adding Cu as required, the melting start temperature and pure
It becomes possible to adjust the temperature at which the liquid phase is generated by the reaction with the Al powder. Also, by adjusting the alloying amount of these elements, it becomes possible to widen the adjustment range of the compounding amount of the mother alloy in the raw material mixed powder.

この母合金の配合量については、その量が少なすぎる
と液相焼結が不可欠なAl合金において、充分な液相量が
確保できず良好な特性の焼結体を得ることが不可能とな
る。一方、多すぎると生じる液相量が多くなりすぎ、発
汗現象により表面性状が良好な焼結体が得られなくな
る。そのような観点から母合金の配合量は2%以上、15
%以下が適する。
Regarding the blending amount of this mother alloy, if the amount is too small, it is not possible to secure a sufficient amount of liquid phase in an Al alloy in which liquid phase sintering is indispensable, and it becomes impossible to obtain a sintered body with good characteristics. . On the other hand, if the amount is too large, the amount of liquid phase generated becomes too large, and it becomes impossible to obtain a sintered body having a good surface property due to a sweating phenomenon. From such a viewpoint, the blending amount of the master alloy is 2% or more, 15
% Or less is suitable.

また上記合金粉末に潤滑剤を混合することにより粉末
同志の潤滑、粉末と金型壁面間の潤滑性を改善し、成形
性を高めることが可能である。潤滑材の混合量は0.5%
以下ではその効果が不十分であり、2%以上では効果が
飽和するだけでなく、粉末の流動性・成型性を害し、さ
らに潤滑剤は焼結時に揮発飛散し、不必要に焼結炉内あ
るいは真空焼結にあっては排気系を汚染するため0.5〜
2%が望ましい。潤滑剤の種類としては、焼結温度以下
で全て揮発飛散し、材料特性に有害な影響の無いものが
好ましい。そのような観点からは金属塩系の潤滑材
(例、ステアリン酸亜鉛、ステアリン酸リチウム、ステ
アリン酸アルミニウムなど)よりもアミド系潤滑材が望
ましく、例えばエチレンビスステアロアマイド等を最適
な潤滑材として挙げることができる。
Further, by mixing a lubricant with the alloy powder, it is possible to improve the lubricity between the powders, improve the lubricity between the powder and the wall surface of the mold, and enhance the formability. Lubricant content is 0.5%
If the amount is less than 2%, not only the effect will be saturated, but also the fluidity and moldability of the powder will be impaired, and the lubricant will be volatilized and scattered at the time of sintering, unnecessarily in the sintering furnace. Or, in vacuum sintering, 0.5 ~
2% is desirable. As the kind of the lubricant, it is preferable that all of the lubricant be volatilized and scattered below the sintering temperature and have no detrimental effect on the material properties. From such a viewpoint, amide-based lubricants are preferable to metal salt-based lubricants (eg, zinc stearate, lithium stearate, aluminum stearate, etc.), and for example, ethylene bisstearamide is the most suitable lubricant. Can be mentioned.

また焼結体部品にさらに耐摩耗性、摩擦係数の増加、
低熱膨張率等の機能を付与するため、これら粉末にセラ
ミックス粒子を混合することもできる。その時の添加量
は2Vol%以下では効果が不十分であり、20Vol%以上で
は焼結体の機械的性質特に延性が著しく低下するためそ
れ以下とする必要がある。その他、黒鉛、六法晶BN等の
固体潤滑材あるいはFe、Ni、Mn、Ti、Zr、Si等の金属粉
末を配合することも耐摩耗性等の特性向上のために有効
である。
In addition, wear resistance, increased friction coefficient,
Ceramic particles can be mixed with these powders in order to impart functions such as a low coefficient of thermal expansion. At that time, if the addition amount is 2 Vol% or less, the effect is insufficient, and if the addition amount is 20 Vol% or more, the mechanical properties of the sintered body, particularly ductility are remarkably deteriorated, and therefore it is necessary to set it below that. In addition, blending solid lubricants such as graphite and hexagonal BN or metal powders such as Fe, Ni, Mn, Ti, Zr and Si is also effective for improving properties such as wear resistance.

次に焼結体の製造方法について説明する。 Next, a method for manufacturing a sintered body will be described.

成形圧は2トン/cm2未満では成形体の緻密化が足り
ず粉末同士の接触が不十分で、良好な焼結体強度・延性
が得られない。従って2トン/cm2以上で成形する必要
がある。さらに成形体の密度を上げようとし、より高い
成形圧で成形する場合、金型の寿命の短縮、ラミネーシ
ョンの発生、金型へのカジリ等の問題が生じる。そのた
め実操業上8トン/cm2を越える成形圧は不適当であ
る。
If the molding pressure is less than 2 ton / cm 2 , the compact will not be sufficiently densified and the powder particles will not contact each other sufficiently, so that good strength and ductility of the sintered body cannot be obtained. Therefore, it is necessary to mold at 2 ton / cm 2 or more. Further, when attempting to increase the density of the molded body and molding at a higher molding pressure, problems such as shortening the life of the mold, occurrence of lamination, and galling of the mold occur. Therefore, a molding pressure exceeding 8 tons / cm 2 is not appropriate in actual operation.

さらに原料粉末を70℃〜250℃に加熱した状態で成形
することにより成形体をより緻密化することも可能であ
る。
Further, by molding the raw material powder in a state of being heated to 70 ° C. to 250 ° C., it is possible to further densify the molded body.

焼結雰囲気については活性なAl合金粉末粒子の酸化を
防ぎ十分焼結を進行させるためには真空あるいは窒素ガ
ス、アルゴンガス雰囲気等の非酸化性雰囲気中で焼結す
る必要がある。真空で焼結する場合その真空度は0.1tor
r以下、望ましくは0.01torr以下にするのが良い。また
焼結炉の内部を真空置換後、減圧下で窒素ガス等の不活
性ガスを少量流しながら焼結することも、焼結体から発
生するガス成分を除去する効果を高める。なお窒素ガス
雰囲気あるいはアルゴンガス等の不活性雰囲気中で焼結
する場合はガスの純度が重要であり、特にガス中に含ま
れる水分は焼結部品の特性に悪影響を及ぼすため、露点
を十分低く管理する必要があり、望ましくは露点は−40
℃以下に保つ必要がある。
Regarding the sintering atmosphere, it is necessary to sinter in a vacuum or in a non-oxidizing atmosphere such as a nitrogen gas or argon gas atmosphere in order to prevent the oxidation of the active Al alloy powder particles and allow the sintering to proceed sufficiently. When sintering in vacuum, the degree of vacuum is 0.1 torr
r or less, preferably 0.01 torr or less. In addition, sintering under a reduced pressure and flowing a small amount of an inert gas such as nitrogen gas after vacuum replacement of the inside of the sintering furnace also enhances the effect of removing gas components generated from the sintered body. When sintering in a nitrogen gas atmosphere or an inert atmosphere such as argon gas, the purity of the gas is important, and the moisture contained in the gas adversely affects the characteristics of the sintered parts. Must be controlled, preferably with a dew point of −40
It must be kept below ℃.

焼結温度は500℃より低いと元素の拡散が不十分であ
り、粉末同志の焼結が不十分となる。一方620℃より高
いと多量の液相が生成し、昇温とともに部品形状を保て
ないため、500℃以上、620℃以下で焼結する必要があ
る。
If the sintering temperature is lower than 500 ° C, the diffusion of elements will be insufficient and the sintering of the powders will be insufficient. On the other hand, if the temperature is higher than 620 ° C, a large amount of liquid phase is generated, and the shape of parts cannot be maintained as the temperature rises. Therefore, it is necessary to sinter at 500 ° C or higher and 620 ° C or lower.

またこうして得られた焼結体を再圧縮することにより
組織を緻密化し機械的性質をより向上させることができ
る。一般に再圧縮では寸法出し(サイジング)を目的と
する場合が多くそれと併せて再圧縮条件を選定するが、
通常は3〜11トン/cm2の範囲の再圧縮圧とする。
Further, by recompressing the thus obtained sintered body, the structure can be densified and the mechanical properties can be further improved. In general, recompression is often aimed at dimensioning (sizing), and recompression conditions are selected along with it.
Usually, the recompression pressure is in the range of 3 to 11 ton / cm 2 .

さらに再焼結することにより機械的性質、特に延性を
改善することができる。再圧縮により緻密化した組織を
再度焼結することにより拡散・焼結を一層進行させるこ
とができる。その際の条件は基本的には焼結の場合と同
様である。
Further re-sintering can improve mechanical properties, especially ductility. By re-sintering the structure densified by re-compression, diffusion / sintering can be further advanced. The conditions at that time are basically the same as in the case of sintering.

またこれら焼結体の合金成分であるCu、Mg、Siは本来
溶体化・時効処理により機械的性質の向上に寄与するも
のである。したがって通常のAl合金同様、溶体化・時効
処理を施しその機械的性質を調整、向上させることは有
効である。
Further, Cu, Mg and Si which are alloy components of these sintered bodies originally contribute to the improvement of mechanical properties by solution treatment and aging treatment. Therefore, as with ordinary Al alloys, it is effective to perform solution treatment and aging treatment to adjust and improve their mechanical properties.

[作用] 本発明によればAl合金製精密部品のニアネットシェイ
プ製造法として優れた母合金法における主たる原料粉末
としての純Al粉末と母合金粉末の粒径を厳密に制御する
ことにより、流動性を良好に保って成形することが可能
となり、また焼結体の機械的性質と表面性状を著しく改
善することが可能となる。
[Operation] According to the present invention, flow is achieved by strictly controlling the particle diameters of pure Al powder and master alloy powder as the main raw material powder in the master alloy method, which is excellent as a near net shape manufacturing method for precision parts made of Al alloy. It becomes possible to mold while maintaining good properties, and it is possible to remarkably improve the mechanical properties and surface properties of the sintered body.

[発明の実施例] 以下本発明の実施例について説明する。Examples of the Invention Hereinafter, examples of the present invention will be described.

実施例1 大気アトマイズ法により製造した純Al粉末とAl-20%S
i-10%Cu-10%Mg母合金粉末とを篩分けし配合し直すこ
とにより、表1に示す種々の平均粒径の純Al粉末と母合
金粉末を準備した。それらを95:5の重量比で混合し、配
合組成Al-1%Si-0.5%Cu-0.5%Mgとした。さらにそれに
アミド系潤滑剤1%を加え原料粉末とした。それを成形
圧4トン/cm2でJIS Z2550に規定されている引張試験片
形状に成形した。その成形体を常に真空ポンプを作動さ
せながら窒素ボンベより窒素ガスを導入する方法で雰囲
気圧力を1〜3torrに保ちながら、590℃で2時間焼結し
た。次いでその焼結体を5トン/cm2で再結晶した後、T
6熱処理を施し、引張試験に供した。
Example 1 Pure Al powder produced by the atmospheric atomization method and Al-20% S
Si-10% Cu-10% Mg master alloy powder was sieved and blended again to prepare pure Al powder and master alloy powder having various average particle sizes shown in Table 1. They were mixed at a weight ratio of 95: 5 to obtain a compounding composition Al-1% Si-0.5% Cu-0.5% Mg. Further, 1% of an amide-based lubricant was added to obtain a raw material powder. It was molded into a tensile test piece shape specified in JIS Z2550 at a molding pressure of 4 tons / cm 2 . The compact was sintered at 590 ° C. for 2 hours while keeping the atmospheric pressure at 1 to 3 torr by a method of constantly introducing a nitrogen gas from a nitrogen cylinder while operating a vacuum pump. Then, after recrystallizing the sintered body at 5 ton / cm 2 , T
6 Heat treatment was performed and the tensile test was performed.

なお原料粉末の流動度についてはJISZ2052に決められ
た試験方法に準じた方法で評価した。但し、純Al粉末、
Al合金粉末は鉄系粉末と比べて軽く嵩ばることを考慮し
て、試験重量をJISで決められている50gから25gに減ら
し、粉末が全量流れ終るまでの時間を求めた。そして表
中その値が40秒以下のものを◎、50秒以下のものを○、
50秒以上あるいは流れないものを▲で示した。
The fluidity of the raw material powder was evaluated by a method according to the test method specified in JIS Z2052. However, pure Al powder,
Considering that the Al alloy powder is lighter and bulkier than the iron-based powder, the test weight was reduced from 50 g specified in JIS to 25 g, and the time until the entire powder flow was determined. And in the table, those with a value of 40 seconds or less are ◎, those with a value of 50 seconds or less are ○,
Items that do not flow for 50 seconds or longer are indicated by ▲.

また表面性状については引張試験片の表面について表面
荒さ計を用いてRmaxを求め、表中その値 が15μm以下を◎、20μm以下を○、25μm以上を▲で
表示した。
For surface properties, Rmax was obtained for the surface of the tensile test piece using a surface roughness meter, and the value in the table was calculated. Is indicated by ⊚ for 15 μm or less, ◯ for 20 μm or less, and ▲ for 25 μm or more.

表1に粉末の流動度測定結果、引張試験の結果、表面
性状の解析結果を純Al粉末と母合金粉末の平均粒径に対
応させて示す。本実施例から分かるように本発明による
合金は粉末の流動度が優れ、しかも焼結体の機械的性
質、表面性状も優れている。
Table 1 shows the flowability measurement results of the powder, the results of the tensile test, and the analysis results of the surface properties in correspondence with the average particle sizes of the pure Al powder and the mother alloy powder. As can be seen from this example, the alloy according to the present invention has an excellent powder fluidity, and also has excellent mechanical properties and surface properties of the sintered body.

実施例2 大気アトマイズ法により製造した純Al粉末とAl-6%Si
-30%Cu-10%Mg母合金粉末とをそれぞれ篩分し配合し直
すことにより、表2に示す種々の平均粒径の純Al粉末と
母合金粉末を準備した。それらを90:10の重量比で混合
し、配合組成Al-0.6%Si-3%Cu-1%Mgとした。さらにそ
れにアミド系潤滑剤1%を加え原料粉末とした。それら
を実施例1と同じ条件で引張試験片とし試験に供した。
結果を実施例1と同様にして表2に示す。
Example 2 Pure Al powder and Al-6% Si produced by the atmospheric atomization method
-30% Cu-10% Mg master alloy powder was sieved and blended again to prepare pure Al powder and master alloy powder having various average particle sizes shown in Table 2. They were mixed in a weight ratio of 90:10 to obtain a compounding composition Al-0.6% Si-3% Cu-1% Mg. Further, 1% of an amide-based lubricant was added to obtain a raw material powder. Under the same conditions as in Example 1, they were subjected to a test as tensile test pieces.
The results are shown in Table 2 as in Example 1.

本実施例から分かるように本発明による合金は実 施例1と同様に粉末の流動度が優れ、しかも焼結体の機
械的性質、表面性状も優れている。
As can be seen from this example, the alloy according to the present invention is practical. Similar to Example 1, the fluidity of the powder was excellent, and the mechanical properties and surface properties of the sintered body were also excellent.

実施例3 大気アトマイズ法により製造した純Al粉末とAl-20%S
i-10%Cu-10%Mg母合金粉末とを篩分けし、それらを95:
5の重量比で混合し、配合組成Al-1%Si-0.5%Cu-0.5%M
gとした。なお本試験では配合前に母合金粉末は目開き1
05μmの篩(150 メッシュ)で篩い、105μm以上の粉末を除去して用い
た。さらに純Al粉末と母合金粉末についても配合前に、
それぞれ目開き44μmの篩(325メッシュ)を用いて振
るい44μm以下の粉末を除去したものを用いた。なおそ
のような工程を入れなかった場合混合前の母合金粉末中
に占める105μm以上の粉末は2〜5%、混合粉末中の4
4μm以下の粉末の比率は2〜4%であった。その他の
方法については実施例1に準じて行った。それらの結果
を表3に示す。表3と表1との比較から、母合金粉末の
最大粒系を規定し、さらに混合粉末の44μ以下の粉末の
含有量をより厳密に規定することにより、粉末の流動度
が優れ、しかも焼結体の機械的性質、表面性状も優れて
いる。
Example 3 Pure Al powder produced by the atmospheric atomization method and Al-20% S
Sift i-10% Cu-10% Mg master alloy powder and 95:
Mix in a weight ratio of 5 and mix composition Al-1% Si-0.5% Cu-0.5% M
g. In this test, the opening of the mother alloy powder was 1 before blending.
05 μm sieve (150 It was used after removing powder of 105 μm or more by sieving with a (mesh). Furthermore, before mixing the pure Al powder and mother alloy powder,
Each of the sieves was sieved with a sieve having an opening of 44 μm (325 mesh) to remove powder having a diameter of 44 μm or less. If such a step is not included, 2 to 5% of the powder of 105 μm or more in the master alloy powder before mixing is 4% in the mixed powder.
The ratio of powder having a size of 4 μm or less was 2 to 4%. Other methods were carried out according to Example 1. Table 3 shows the results. From the comparison between Table 3 and Table 1, by defining the maximum grain size of the master alloy powder and more strictly defining the content of the powder of 44 μm or less of the mixed powder, the fluidity of the powder is excellent and The mechanical properties and surface properties of the aggregate are also excellent.

[発明の効果] 本発明によればニアネットシェイプ製造技術として優
れているAl合金焼結体の製造方法である母合金法におい
て、主たる原料粉末としての純Al粉と母合金粉末の粒径
を厳密に制御することにより、原料粉末の流動度を良好
に保ち、それにより複雑形状の部品の成形を容易にし、
かつ焼結体の機械的性質と表面性状の良好なAl合金焼結
体が得られるようになり、応用範囲の拡大等産業上極め
て有益な効果をもたらすことができる。
[Effects of the Invention] According to the present invention, in the master alloy method, which is a method of manufacturing an Al alloy sintered body, which is excellent as a near net shape manufacturing technique, the particle diameters of pure Al powder and master alloy powder as main raw material powders are By strictly controlling, the fluidity of the raw material powder is kept good, which facilitates the molding of parts with complex shapes,
In addition, it becomes possible to obtain an Al alloy sintered body having good mechanical properties and surface properties of the sintered body, and it is possible to bring industrially extremely beneficial effects such as expansion of the application range.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】純Al粉末にAl母合金粉末を混合したAl合金
焼結体を製造するための原料粉末であって、純Al粉末の
平均粒径が53μm以上、105μm以下であり、母合金粉
末の平均粒径が63μm以下であって、かつ両者の平均粒
径の差が20μm以上であることを特徴とするAl合金混合
粉末。
1. A raw material powder for producing an Al alloy sintered body, which is a mixture of pure Al powder and Al mother alloy powder, wherein the pure Al powder has an average particle size of 53 μm or more and 105 μm or less. An Al alloy mixed powder, wherein the average particle size of the powder is 63 μm or less, and the difference between the average particle sizes of the two is 20 μm or more.
【請求項2】請求項第1項記載の混合粉末において母合
金粉末の最大径を105μm以下とし、かつ混合粉末中の4
3μm以下の粉末の割合を3%以下としたことを特徴と
するAl合金混合粉末。
2. The mixed powder according to claim 1, wherein the mother alloy powder has a maximum diameter of 105 μm or less, and 4
An Al alloy mixed powder characterized in that the proportion of powder having a particle size of 3 μm or less is 3% or less.
【請求項3】請求項第1項記載の混合粉末に潤滑材を0.
5〜2%混合したことを特徴とするAl合金混合粉末。
3. A lubricant is added to the mixed powder according to claim 1.
An Al alloy mixed powder characterized by being mixed in an amount of 5 to 2%.
【請求項4】請求項第1項、あるいは第2項記載の混合
粉末にセラミックス粒子を2〜20Vol%添加したことを
特徴とするAl合金混合粉末。
4. An Al alloy mixed powder, wherein ceramic particles are added to the mixed powder according to claim 1 or 2 in an amount of 2 to 20% by volume.
【請求項5】請求項第1項、請求項第2項あるいは第3
項記載の混合粉末を2〜8トン/cm2の加圧力で圧粉成
形した後、該圧粉成形体を非酸化性雰囲気中で500〜620
℃の温度範囲で焼結することを特徴とするAl合金焼結体
の製造方法。
5. Claim 1, claim 2 or claim 3.
The mixed powder as described in the above item 1 is compacted under a pressure of 2 to 8 ton / cm 2 , and the compact is compacted in a non-oxidizing atmosphere at 500-620.
A method for producing an Al alloy sintered body, which comprises sintering in a temperature range of ° C.
JP2334623A 1990-11-30 1990-11-30 Method for producing Al alloy mixed powder and Al alloy sintered body Expired - Lifetime JP2695289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2334623A JP2695289B2 (en) 1990-11-30 1990-11-30 Method for producing Al alloy mixed powder and Al alloy sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2334623A JP2695289B2 (en) 1990-11-30 1990-11-30 Method for producing Al alloy mixed powder and Al alloy sintered body

Publications (2)

Publication Number Publication Date
JPH04202601A JPH04202601A (en) 1992-07-23
JP2695289B2 true JP2695289B2 (en) 1997-12-24

Family

ID=18279452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334623A Expired - Lifetime JP2695289B2 (en) 1990-11-30 1990-11-30 Method for producing Al alloy mixed powder and Al alloy sintered body

Country Status (1)

Country Link
JP (1) JP2695289B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168403A (en) * 2017-03-29 2018-11-01 Ntn株式会社 Sintered aluminum alloy material and manufacturing method therefor

Also Published As

Publication number Publication date
JPH04202601A (en) 1992-07-23

Similar Documents

Publication Publication Date Title
US5304343A (en) Aluminum-alloy powder, sintered aluminum-alloy, and method for producing the sintered aluminum-alloy
CA2811754C (en) Aluminum powder metal alloying method
JP2761085B2 (en) Raw material powder for Al-Si based alloy powder sintered parts and method for producing sintered parts
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
JP4401326B2 (en) Method for producing high-strength wear-resistant aluminum sintered alloy
JPH0120215B2 (en)
JP2017514994A (en) Aluminum alloy powder metal compound containing silicon additive to improve mechanical properties
WO2021219564A1 (en) Pre-alloyed powder for sinter-brazing, sinter-brazing material and sinter-brazing method
JP3095026B2 (en) Manufacturing method of aluminum sintered alloy
JP5951636B2 (en) Improved aluminum alloy powder metal with transition elements
JP2695289B2 (en) Method for producing Al alloy mixed powder and Al alloy sintered body
US4430295A (en) Articles produced from iron powder compacts containing hypereutectic copper phosphide powder
JPH07316601A (en) Production of rapidly solidified aluminum powder and aluminum alloy compact
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JPH029099B2 (en)
JPH0578708A (en) Production of aluminum-based grain composite alloy
JP2889371B2 (en) Method for producing A1 alloy mixed powder and sintered A1 alloy
JPS6038442B2 (en) Manufacturing method of aluminum alloy low density sintered parts
JP2921114B2 (en) Method for manufacturing hypereutectic Al-Si alloy member having high strength and high toughness
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JP2798709B2 (en) Manufacturing method of aluminum alloy powder sintered parts
JP2005048285A (en) RAW MATERIAL POWDER FOR Al-Si BASED ALLOY SINTERED COMPONENT, METHOD OF PRODUCING Al-Si BASED ALLOY SINTERED COMPONENT, AND Al-Si BASED ALLOY SINTERED COMPONENT
JPH0448858B2 (en)
JP4349521B2 (en) Method for producing high-strength wear-resistant aluminum sintered alloy
JPH05214477A (en) Composite material and its manufacture