JPH04202601A - Manufacture of al alloy mixed powder and al alloy sintered body - Google Patents

Manufacture of al alloy mixed powder and al alloy sintered body

Info

Publication number
JPH04202601A
JPH04202601A JP2334623A JP33462390A JPH04202601A JP H04202601 A JPH04202601 A JP H04202601A JP 2334623 A JP2334623 A JP 2334623A JP 33462390 A JP33462390 A JP 33462390A JP H04202601 A JPH04202601 A JP H04202601A
Authority
JP
Japan
Prior art keywords
powder
alloy
mixed
pure
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2334623A
Other languages
Japanese (ja)
Other versions
JP2695289B2 (en
Inventor
Shin Miura
三浦 伸
Yoichi Hirose
洋一 広瀬
Yoshio Machida
町田 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2334623A priority Critical patent/JP2695289B2/en
Publication of JPH04202601A publication Critical patent/JPH04202601A/en
Application granted granted Critical
Publication of JP2695289B2 publication Critical patent/JP2695289B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the above Al alloy sintered body excellent in mechanical characteristics and surface properties by mixing pure Al powder and Al alloy powder having specified particle size, mixing this mixed powder with a lubricant or, if required, with the powder of ceramics, subjecting this mixed powder to compacting and thereafter executing sintering. CONSTITUTION:The powder of pure Al having 53 to 105mum average particles size is mixed with the powder of an Al-Si-Mg series or Al-Si-Mg-Cu series alloy having <63mum average particle size, and the ratio of the powder having <=43mum particle size in this mixed powder is regulated to <=3%, in which, as a lubricant, zinc stearate or the like are mixed in the ratio of 0.5 to 2%. Or, according to necessary, the powder of graphite or the powder of ceramics such as hexagonal boron nitride or the like are furthermore mixed in the ratio of 2 to 20vol.%. This mixed powder is compacted under 2 to 8 ton/cm<2> and is thereafter sintered at 500 to 620 deg.C in the atmosphere of an Ar base inert gas.

Description

【発明の詳細な説明】 U産業上の利用分野j 本発明は機械部品等に用いられるAl合金焼結体用の原
料となるAl合金混合粉末およびそれらを用いたAl合
金焼結体の製造方法に間する。
[Detailed Description of the Invention] U Industrial Field of Application j The present invention relates to Al alloy mixed powders that are raw materials for Al alloy sintered bodies used for machine parts, etc., and a method for producing Al alloy sintered bodies using the mixed powders. in between.

[従来の技術及び解決しようとする課題]最近、事務機
器、コンピューター聞達機器の分野では、消IR電力の
低減、振動による騒音発生の防止、可搬性の向−ヒ等の
必要性から軽量なAl合金部品の利用が増えつつある。
[Prior art and problems to be solved] Recently, in the fields of office equipment and computer listening equipment, lightweight aluminum has been used to reduce IR power consumption, prevent noise generation due to vibration, and improve portability. The use of alloy parts is increasing.

従来Al合金の複雑形状部品の製造方法としてはダイキ
ャスト法が一般的であフた。しかしながらダイキャスト
法では3次元的な複雑形状部品が造れるという初点があ
る一方で、寸法精度が不十分て、また型抜きのためのテ
ーパーをつける必要があり、鋳造後高コストの機械加工
を必要とする場合が少なくない。またブローホール等の
鋳造欠陥のため、特性面で信頼性に欠けるといった問題
が存在した。
Conventionally, die-casting has been the most common method for manufacturing Al alloy parts with complex shapes. However, while the die-casting method has the advantage of being able to produce parts with complex three-dimensional shapes, the dimensional accuracy is insufficient, and it is necessary to create a taper for die cutting, which requires expensive machining after casting. There are many cases where it is necessary. In addition, there was a problem of lack of reliability in terms of characteristics due to casting defects such as blowholes.

別の方法としては、溶製インゴットを出発原料とした展
伸材を素材とし、旋盤等による機械加工で製造する方法
も採用されている。しかしながらかなりの工数の機械加
工を必要とし、しかも加工歩留りが低く、結果的に部品
の価格を高める原因となっていた。
Another method is to use a wrought material made from a molten ingot as a starting material, and manufacture it by machining with a lathe or the like. However, it requires a considerable number of machining steps and has a low processing yield, resulting in an increase in the price of the parts.

このような問題点を解決するために、ニアネットシエイ
ブ法としての特長を活かせる粉末冶金法で製造する方法
についても試みられている(例えば ASTM Des
ignation:8595−84参即)。
In order to solve these problems, attempts have been made to manufacture methods using powder metallurgy, which takes advantage of the features of the near net save method (for example, ASTM Des
ignation: 8595-84).

粉末を金型成形しそれを焼結する通常の圧粉成形焼結法
は、単純なプロセスでニアネットシエイブ部品が製造で
きるため、特にコスト面で大きな利点をもっている。
The conventional powder compacting and sintering method, in which powder is molded into a mold and then sintered, has a great advantage particularly in terms of cost, since near-net-shave parts can be manufactured through a simple process.

このようなAl合金焼結体部品の製造方法として、純A
l粉末にAlと低融点の共晶を造るCu、S i 、 
M g等の合金元素の単体粉末を配合した混合粉を原料
として用い液相焼結を利用するいわゆる要素粉末混合法
(Blended elemental method
)が良く知られている。しかしながらこの方法は、単体
元素粉の融点が高いため液相を生成しζこくく、焼結後
も未反応の元素粉が残留しやすく良好な機械的性質の焼
結体を得るのは難しいといった問題点が存在した。
As a method for manufacturing such Al alloy sintered parts, pure A
Cu, Si, which forms a low melting point eutectic with Al in l powder.
The so-called blended elemental powder method utilizes liquid phase sintering using a mixed powder containing elemental powders of alloying elements such as Mg as a raw material.
) is well known. However, this method produces a liquid phase due to the high melting point of the single element powder, and unreacted element powder tends to remain even after sintering, making it difficult to obtain a sintered body with good mechanical properties. There were problems.

一方、合金元素をあらかしめ粉末に添加し、最終合金組
成となっている合金粉末を原料とする合金粉末法(Pr
ealloy method)の場合、粉末が硬質なた
め成形圧縮性が悪く、通常の金型成形では良好な成形体
を得ることができない。さらに粉末の融点が低いため焼
結温度を十分高くすることができず、拡散、焼結を良好
に進行させることができないという欠点がある。
On the other hand, the alloy powder method (Pr
In the case of the alloy method, the powder is hard and has poor compressibility, and a good molded body cannot be obtained by ordinary molding. Furthermore, since the melting point of the powder is low, the sintering temperature cannot be raised sufficiently, and diffusion and sintering cannot proceed satisfactorily.

ざらに、前出の要素粉末混合法を改良した方法として、
合金化元素を予めAlに合金化した母合金粉末を製造し
てこの母合金粉末を純Al粉末に配合した混合粉末を用
いる方法、いわゆる母合金法(Master allo
y method)も提案されている(例えは特開平1
−294833)。この方法では成形しやすい純Al粉
末を主原料としており、かつ合金化元素は既にAlと合
金化されており、しかも多くの場合、多元系の低融点の
共晶を生成しやすい組成に調整されているため、液相焼
結は進行しやすく、より優れた機械的性質の焼結体を得
ることが可能となる。
Roughly speaking, as an improved method of the above-mentioned elemental powder mixing method,
A method of manufacturing a master alloy powder in which alloying elements are pre-alloyed with Al and using a mixed powder in which this master alloy powder is blended with pure Al powder, the so-called master allo method.
y method) has also been proposed (for example, in Japanese Patent Application Laid-Open No.
-294833). This method uses pure Al powder, which is easy to mold, as the main raw material, and the alloying elements are already alloyed with Al, and in many cases, the composition is adjusted to facilitate the formation of a multi-element low melting point eutectic. Therefore, liquid phase sintering progresses easily, making it possible to obtain a sintered body with better mechanical properties.

し・かじながら上記母合金法でも複雑形杖の部品を製造
する場合、粉末の流動性が悪く金型内に均一に充填され
ず、成形焼結体の部位により密度が低くなるといった問
題点も存在した。さらに母合金粉末は溶融して拡散消失
し、比較的大きなボアとして残留するため機械的性質、
特に延性が劣り、また表面性状が劣るといった問題点も
存在した。
However, when manufacturing complex-shaped cane parts using the above-mentioned master alloy method, there are also problems such as poor fluidity of the powder, which prevents it from being filled uniformly into the mold, and the density of the molded sintered body being lower in some parts. Were present. Furthermore, the mother alloy powder melts, diffuses and disappears, and remains as a relatively large bore, resulting in poor mechanical properties.
In particular, there were problems such as poor ductility and poor surface properties.

[課題を解決するための手段] 圧粉成形焼結法の中で母合金法はニアネットシェイブ法
としての特徴を活かせ、しかも比較的良好な機械的性質
のAl合金焼結体を得ることが可能である。しかしなが
らこのような母合金法でも用途によっては機械的性質あ
るいは表面性状が不十分なため本発明者らはざらに特性
改善に努め、母合金法における主たる原料粉末としての
純Al粉末と母合金粉末の粒径を厳密に制御することに
より、混合粉末の流動性を改善し、成形しやすく、かつ
焼結体の機械的性質と表面性状の良好なAl合金焼結体
が得られることを見出し本発明に至った。
[Means for solving the problem] Among the powder compacting and sintering methods, the master alloy method takes advantage of the characteristics of the near net shave method, and it is also possible to obtain an Al alloy sintered body with relatively good mechanical properties. It is possible. However, even with such a master alloy method, the mechanical properties or surface properties are insufficient depending on the application, so the present inventors made efforts to improve the properties, and developed pure Al powder and master alloy powder as the main raw material powder in the master alloy method. It was discovered that by strictly controlling the particle size of the mixed powder, it is possible to improve the fluidity of the mixed powder and obtain an Al alloy sintered body that is easy to mold and has good mechanical properties and surface properties. This led to the invention.

すなわち本発明は純Al粉末にAl母合金粉末を混合し
たAl合金焼結体を製造するための原料粉末であって、
純Al粉末の平均粒径が53μm以上、105μm以下
であり、母合金粉末の平均粒径が6371m以下であっ
て、かつ両者の平均粒径の差が20μm以上であること
を特徴とするAl合金混合粉末を使用することを要旨と
する。
That is, the present invention is a raw material powder for producing an Al alloy sintered body in which pure Al powder is mixed with Al master alloy powder,
An Al alloy characterized in that the average particle size of the pure Al powder is 53 μm or more and 105 μm or less, the average particle size of the mother alloy powder is 6371 m or less, and the difference in the average particle size between the two is 20 μm or more. The gist is to use mixed powder.

以下にその詳細について述べる。The details are described below.

始めに主原料粉末として用いる純Al粉末の粒径を限定
した理由について説明する。
First, the reason for limiting the particle size of the pure Al powder used as the main raw material powder will be explained.

圧粉成形焼結法においてはまず金型の凹みに原料粉末を
供給しプレス成形するため、粉末の流動性は良好である
ことが必要とされる。流動性が悪いと狭部竪粉末が充填
しにくく、また部位による充ta率の変動の原因となり
、さらに部品毎の充填量も異なり、それらは成形体の部
位による密度のバラツキ、個々の成形体の重さ、したが
って寸法のバラツキとなフて、これらは製品の品質を低
下、ひいては不良率の増加の原因となる。そのような問
題をなくすためには原料としての混合粉末の粒径は大き
い方が望ましい。
In the compacting and sintering method, raw material powder is first supplied to the recesses of a mold and press-molded, so the powder needs to have good fluidity. Poor fluidity makes it difficult to fill vertical narrow spaces with powder, and causes variations in the filling rate depending on the part.Furthermore, the amount of filling varies from part to part, which can lead to variations in density depending on the part of the molded product, and to individual molded products. The weight, and therefore the size, of the product deteriorates, resulting in a decrease in product quality and an increase in the defective rate. In order to eliminate such problems, it is desirable that the particle size of the mixed powder as a raw material be large.

特に流動性には混合粉末のうち量的に多い主原料粉末と
して用いる純Al粉末の粒径の影響が大きく、その粒径
を大きくす4ことにより混合粉全体の流動性を向上でき
ろことを見出した。すなわち以上の観点から純Al粉末
の平均粒径を53μm以上とした。一方、母合金法にお
いては合金元素は母合金粉末として供給するため、焼結
工程において粉末同志の結合に加えて、純Al粉末中に
合金元素を拡散均一化させるl・要がある。しかし純A
l粉末の粒径が大きくなると焼結により合金元鼾を拡散
均一化するのに要する時間が長くなり、このことはAl
合金焼結体の製造において最もコスト的に比率の高い焼
結費用をざらに増大させ経済的でなくなる。このような
理由から純Al粉末の平均粒径を1051t m以下と
した。以上延べてきたように良好な流動性を保ち、かつ
拡散均一化に要する時間を短縮する観点から純Al粉末
の平均粒径を53μm以上、1057z m以下とした
In particular, the fluidity of the mixed powder is greatly influenced by the particle size of the pure Al powder used as the main raw material powder, which is larger in quantity, and it is possible to improve the fluidity of the entire mixed powder by increasing the particle size4. I found it. That is, from the above viewpoint, the average particle size of the pure Al powder was set to 53 μm or more. On the other hand, in the master alloy method, the alloying elements are supplied as master alloy powder, so in addition to bonding the powders together in the sintering process, it is necessary to diffuse and homogenize the alloying elements into the pure Al powder. However, pure A
As the grain size of the Al powder increases, the time required to diffuse and homogenize the alloy particles through sintering increases;
This greatly increases the sintering cost, which has the highest cost ratio in the production of alloy sintered bodies, making it uneconomical. For this reason, the average particle size of the pure Al powder was set to 1051 tm or less. As mentioned above, from the viewpoint of maintaining good fluidity and shortening the time required for uniform diffusion, the average particle size of the pure Al powder was set to 53 μm or more and 1057 μm or less.

次に母合金粉末の平均粒径の限定理由について述べる。Next, the reason for limiting the average particle size of the master alloy powder will be described.

母合金粉末は焼結過程で溶融して純Al粉の表面に濡れ
広がり、さらに純Al粉内に拡散消失するため、元の母
合金粉の跡のほとんどはボアすなわち流出孔として残留
する。これらのボアは切り欠き効果により焼結体の機械
的性質を低下させる。
The mother alloy powder melts during the sintering process, spreads over the surface of the pure Al powder, and further diffuses and disappears within the pure Al powder, so that most traces of the original mother alloy powder remain as bores, that is, outflow holes. These bores reduce the mechanical properties of the sintered body due to the notch effect.

またこれらのボアは焼結体の表面にも存在し、表面性状
を低下させ商品価値をtiう原因となる。このような原
因による機械的性質、表明性状の低下を防止するためζ
こは母合金粉末の平均粒径を小さくすればよく、そのよ
うな観点から母合金粉末の平均粒径を63μm以下とし
、かつ純Al粉末の平均粒径より20μm以上小さくし
た。混合粉末中における母合金粉末の配合量は多くの場
合3%から12%程度であり、純Al粉末に比べて量的
に少ないため、母合金粉末の粒径を小さくしても流動性
への悪影響は少ない。このような方法により混合粉末の
流動性が良好で、成形しやすくしかも焼結体の機械的性
質、表面性状の良好な焼結体を得ることが可能となる。
Further, these bores are also present on the surface of the sintered body, causing deterioration of the surface quality and decreasing the commercial value. In order to prevent deterioration of mechanical properties and surface properties due to such causes, ζ
This can be achieved by reducing the average particle size of the mother alloy powder, and from this point of view, the average particle size of the mother alloy powder was set to 63 μm or less, and at least 20 μm smaller than the average particle size of the pure Al powder. The blended amount of master alloy powder in the mixed powder is about 3% to 12% in most cases, which is smaller than that of pure Al powder, so even if the particle size of the master alloy powder is reduced, it will not affect the fluidity. There are few negative effects. By such a method, it is possible to obtain a sintered body whose mixed powder has good fluidity, is easy to mold, and has good mechanical properties and surface properties.

さらに、請求項第2項において母合金粉末の最大粒径を
規定した理由は特に切り欠き靭性や疲労強度には材料中
に存在する最大粒径の流出孔により特性が左右され、そ
のような流出孔の最大径は母合金粉末の最大粒径にほぼ
比例するため、最大粒径を106μmに限定した。また
混合粉末の流動性には平均粒度とともに全体の粉末の中
に占める微粉の割合の影響も大きく、そのため44μ以
下の粉末の比率を3%以下に限定した。
Furthermore, the reason for specifying the maximum particle size of the master alloy powder in claim 2 is that the properties of notch toughness and fatigue strength in particular are affected by the maximum particle size of the outflow pores existing in the material. Since the maximum diameter of the pores is approximately proportional to the maximum particle diameter of the master alloy powder, the maximum particle diameter was limited to 106 μm. Furthermore, the fluidity of the mixed powder is greatly influenced by the average particle size as well as the proportion of fine powder in the total powder, and therefore the proportion of powder of 44 μm or less was limited to 3% or less.

ここで粉末の平均粒径とは累積粒度分布が50%となる
粒径である。また経済的な量産方法てあろ大気7Fマイ
ジング法で得られる純Al粉末、Al合金粉末の場合、
粉末の形状は球状ではなく不定形となり、その場合の粒
径とは球に換算した時の直径にほぼ等しく、あるいは最
大粒径とは篩分は法における篩の目開きに相当するもの
である。
Here, the average particle size of the powder is the particle size at which the cumulative particle size distribution is 50%. In addition, in the case of pure Al powder and Al alloy powder obtained by the economical mass production method, 7F atmospheric masing method,
The shape of the powder is not spherical but irregular, and in this case the particle size is approximately equal to the diameter when converted to a sphere, or the maximum particle size is equivalent to the sieve opening in the sieve method. .

次に母合金粉末の組成ζこつぃて述べる。Next, the composition ζ of the master alloy powder will be described.

母合金粉末は時効析出強化に寄与するMg、Sl、ある
いはCuを添加する役割と同時に、それら自体が焼結温
度以下で融解を始め、あるいは主たる原料粉末である純
Al−粉末との共晶反応にまり液相を生成し焼結を促進
する役割を持つ。
The master alloy powder plays the role of adding Mg, Sl, or Cu, which contribute to aging precipitation strengthening, and at the same time, they themselves begin to melt below the sintering temperature, or they undergo a eutectic reaction with the pure Al powder, which is the main raw material powder. It has the role of generating a sticky liquid phase and promoting sintering.

そのような目的を果すため、母合金粉末の組成範囲の#
、′a度側の5A成としてはA I−51−Mg3元系
合金の共晶組成に近い組成が望ましく、具体的にはSi
:12%以上、Mgは4%以上が望ましい。また母合金
粉末は高合金てあり硬質のため、その配合量を多くする
と成形性を害する。そのため、より少ない配合量で所定
の合金元素量を添加するためには母合金粉末にはより多
くの合金化元素を含有させた方が宵月となる。 一方、
slは30%を越え、Mgは20%を越えると、合金の
融解が終了する温度すなわち液相線における温度が上昇
し、粉末製造時の溶解が難しくなり、また焼結時の共晶
生成反応も生しにくくなるため、Siは30%以下、M
gは20%以下とする必要がある。また、Mgはその増
加にともない溶湯の活性が増し酸化しやすくなり、経済
的なAl合金粉の製造方法である大気アトマイジング法
ては製造が極めて難しくなるため、そのような観点から
もMgは20%以下とすべきである。
In order to achieve such a purpose, # of the composition range of the master alloy powder is
, the 5A composition on the 'a degree side is preferably a composition close to the eutectic composition of the A I-51-Mg ternary alloy, and specifically, Si
: 12% or more, and Mg is preferably 4% or more. Moreover, since the mother alloy powder is highly alloyed and hard, increasing its blending amount impairs formability. Therefore, in order to add a predetermined amount of alloying elements in a smaller amount, it is better to include more alloying elements in the master alloy powder. on the other hand,
If sl exceeds 30% and Mg exceeds 20%, the temperature at which the melting of the alloy ends, that is, the temperature at the liquidus line, will rise, making it difficult to melt during powder production, and the eutectic formation reaction during sintering. Si is less than 30%, M
g needs to be 20% or less. In addition, as Mg increases, the activity of the molten metal increases and it becomes more susceptible to oxidation, making it extremely difficult to manufacture using the atmospheric atomizing method, which is an economical method for producing Al alloy powder. It should be less than 20%.

さらにこの母合金粉末にCuを適当量添加することによ
り、母合金粉末の融解開始温度(固相線温度)をさらに
低下させることが可能となり、焼結を促進させ、ひいて
は焼結体の機械的性質を一層改善することが可能となる
。そのためより好ましい母合金の組成としては5%以上
のCuの添加が望ましい。また、CuはAl合金におい
て強力な時効硬化元素であり、特に高強度のAl合金を
得ようとする場合極めて有効な合金元素であり、焼結体
のCu濃度を高める目的で母合金粉末についても積極的
に高めることが望ましい。しかしながら多量にCuを添
加すると焼結体の耐食性が劣化し、延性も低下する。ま
たCuを添加する場合は母合金粉末中のCuが45%を
越えると、母合金の融解終了温度(液相線温度)が上昇
し、粉末の製造が難しくなるため45%以下とするのが
望ましい。
Furthermore, by adding an appropriate amount of Cu to this mother alloy powder, it is possible to further lower the melting start temperature (solidus temperature) of the mother alloy powder, promoting sintering, and ultimately improving the mechanical properties of the sintered body. It becomes possible to further improve the properties. Therefore, as a more preferable composition of the master alloy, it is desirable to add 5% or more of Cu. In addition, Cu is a strong age-hardening element in Al alloys, and is an extremely effective alloying element especially when trying to obtain high-strength Al alloys. It is desirable to actively increase this. However, when a large amount of Cu is added, the corrosion resistance of the sintered body deteriorates and the ductility also decreases. Furthermore, when adding Cu, if the Cu content in the master alloy powder exceeds 45%, the melting end temperature (liquidus temperature) of the master alloy will rise, making it difficult to manufacture the powder, so it is recommended that the Cu content be 45% or less. desirable.

以上述べてきたように母合金粉末はAl−51−Mg系
あるいはAlAl−9i−Cu−系が適当てあり、母合
金粉末の組成として、Si:12〜30%、Mg:4〜
20%、残部Al、ざらにCLlを添加する場合はCu
:5〜45%が適当と考えられる。
As mentioned above, the master alloy powder is suitably Al-51-Mg-based or AlAl-9i-Cu-based, and the composition of the master alloy powder is Si: 12~30%, Mg: 4~
20%, balance Al, Cu when adding CLl to the grain
:5 to 45% is considered appropriate.

その他母合金粉末としてA l−Mg系合金、Al−5
i系合金、Al−Cu系二元系合金あるいはA l−C
u−Mg、 Al−51−Cu三元系合金等のAl合金
粉中から選ばれる1種類あるいは2pi類以上の母合金
粉末を配合することも可能である。
Other master alloy powders include Al-Mg alloy, Al-5
i-based alloy, Al-Cu binary alloy or Al-C
It is also possible to blend one type of Al alloy powder such as u-Mg and Al-51-Cu ternary alloy, or a master alloy powder of 2pi or more.

次に純Al粉末に配合する母合金粉末の配合量について
述べる。
Next, the amount of the master alloy powder to be mixed with the pure Al powder will be described.

八1にMg、Siを加え、さらに必要に応してCIJを
添加した組成とすることにより、母合金の融解開始温度
および純Al粉末との反応でrα相を生成する温度を調
整することが可能になる。またこれらの元素の合金量を
tA整することにより、原料混合粉末中の母合金の配合
量の調整範囲を広げることが可能になる。
By adding Mg and Si to 81 and further adding CIJ as necessary, it is possible to adjust the melting start temperature of the master alloy and the temperature at which the rα phase is generated by reaction with pure Al powder. It becomes possible. Further, by adjusting the alloy amounts of these elements to tA, it becomes possible to widen the adjustment range of the blend amount of the master alloy in the raw material mixed powder.

この母合金の配合量については、その量が少なすぎると
?α相焼結が不可欠なAl合金において、充分な液相量
が確保できず良好な特性の焼結体を得ることが不可能と
なる。一方、多すぎると生じる液相量が多くなりすぎ、
発汗現象により表面性状が良好な焼結体が得られなくな
る。そのような観点から母合金の配合量は2%以上、1
5%以下が適する。
Regarding the blended amount of this master alloy, is it too small? In Al alloys in which α-phase sintering is essential, a sufficient amount of liquid phase cannot be ensured, making it impossible to obtain a sintered body with good properties. On the other hand, if it is too large, the amount of liquid phase produced will be too large,
The sweating phenomenon makes it impossible to obtain a sintered body with good surface properties. From this point of view, the blending amount of the master alloy should be 2% or more, 1
5% or less is suitable.

また上記合金粉末に潤滑剤を混合することにより粉末同
志の潤滑、粉末と金型壁面間の潤滑性を改善し、成形性
を高めることが可能である。潤滑材の混合量は0.5%
以下ではその効果が不十分てあり、2%以上では効果が
飽和するだけでなく、粉末の流動性・成型性を害し、さ
らに潤滑剤は焼結時に揮発飛散し、不必要tこ焼結炉内
あるいは真空焼結ζこあっては排気系を汚染するため0
.5〜2%が望ましい。潤滑剤の種類としては、焼結温
度以下で全て揮発飛散し、材料特性に有害な影響の無い
ものが好ましい。そのような観点からは金属塩系の潤滑
材(例、ステアリン酸亜鉛、ステアリン酸リチウム、ス
テアリン酸アルミニウムなと)よりもアミド系潤滑材が
望ましく、例えばエチレンビスステア0アマイド等を最
適な潤滑材として挙げることができる。
Furthermore, by mixing a lubricant with the alloy powder, it is possible to improve the lubrication between the powders and the lubricity between the powder and the wall of the mold, thereby increasing the moldability. The amount of lubricant mixed is 0.5%
If it is less than 2%, the effect is insufficient, and if it is more than 2%, the effect not only becomes saturated, but also impairs the fluidity and moldability of the powder, and furthermore, the lubricant volatilizes and scatters during sintering, making it unnecessary to use the sintering furnace. Internal or vacuum sintering
.. 5-2% is desirable. The type of lubricant is preferably one that completely volatilizes and scatters below the sintering temperature and does not have a detrimental effect on the material properties. From this point of view, amide-based lubricants are more desirable than metal salt-based lubricants (e.g., zinc stearate, lithium stearate, aluminum stearate); for example, ethylene bisstearamide is the most suitable lubricant. It can be mentioned as follows.

また焼結体部品にさらに耐摩耗性、摩擦係数の増加、低
熱膨張率等の機能を1を与するため、これら粉末にセラ
ミックス粒子を混合することもてきる。その時の添加量
は2Vo 1%以下では効果が不十分であり、20Vo
 1%以上では焼結体の機械的性質特に延性が著しく低
下するためそれ以下とする必要がある。その他、黒鉛、
六法晶BN等の固体潤滑材あるいはFe、N i、Mn
、T電、Z「、Si等の金属粉末を配合することも耐摩
耗性等の特性向上のために有効である。
Moreover, in order to further impart functions such as wear resistance, increased coefficient of friction, and low coefficient of thermal expansion to the sintered body parts, ceramic particles can be mixed with these powders. If the amount added at this time is 2Vo 1% or less, the effect is insufficient, and 2Vo
If it exceeds 1%, the mechanical properties, particularly the ductility, of the sintered body will be significantly reduced, so it is necessary to keep it below that range. Others, graphite,
Solid lubricants such as hexagonal crystal BN or Fe, Ni, Mn
It is also effective to blend metal powders such as Si, Tden, Z', and Si to improve properties such as wear resistance.

次に焼結体の製造方法について説明する。Next, a method for manufacturing the sintered body will be explained.

成形圧は2トシ/C+++2未満ては成形体の緻密化が
足りず粉末同士の接触が不十分て、良好な焼結体強度・
延性が得られない。従って2トシ/Crr12以上て成
形する必要がある。さらに成形体の密度をLげようとし
、より高い成形圧で成形する場合、金型の寿命の短縮、
ラミネーションの発生、金型へのカジリ等の問題が生じ
ろ6 そのため実操業上8トノ/c +n 2を越える
成形圧は不適当である。
If the compacting pressure is less than 2 tosi/C+++2, the compact will not be densified enough and the contact between the powders will be insufficient, resulting in poor sintered compact strength and
Ductility cannot be obtained. Therefore, it is necessary to mold at 2 toss/Crr12 or more. Furthermore, when attempting to reduce the density of the molded product and molding with higher molding pressure, the life of the mold may be shortened,
Problems such as lamination and galling of the mold may occur.6 Therefore, in actual operation, a molding pressure exceeding 8 tons/c + n2 is inappropriate.

さらに原料粉末を70℃〜250℃に加熱した状態で成
形することにより成形体をより緻密化することも可能で
ある。
Furthermore, it is also possible to make the molded body more dense by molding the raw material powder while heating it to 70°C to 250°C.

焼結雰囲気については活性なAl合金粉末粒子の酸化を
防ぎ十分焼結を進行させるためには真空あるいは窒素ガ
ス、アルゴンガス雰囲気等の非酸化性雰囲気中で焼結す
る必要がある。真空で焼結する場合その真空度は0.1
torr以下、望ましくは0.01 t、orr以下に
するのが良い。また焼結炉の内部を真空置換後、減圧下
で窒素ガス等の不活性ガスを少ji流しながら焼結する
ことも、焼結体から発生するガス成分を除去する効果を
高める。
Regarding the sintering atmosphere, in order to prevent oxidation of the active Al alloy powder particles and to allow sufficient sintering to proceed, it is necessary to sinter in a non-oxidizing atmosphere such as a vacuum or a nitrogen gas or argon gas atmosphere. When sintering in a vacuum, the degree of vacuum is 0.1
It is preferable to set it to below torr, preferably below 0.01 t, orr. Further, after the inside of the sintering furnace is evacuated, sintering is performed under reduced pressure while flowing a small amount of inert gas such as nitrogen gas, which increases the effect of removing gas components generated from the sintered body.

なお窒素ガス雰囲気あるいはアルゴンガス等の不活性雰
囲気中で焼結する場合はガスの純度が重要であり、特に
ガス中に含まれる水分は焼結部品の特性に悪影響を及ぼ
すため、露点を十分低く管理する必要があり、望ましく
は露点は一40℃以下に保つ必要がある。
When sintering in an inert atmosphere such as a nitrogen gas atmosphere or argon gas, the purity of the gas is important. In particular, the moisture contained in the gas has a negative effect on the properties of the sintered parts, so the dew point must be kept sufficiently low. It is necessary to control the temperature and desirably keep the dew point below -40°C.

焼結温度は500℃より低いと元素の拡散が不十分てあ
り、粉末同志の焼結が不十分となる。−方620℃より
高いと多量の液相が生成し、昇温とともに部品形状を保
てないため、500℃以上、620℃以下で焼結する必
要がある。
If the sintering temperature is lower than 500°C, the diffusion of elements will be insufficient and the powders will not be sintered together. -If the temperature is higher than 620°C, a large amount of liquid phase will be generated and the shape of the part cannot be maintained as the temperature rises, so it is necessary to sinter at a temperature of 500°C or higher and 620°C or lower.

またこうして得られた焼結体を再圧縮することにより組
織を緻密化し機械的性質をより向上させることができる
。一般に再圧縮では寸法出しくサイジング)を目的とす
る場合が多くそれと併せて再圧縮条件を選定するが、通
常は3〜11)シ/cff12の範囲の再圧縮圧とする
Further, by recompressing the sintered body thus obtained, the structure can be made denser and the mechanical properties can be further improved. In general, the purpose of recompression is often to increase dimensions (sizing), and recompression conditions are selected in conjunction with this, and the recompression pressure is usually in the range of 3 to 11) sh/cff12.

さらに再焼結することにより機械的性質、特に延性を改
善することができる。再圧縮により緻密化した組織を再
度焼結することにより拡散・焼結を一層進行させること
ができる。その際の条件は基本的には焼結の場合と同様
である。
Furthermore, mechanical properties, especially ductility, can be improved by resintering. By re-sintering the structure that has been densified by re-compression, diffusion and sintering can further proceed. The conditions at that time are basically the same as those for sintering.

またこれら焼結体の合金成分であるCu、Mg、Siは
本来溶体化・時効処理により機械的性質の向上に寄与す
るものである。 したがって通常のAl合金同様、溶体
化・時効処理を施しその機械的性質を調整、向上させる
ことは有効である。
Further, Cu, Mg, and Si, which are alloy components of these sintered bodies, originally contribute to improving mechanical properties through solution treatment and aging treatment. Therefore, like ordinary Al alloys, it is effective to perform solution treatment and aging treatment to adjust and improve its mechanical properties.

[作用] 本発明によればAl合金製精密部品のニアネットシェイ
ブ製造法として優れた母合金法における主たる原料粉末
としての純Al粉末と母合金粉末の粒径を厳密に制御す
ることにより、流動性を良好に保フて成形することが可
能となり、また焼結体の機械的性質と表面性状を著しく
改善することが可能となる。
[Function] According to the present invention, flow is improved by strictly controlling the particle sizes of pure Al powder and master alloy powder as the main raw material powders in the master alloy method, which is excellent as a near net shave manufacturing method for Al alloy precision parts. It becomes possible to mold the sintered body while maintaining good properties, and it also becomes possible to significantly improve the mechanical properties and surface properties of the sintered body.

[発明の実施例] 以下本発明の実施例について説明する。[Embodiments of the invention] Examples of the present invention will be described below.

実施例1 大気アトマイズ法ξこより製造した純Al粉末とA l
−20%5i−10%Cu−10%Mg母合金粉末とを
篩分けし配合し直すことにより、表1に示す種々の平均
粒径の純Al粉末と母合金粉末を準備した。それらを9
5:5の重量比で混合し、配合組成A+−1%5i−0
,5%Cu−0,5%Mgとした。さらにそれにアミド
系潤滑剤1%を加え原料粉末とした。それを成形圧4ト
ン/cff12てJ、1SZ2550に規定されている
引張試験片形状に成形した。その成形体を常に真空ポン
プを作動させながら窒素ボンベより窒素ガスを導入する
方法で雰囲気圧力を1〜3 torrに保ちながら、5
90℃で2時閉焼結した。次いてその焼結体を5トノ/
cW12て再圧縮した後、T6熱処理を施し、引張試験
に供した。
Example 1 Pure Al powder produced by atmospheric atomization method ξ and Al
-20%5i-10%Cu-10%Mg master alloy powder were sieved and re-blended to prepare pure Al powder and master alloy powder having various average particle sizes shown in Table 1. 9 of them
Mixed at a weight ratio of 5:5, blending composition A+-1%5i-0
, 5% Cu-0.5% Mg. Further, 1% of an amide lubricant was added thereto to obtain a raw material powder. It was molded into the shape of a tensile test piece specified in J, 1SZ2550 at a molding pressure of 4 tons/cff12. The molded body was heated for 5 to
It was closed and sintered at 90°C for 2 hours. Next, the sintered body was
After being recompressed at cW12, it was subjected to T6 heat treatment and subjected to a tensile test.

なお原料粉末の流動塵については、J T S Z 2
052に決められた試験方法に準じた方法で評価した。
Regarding fluidized dust of raw material powder, please refer to JTSZ 2.
The evaluation was made in accordance with the test method specified in 052.

但し、純Al粉末、Al合金粉末は鉄系粉末と比べて軽
く嵩ばることを考慮して、試験重量を、)TSて決めら
れている50gから25gに減らし、粉末が全1流れ終
るまでの時間を求めた。そして表中その値が40秒以下
のものを◎、50秒以下のものを○、50秒以上あるい
は流れないものをムて示した。
However, considering that pure Al powder and Al alloy powder are lighter and bulkier than iron-based powder, the test weight was reduced from 50 g determined by )TS to 25 g, and the test weight was reduced until the powder finished flowing once. I asked for time. In the table, those with a value of 40 seconds or less are marked ◎, those with a value of 50 seconds or less are marked with ○, and those with a value of 50 seconds or more or with no flow are marked with a mark.

また表面性状については引張試験片の表面について表面
荒さ計を用いてRmaxを求め、表中その値表1 が15μm以下を◎、20μm以下を0.25μm以上
をムで表示した。
Regarding the surface properties, Rmax was determined for the surface of the tensile test piece using a surface roughness meter, and the values in Table 1 are shown as ◎ for 15 μm or less, and ◎ for 20 μm or less and 0.25 μm or more.

表1に粉末の流動度測定結果、引張試験の結果、表面性
状゛の解析結果を純At粉末と母合金粉末の平均粒径に
対応させて示す。本実施例から分かるように本発明によ
る合金は粉末の流動度が優れ、しかも焼結体の機械的性
質、表面性状も優れている。
Table 1 shows the powder fluidity measurement results, tensile test results, and surface texture analysis results in correspondence with the average particle diameters of the pure At powder and the master alloy powder. As can be seen from this example, the alloy according to the present invention has excellent powder fluidity, and also has excellent mechanical properties and surface properties of the sintered body.

実施例2 大気アトマイズ法により製造した純At粉末とAl−6
%5i−30%Cu−10%Mg母合金粉末とをそれぞ
れ篩分し配合し直すことにより、表2に示す種々の平均
粒径の純At粉末と母合金粉末を準備した。それらを9
0:10の重量比で混合し、配合組成Al−0,6%5
1−3%Cu−1%Mgとした。さらにそれにアミド系
潤滑剤1%を加え原料粉末とした。それらを実施例1と
同し条件て引張試験片とし試験に供した。結果を実施例
1と同様にして表2に示す。
Example 2 Pure At powder and Al-6 produced by atmospheric atomization method
%5i-30%Cu-10%Mg master alloy powder were respectively sieved and blended to prepare pure At powder and master alloy powder having various average particle sizes shown in Table 2. 9 of them
Mixed at a weight ratio of 0:10, blending composition Al-0.6%5
It was set as 1-3%Cu-1%Mg. Further, 1% of an amide lubricant was added thereto to obtain a raw material powder. They were used as tensile test pieces under the same conditions as in Example 1 and subjected to testing. The results are shown in Table 2 in the same manner as in Example 1.

本実施例から分かるように本発明による合金は実表2 絶倒1と同様に粉末の流動度が優れ、しかも焼結体の機
械的性質、表面性状も優れている。
As can be seen from this example, the alloy according to the present invention has excellent powder fluidity similar to Table 2 Zettetsu 1, and also has excellent mechanical properties and surface properties of the sintered body.

実施例3 大気アトマイズ法により製造した純At粉末とAt−2
0%5i−10%Cu−10%Mg母合金粉末とを篩分
けし、それらを95:5の重量比で混合し、配合組成A
l−1%5i−0,5%Cu−0,5%Mgとした。な
お本試験では配合前に母合金粉末は目開き105μmの
篩(150表3 メツシュ)で篩い、105μm以上の粉末を除去して用
いた。さらに純At粉末と母合金粉末についても配合前
に、それぞれ目開き44μmの篩(325メツシユ)を
用いて振るい44μm以下の粉末を除去したものを用い
た。なおそのような ゛工程を入れなかった場合混合前
の母合金粉末中に占める105μm以上の粉末は2〜5
%、混合粉末中の44μm以下の粉末の比率は2〜4%
であった。その他の方法につ□いては実施例1に準じて
行った。それらの結果を表3に示す。表3と表1との比
較から、母合金粉末の最大粒系を規定し、さらに混合粉
末の44μ以下の粉末の含有量をより厳密に規定するこ
とにより、粉末の流動塵が優れ、しかも焼結体の機械的
性質、表面性状も優れている。
Example 3 Pure At powder and At-2 produced by atmospheric atomization method
0%5i-10%Cu-10%Mg master alloy powder were sieved and mixed at a weight ratio of 95:5 to form a blending composition A.
l-1%5i-0,5%Cu-0,5%Mg. In this test, the master alloy powder was sieved with a sieve with an opening of 105 μm (150 Table 3 mesh) to remove powder with a size of 105 μm or more before use. Further, the pure At powder and the master alloy powder were each sieved using a sieve with a mesh size of 44 μm (325 mesh) to remove powders with a diameter of 44 μm or less before blending. In addition, if such a step is not included, the powder with a diameter of 105 μm or more in the mother alloy powder before mixing will be 2 to 5
%, the ratio of powder of 44 μm or less in the mixed powder is 2 to 4%
Met. Other methods were carried out in accordance with Example 1. The results are shown in Table 3. From a comparison between Table 3 and Table 1, it was found that by specifying the maximum grain size of the master alloy powder and more strictly specifying the content of powder of 44 μ or less in the mixed powder, the powder has excellent fluidized dust and is sintered. The mechanical properties and surface properties of the aggregate are also excellent.

[発明の効果] 本発明によればニアネットシエイブ製造技術として優れ
ているAl合金焼結体の製造方法である母合金法におい
て、主たる原料粉末としての純Al粉と母合金粉末の粒
径を厳密に制御することにより、原料粉末の流動塵を良
好に(呆ち、それにより複雑形状の部品の成形を容易に
し、かつ焼結体の機械的性質と表面性状の良好なAl合
金焼結体が得られるようになり、応用範囲の拡大等産業
上極めて有益な効果をもたらすことができる。
[Effects of the Invention] According to the present invention, in the master alloy method, which is a method for producing an Al alloy sintered body that is excellent as a near net sieve manufacturing technology, the particle sizes of pure Al powder as the main raw material powder and master alloy powder are By strictly controlling the flow dust of the raw material powder, it is possible to easily form parts with complex shapes, and to produce an Al alloy sintered body with good mechanical properties and surface properties. It is now possible to obtain extremely beneficial effects industrially, such as expanding the range of applications.

特許出願人  昭和電工株式会社 代 理 人  弁理士 寺1)實Patent applicant: Showa Denko Co., Ltd. Representative Patent Attorney Temple 1) Truth

Claims (1)

【特許請求の範囲】 1)純Al粉末にAl母合金粉末を混合したAl合金焼
結体を製造するための原料粉末であって、純Al粉末の
平均粒径が53μm以上、105μm以下であり、母合
金粉末の平均粒径が631μm以下であって、かつ両者
の平均粒径の差が20μm以上であることを特徴とする
Al合金混合粉末。 2)請求項第1項記載の混合粉末において母合金粉末の
最大径を105μm以下とし、かつ混合粉末中の43μ
m以下の粉末の割合を3%以下としたことを特徴とする
Al合金混合粉末。 3)請求項第1項記載の混合粉末に潤滑材を0.5〜2
%混合したことを特徴とするAl合金混合粉末。 4)請求項第1項、あるいは第2項記載の混合粉末にセ
ラミックス粒子を2〜20Vol%添加したことを特徴
とするAl合金混合粉末。 5)請求項第1項、請求項第2項あるいは第3項記載の
混合粉末を2〜8トン/cm^2の加圧力で圧粉成形し
た後、該圧粉成形体を非酸化性雰囲気中で500〜62
0℃の温度範囲で焼結することを特徴とするAl合金焼
結体の製造方法。
[Scope of Claims] 1) A raw material powder for producing an Al alloy sintered body made by mixing pure Al powder with Al master alloy powder, wherein the average particle size of the pure Al powder is 53 μm or more and 105 μm or less. An Al alloy mixed powder, characterized in that the average particle size of the mother alloy powder is 631 μm or less, and the difference between the average particle sizes is 20 μm or more. 2) In the mixed powder according to claim 1, the maximum diameter of the master alloy powder is 105 μm or less, and 43 μm in the mixed powder
An Al alloy mixed powder characterized in that the proportion of powder with a diameter of m or less is 3% or less. 3) Adding 0.5 to 2 lubricant to the mixed powder according to claim 1
% mixed Al alloy powder. 4) An Al alloy mixed powder, characterized in that 2 to 20 Vol% of ceramic particles are added to the mixed powder according to claim 1 or 2. 5) After compacting the mixed powder according to claim 1, claim 2 or 3 at a pressure of 2 to 8 tons/cm^2, the compact is placed in a non-oxidizing atmosphere. 500-62 inside
A method for producing an Al alloy sintered body, characterized by sintering in a temperature range of 0°C.
JP2334623A 1990-11-30 1990-11-30 Method for producing Al alloy mixed powder and Al alloy sintered body Expired - Lifetime JP2695289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2334623A JP2695289B2 (en) 1990-11-30 1990-11-30 Method for producing Al alloy mixed powder and Al alloy sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2334623A JP2695289B2 (en) 1990-11-30 1990-11-30 Method for producing Al alloy mixed powder and Al alloy sintered body

Publications (2)

Publication Number Publication Date
JPH04202601A true JPH04202601A (en) 1992-07-23
JP2695289B2 JP2695289B2 (en) 1997-12-24

Family

ID=18279452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334623A Expired - Lifetime JP2695289B2 (en) 1990-11-30 1990-11-30 Method for producing Al alloy mixed powder and Al alloy sintered body

Country Status (1)

Country Link
JP (1) JP2695289B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181107A1 (en) * 2017-03-29 2018-10-04 Ntn株式会社 Sintered aluminum alloy material and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181107A1 (en) * 2017-03-29 2018-10-04 Ntn株式会社 Sintered aluminum alloy material and method for producing same

Also Published As

Publication number Publication date
JP2695289B2 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
US5176740A (en) Aluminum-alloy powder, sintered aluminum-alloy, and method for producing the sintered aluminum-alloy
JP2761085B2 (en) Raw material powder for Al-Si based alloy powder sintered parts and method for producing sintered parts
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
JP4401326B2 (en) Method for producing high-strength wear-resistant aluminum sintered alloy
JPH0120215B2 (en)
JP3095026B2 (en) Manufacturing method of aluminum sintered alloy
JPS60208443A (en) Aluminum alloy material
JPS6365051A (en) Manufacture of ferrous sintered alloy member excellent in wear resistance
US4430295A (en) Articles produced from iron powder compacts containing hypereutectic copper phosphide powder
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JP2695289B2 (en) Method for producing Al alloy mixed powder and Al alloy sintered body
JPH07316601A (en) Production of rapidly solidified aluminum powder and aluminum alloy compact
JPH029099B2 (en)
JP4177534B2 (en) Alloy powder for copper-based high strength sintered parts
TW201127521A (en) Method of preparing iron-based components
JPH05171321A (en) Titanium alloy for high density powder sintering
JPH0578708A (en) Production of aluminum-based grain composite alloy
JP2889371B2 (en) Method for producing A1 alloy mixed powder and sintered A1 alloy
JPS6038442B2 (en) Manufacturing method of aluminum alloy low density sintered parts
JP2921114B2 (en) Method for manufacturing hypereutectic Al-Si alloy member having high strength and high toughness
JP2798709B2 (en) Manufacturing method of aluminum alloy powder sintered parts
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JP2005048285A (en) RAW MATERIAL POWDER FOR Al-Si BASED ALLOY SINTERED COMPONENT, METHOD OF PRODUCING Al-Si BASED ALLOY SINTERED COMPONENT, AND Al-Si BASED ALLOY SINTERED COMPONENT
JPH01230743A (en) Aluminum alloy material for mold
JP2000328164A (en) Heat resistant aluminum alloy excellent in strength and toughness and its production