WO2018181107A1 - Sintered aluminum alloy material and method for producing same - Google Patents

Sintered aluminum alloy material and method for producing same Download PDF

Info

Publication number
WO2018181107A1
WO2018181107A1 PCT/JP2018/011997 JP2018011997W WO2018181107A1 WO 2018181107 A1 WO2018181107 A1 WO 2018181107A1 JP 2018011997 W JP2018011997 W JP 2018011997W WO 2018181107 A1 WO2018181107 A1 WO 2018181107A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
aluminum alloy
sintered
green compact
alloy material
Prior art date
Application number
PCT/JP2018/011997
Other languages
French (fr)
Japanese (ja)
Inventor
安田 健
大平 晃也
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018181107A1 publication Critical patent/WO2018181107A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Definitions

  • the present invention relates to a sintered aluminum alloy material and a manufacturing method thereof.
  • Typical lightweight metal materials include aluminum and magnesium.
  • Aluminum and magnesium are alloyed with other metals to improve properties such as strength, toughness, corrosion resistance, and workability, and are mainly used for the above-mentioned applications.
  • aluminum alloys are suitably used for machine parts because of their good formability. This aluminum alloy is mostly manufactured by stretching and casting, but is also mass-produced by a powder metallurgy method that solidifies rapidly solidified powder obtained by a gas atomization method.
  • Powder metallurgy methods include a hot extrusion method, a powder forging method, and a sintering method.
  • the sintering method has an advantage that it can be formed into a net shape or a near net shape at a low cost. Therefore, it is suitable for mass production of machine parts.
  • Patent Document 1 warm molding is used together with mold lubrication when molding a green compact. This makes it possible to form a high-density green compact while preventing the powder from adhering to the mold.
  • Patent Document 2 a nitrogen compound is generated on the powder surface by heat-treating an aluminum alloy powder compact containing magnesium in a nitrogen atmosphere to which a reducing gas component is added. This nitrogen compound promotes sintering.
  • Patent Document 1 uses warm forming, it is less economical than cold forming.
  • the powder hardness is lowered by pre-annealing the powder at 250 to 450 ° C. in order to increase the density of the green compact.
  • the powder hardness cannot be lowered as compared with pure aluminum powder. Therefore, it is insufficient for densification of the green compact.
  • the introduction of reducing gas requires special atmosphere management, which leads to higher costs, which is problematic in terms of mass productivity.
  • this sintered material is formed by compacting a raw powder containing aluminum alloy powder containing 1 to 30% by weight of magnesium and pure aluminum powder to form a green compact, and sintering the green compact. Characterized by the fact that the proportion of pure aluminum powder in the raw material powder is set to 70 to 95% by weight and the proportion of aluminum alloy powder to 5 to 30% by weight, respectively. It is done.
  • magnesium contained in the green compact diffuses into the sintered aluminum alloy material in the sintering process and becomes highly concentrated in the surface layer portion.
  • magnesium has a lower free energy of formation of oxide than aluminum and forms an oxide film of magnesium.
  • the aluminum oxide film is reduced at the surface layer portion of the green compact, thereby causing a strong necking bond, resulting in a result. It is speculated that a high-strength sintered body can be obtained.
  • the present invention has been made on the basis of the above knowledge, and decided to compress and sinter a raw material powder containing an aluminum alloy powder containing 1 to 30% by weight of magnesium and a pure aluminum powder. Thereby, a strong necking bond can be produced
  • the ratio of pure aluminum powder to the raw material powder is set to 70 to 95% by weight, and the ratio of aluminum alloy powder to 5 to 30% by weight, respectively. If it is small, the green compact is deformed during heat treatment (sintering), and in some cases, there is an increased risk of cracking. Moreover, it is because it becomes difficult to generate
  • the magnesium concentration in a region within 0.3 mm from the surface may be higher than the magnesium concentration in a region deeper than 0.3 mm from the surface.
  • the magnesium oxide film is highly concentrated, so that the oxide film of aluminum is sufficiently reduced. Therefore, it is possible to generate a stronger necking bond and to further increase the strength of the sintered body.
  • the relative density may be 90% or more by weight.
  • the relative density referred to here is obtained by dividing the density of the sintered aluminum alloy material measured according to the Archimedes method in accordance with JIS Z 2501: 2000 by the true density of the raw material powder of the sintered aluminum alloy material. It shall refer to the value obtained.
  • the sintered aluminum alloy material of the present invention by containing pure aluminum powder, it is possible to form a very dense green compact while containing the aluminum alloy powder. Therefore, by setting the relative density of the sintered aluminum alloy material to 90% or more by weight, the mechanical strength of the green compact itself that becomes the base of the sintered body can be ensured. Therefore, it is possible to sufficiently and stably develop the high strength of the sintered body.
  • the crushing strength may be 120 MPa or more.
  • the crushing strength here refers to the crushing strength evaluated according to JIS Z 2507 “Sintered bearing—crushing strength test method”.
  • a very high strength sintered body can be obtained by strong necking bonding. Therefore, by setting the crushing strength to 120 MPa or more, it is possible to exhibit the mechanical strength of a level required as a machine part.
  • this manufacturing method includes a mixing step in which an aluminum alloy powder containing 1 to 30% by weight of magnesium and a pure aluminum powder are mixed to produce a raw material powder containing the aluminum alloy powder and the pure aluminum powder;
  • a method for producing a sintered aluminum alloy material comprising a green compacting step of forming a green compact by compression molding, and a sintering step of obtaining a sintered body by sintering the green compact, It is characterized in that the aluminum alloy powder and the pure aluminum powder are mixed so that the proportion of the pure aluminum powder in the raw material powder is 70 to 95% by weight and the proportion of the aluminum alloy powder is 5 to 30% by weight in the mixing step. Attached.
  • the raw material powder containing magnesium alloy powder containing 1 to 30% by weight of magnesium and pure aluminum powder it is strong like the sintered aluminum alloy material according to the present invention.
  • a high-strength sintered body can be obtained by generating a simple necking bond.
  • the green compact can be molded at a high density even in the case of cold molding.
  • this sintered body sintered aluminum alloy material
  • this sintered body can be manufactured without performing processing that leads to cost increase such as warm forming or introduction of reducing gas, the manufacturing cost can be reduced. This enables mass production.
  • the green compact may be formed from the raw material powder by cold forming in the green compact forming step.
  • the sintered aluminum alloy material of the present invention by containing pure aluminum powder, it is possible to form a very dense green compact while containing the aluminum alloy powder. Therefore, even when the green compact is formed from the raw material powder by cold forming, a very dense green compact can be stably formed.
  • the green compact may be sintered at a maximum temperature of 560 to 640 ° C. in the sintering step.
  • the maximum temperature is set in the range of 560 to 640 ° C., and the details will be shown in the experimental results to be described later. Bonding) is promoted, and a strong sintered body can be stably produced.
  • the green compact may be sintered in a nitrogen atmosphere in the sintering step.
  • Aluminum tends to generate oxides more easily than other metals. Therefore, by sintering in a nitrogen atmosphere, the generation of oxide can be suppressed and the progress of sintering can be promoted. Therefore, the strength of the sintered body can be improved.
  • a dense green compact can be formed, and a high-strength sintered aluminum alloy material can be manufactured at low cost.
  • the pure aluminum powder according to the present invention it is possible to use a high-purity aluminum metal manufactured by the gas atomization method.
  • Pure aluminum powder may contain inevitable impurities.
  • the particle size distribution of the pure aluminum powder is not particularly limited, but is preferably a fine powder capable of forming a dense green compact. The average particle size is 100 ⁇ m or less.
  • the production method is not limited to the gas atomization method, and various powder methods such as a centrifugal atomization method, a known powder production technique such as a mechanical alloying method and a reduction method can be applied.
  • the aluminum alloy powder according to the present invention can have any alloy composition as long as it contains 1 to 30% by weight of magnesium.
  • a molten metal prepared to have a predetermined alloy composition and manufactured by a gas atomizing method can be used. Since magnesium easily burns, it is preferable to prepare the composition within a range not exceeding 30% by weight.
  • a metal other than magnesium may be added to the alloy composition as long as the effects of the present invention are not impaired.
  • a lubricant may be blended for the purpose of preventing adhesion to the mold when the green compact is formed. This type of lubricant may be added to the alloy composition, or may be added to a mixed powder of pure aluminum powder and aluminum alloy powder described later.
  • the particle size distribution of the aluminum alloy powder is not particularly limited, but is preferably a fine powder capable of forming a dense green compact.
  • the average particle size is preferably 100 ⁇ m or less.
  • the production method is not limited to the gas atomization method, and it is possible to apply known powder production techniques such as mechanical alloying method and reduction method, including various atomization methods such as centrifugal atomization method. It is.
  • Pure aluminum powder and aluminum alloy powder can be mixed by a known mixing method to obtain a raw material powder according to the present invention (mixing step).
  • Specific examples of the mixing method include a V-type mixer and a double cone type mixer.
  • a green compact is formed by cold forming using a press die (compact forming process).
  • a lubricant may be applied to the surface of the press mold to be used.
  • the molding pressure is set, for example, to 400 to 800 MPa, preferably 550 to 650 MPa. If the molding pressure is too high (for example, 800 MPa or more), the mass productivity is poor from the viewpoint of the mold life. Therefore, the molding pressure is preferably set to less than 800 MPa in consideration of mass productivity.
  • the formed green compact is sintered, for example, by heat treatment in a nitrogen atmosphere (sintering process).
  • a heat treatment furnace a batch type furnace is preferable, and the green compact is heated in a state where the inside of the furnace is sufficiently replaced with nitrogen.
  • the flow rate of nitrogen is preferably 1 L / min or more.
  • the temperature pattern in the main sintering process is arbitrary in principle, but, for example, one having a temperature increase and a heat retention in one stage or two stages or more is used.
  • the temperature T1 and the holding time t1 are the temperature and holding time at which the lubricant adhering to the surface of the green compact can be degreased. (For example, 380 to 420 ° C., 50 to 70 min).
  • the temperature T2 and the holding time t2 are set to a temperature and holding time suitable for sintering of the green compact (preferably 560 to 640 ° C., holding time 30 min or more, Preferably, the temperature is set to 580 to 620 ° C. and the holding time is 60 minutes or more.
  • the temperature T2 here corresponds to the maximum temperature during sintering.
  • the sintering temperature is lower than 560 ° C. at the maximum temperature, the sintering action is not sufficiently generated, and if it is higher than 640 ° C., there is a possibility that deformation that cannot be ignored occurs in the sintered body.
  • the maximum temperature during sintering is not limited to a nitrogen atmosphere, and may be performed in other atmospheres as long as various conditions are satisfied.
  • the density of the obtained sintered aluminum alloy material is measured in accordance with, for example, the Archimedes method according to JIS Z 2501: 2000. Then, the relative density is calculated by dividing the density measured by the Archimedes method by the true density.
  • the crushing strength of the obtained sintered aluminum alloy material is measured in accordance with, for example, a test method based on JIS Z 2507: 2000.
  • the sintered aluminum alloy material according to the present invention is obtained by compression-molding and sintering an aluminum alloy powder containing 1 to 30% by weight of magnesium and a pure aluminum powder. It is possible to generate a strong necking bond and increase the strength of the sintered body. Further, by allowing pure magnesium powder to be contained, the green compact can be molded at a high density even in the case of cold molding. In addition, since this sintered body (sintered aluminum alloy material) can be manufactured without performing processing that leads to cost increase such as warm forming or introduction of reducing gas, the manufacturing cost can be reduced. This enables mass production.
  • the maximum temperature (that is, the sintering temperature) is set in the range of 560 to 640 ° C., and the sintering (necking bonding) is sufficiently promoted without causing deformation.
  • the sintering necking bonding
  • the sintered aluminum alloy material and its manufacturing method which concern on this invention are not limited to the form of the said illustration, It can take arbitrary forms within the scope of the present invention. Of course.
  • Example 1 In each of Examples (Examples 1 to 10) and Comparative Examples (Comparative Examples 1 to 9), pure aluminum powder and any one of the aluminum alloy powders (alloy powders 1 to 3) shown in Table 1 were mixed in a V shape.
  • the powder mixed by the machine was used as the raw material powder.
  • all of the alloy powders 1 to 3 are produced by a gas atomizing method.
  • the raw material powder having the above composition was formed into a predetermined cylindrical shape by cold forming. More specifically, a fatty acid amide-based lubricant was applied to the molding die, and compacting was performed in the mold lubrication state. After pressing at a molding pressure of 620 MPa and a holding time of 5 seconds, a green compact having an inner diameter of 8 mm, an outer diameter of 16 mm, and an axial dimension of 5 mm was obtained by taking out the green compact from the molding die.
  • the density was measured in accordance with the Archimedes method based on JIS Z 2501: 2000. Furthermore, the crushing strength of the sintered body was measured in accordance with a test method based on JIS Z 2507: 2000.
  • the crushing strength was measured for only Comparative Example 1 and Comparative Example 3 in which the compacting and sintering processes could be performed without deformation or cracking. The results are shown in Tables 2 to 4. In each table, the value of the crushing strength in parentheses indicates the stress value when the strain amount is 1 mm when the fracture amount is not broken until the strain amount reaches 5 mm.
  • the sintered aluminum alloy material according to the present invention is dense and has high strength, for example, machine parts having sliding parts (sliding parts) and machine parts for various applications. Widely applicable to.

Abstract

This sintered aluminum alloy material is obtained by compression molding a starting material powder, which contains a pure aluminum powder and an aluminum alloy powder that contains 1-30% by weight of magnesium, into a powder compact and subsequently sintering the powder compact. The proportions of the pure aluminum powder and the aluminum alloy powder in the starting material powder are set to 70-95% by weight and 5-30% by weight, respectively.

Description

焼結アルミニウム合金材およびその製造方法Sintered aluminum alloy material and manufacturing method thereof
 本発明は、焼結アルミニウム合金材及びその製造方法に関する。 The present invention relates to a sintered aluminum alloy material and a manufacturing method thereof.
 近年、自動車、産業機械、情報機器、日用品等の様々な分野において、省エネルギー化が期待される中で、軽量でかつ高強度の軽量金属材料が要求されている。代表的な軽量金属材料としてアルミニウム、マグネシウムがある。アルミニウム、マグネシウムは他の金属と合金化することによって、強度、じん性、耐食性、加工性等の性質を改善して、上述した用途を中心に使用されている。特にアルミニウム合金は成形性の良さから機械部品に好適に使用される。このアルミニウム合金は、ほとんどが展伸、鋳造によって製造されるが、ガスアトマイズ法により得られた急冷凝固粉末を固化する粉末冶金法によっても量産化されている。 In recent years, light-weight and high-strength lightweight metal materials are required in various fields such as automobiles, industrial machines, information equipment, daily necessities and the like. Typical lightweight metal materials include aluminum and magnesium. Aluminum and magnesium are alloyed with other metals to improve properties such as strength, toughness, corrosion resistance, and workability, and are mainly used for the above-mentioned applications. In particular, aluminum alloys are suitably used for machine parts because of their good formability. This aluminum alloy is mostly manufactured by stretching and casting, but is also mass-produced by a powder metallurgy method that solidifies rapidly solidified powder obtained by a gas atomization method.
 粉末冶金法には、熱間押出し法、粉末鍛造法、焼結法があり、この中でも焼結法は、低コストでネットシェイプ化あるいはニアネットシェイプ化できる利点がある。よって、機械部品の量産化に適している。 Powder metallurgy methods include a hot extrusion method, a powder forging method, and a sintering method. Among them, the sintering method has an advantage that it can be formed into a net shape or a near net shape at a low cost. Therefore, it is suitable for mass production of machine parts.
 しかし、焼結法では、圧粉体を成形する際にアルミニウム合金粉末が金型と凝着し易いこと、及び、アルミニウム合金粉末の表面に生成される酸化被膜が焼結時のネッキング結合を阻害することが課題として挙げられる。前者の対策として、例えば特許文献1に記載の手段が提案されている。特許文献1では、圧粉体を成形する際、金型潤滑と共に温間成形を用いている。これにより、粉末の金型への凝着を防ぎつつ、高密度の圧粉体を成形可能としている。後者の対策としては、例えば特許文献2に記載の手段が提案されている。特許文献2では、マグネシウムを含有するアルミニウム合金粉末の圧粉体を、還元性ガス成分を添加した窒素雰囲気下で熱処理することにより、粉末表面に窒素化合物を生成させている。この窒素化合物により焼結が促進される。 However, in the sintering method, the aluminum alloy powder easily adheres to the mold when the green compact is formed, and the oxide film formed on the surface of the aluminum alloy powder inhibits necking bonding during sintering. It is mentioned as a problem. As a measure against the former, for example, means described in Patent Document 1 has been proposed. In Patent Document 1, warm molding is used together with mold lubrication when molding a green compact. This makes it possible to form a high-density green compact while preventing the powder from adhering to the mold. As the latter countermeasure, for example, the means described in Patent Document 2 has been proposed. In Patent Document 2, a nitrogen compound is generated on the powder surface by heat-treating an aluminum alloy powder compact containing magnesium in a nitrogen atmosphere to which a reducing gas component is added. This nitrogen compound promotes sintering.
特許第3945455号公報Japanese Patent No. 3945455 特開平6-57363号公報JP-A-6-57363
 しかしながら、特許文献1に記載の技術は温間成形を用いることから、冷間成形に比べて経済性に劣る。また、特許文献2に記載の技術は、圧粉体の密度を高めるため、粉末を予め250~450℃で焼鈍することで粉末硬度を下げている。しかしながら、マグネシウムを含むアルミニウム合金粉末を焼鈍しても、純アルミニウム粉末より粉末硬度を下げることはできない。そのため、圧粉体の緻密化には不十分である。また、還元性ガスの導入には特殊な雰囲気管理が必要となり、その分コスト高につながることから、量産性の面で問題がある。 However, since the technique described in Patent Document 1 uses warm forming, it is less economical than cold forming. In the technique described in Patent Document 2, the powder hardness is lowered by pre-annealing the powder at 250 to 450 ° C. in order to increase the density of the green compact. However, even if an aluminum alloy powder containing magnesium is annealed, the powder hardness cannot be lowered as compared with pure aluminum powder. Therefore, it is insufficient for densification of the green compact. In addition, the introduction of reducing gas requires special atmosphere management, which leads to higher costs, which is problematic in terms of mass productivity.
 以上の実情に鑑み、本発明では、緻密な圧粉体を成形して、高強度の焼結アルミニウム合金材を低コストに製造可能とすることを解決すべき技術課題とする。 In view of the above circumstances, in the present invention, it is a technical problem to be solved to form a dense green compact so that a high-strength sintered aluminum alloy material can be manufactured at low cost.
 前記課題の解決は、本発明に係る焼結アルミニウム合金材によって達成される。すなわち、この焼結材は、マグネシウムを1~30重量%含むアルミニウム合金粉末と、純アルミニウム粉末とを含有する原料粉末を圧縮成形して圧粉体を成形し、この圧粉体を焼結することで得られる焼結アルミニウム合金材であって、原料粉末に占める純アルミニウム粉末の割合が70~95重量%、アルミニウム合金粉末の割合が5~30重量%にそれぞれ設定されている点をもって特徴付けられる。 The solution to the above problem is achieved by the sintered aluminum alloy material according to the present invention. That is, this sintered material is formed by compacting a raw powder containing aluminum alloy powder containing 1 to 30% by weight of magnesium and pure aluminum powder to form a green compact, and sintering the green compact. Characterized by the fact that the proportion of pure aluminum powder in the raw material powder is set to 70 to 95% by weight and the proportion of aluminum alloy powder to 5 to 30% by weight, respectively. It is done.
 本発明者らは、鋭意検討の結果、圧粉体に含まれるマグネシウムが、焼結工程で焼結アルミニウム合金材の内部に拡散し、表層部において高濃度化することを見出した。非特許文献1によれば、マグネシウムは、アルミニウムより酸化物の生成自由エネルギーが小さく、マグネシウムの酸化被膜を形成する。この点を考慮すると、本発明に係る組成の圧粉体においては、焼結の進行に伴い、圧粉体の表層部でアルミニウムの酸化被膜が還元され、これにより強固なネッキング結合が生じ、結果として高強度の焼結体が得られるものと推察される。本発明は、以上の知見に基づきなされたもので、マグネシウムを1~30重量%含むアルミニウム合金粉末と、純アルミニウム粉末とを含有する原料粉末を圧縮成形し、焼結することにした。これにより、強固なネッキング結合を生成して、高強度の焼結体を得ることができる。また、純マグネシウム粉末を含有可能とすることで、たとえ冷間成形であっても高密度に圧粉体を成形することができる。純アルミニウム粉末を原料粉末の大部分として含有させることによって、原料粉末としての硬度を大幅に下げることができるためである。また、この焼結体(焼結アルミニウム合金材)は、温間成形や還元性ガスの導入などコストアップにつながる処理を施すことなく製造することができるので、製造コストの低減化を図ることができ、これにより量産化が可能となる。なお、原料粉末に占める純アルミニウム粉末の割合を70~95重量%、アルミニウム合金粉末の割合を5~30重量%にそれぞれ設定しているのは、例えば純アルミニウム粉末の占める割合が70重量%より小さいと、熱処理時(焼結時)に圧粉体が変形し、場合によってはクラックを生じるおそれが高まるためである。また、上記組成のアルミニウム合金粉末が一定量(少なくとも5重量%)ないと上述した還元現象を安定的に発生させることが難しくなるためである。 As a result of intensive investigations, the present inventors have found that magnesium contained in the green compact diffuses into the sintered aluminum alloy material in the sintering process and becomes highly concentrated in the surface layer portion. According to Non-Patent Document 1, magnesium has a lower free energy of formation of oxide than aluminum and forms an oxide film of magnesium. In consideration of this point, in the green compact of the composition according to the present invention, as the sintering proceeds, the aluminum oxide film is reduced at the surface layer portion of the green compact, thereby causing a strong necking bond, resulting in a result. It is speculated that a high-strength sintered body can be obtained. The present invention has been made on the basis of the above knowledge, and decided to compress and sinter a raw material powder containing an aluminum alloy powder containing 1 to 30% by weight of magnesium and a pure aluminum powder. Thereby, a strong necking bond can be produced | generated and a high intensity | strength sintered compact can be obtained. Further, by allowing pure magnesium powder to be contained, the green compact can be molded at a high density even in the case of cold molding. This is because the hardness of the raw material powder can be significantly reduced by containing pure aluminum powder as the majority of the raw material powder. In addition, since this sintered body (sintered aluminum alloy material) can be manufactured without performing processing that leads to cost increase such as warm forming or introduction of reducing gas, the manufacturing cost can be reduced. This enables mass production. The ratio of pure aluminum powder to the raw material powder is set to 70 to 95% by weight, and the ratio of aluminum alloy powder to 5 to 30% by weight, respectively. If it is small, the green compact is deformed during heat treatment (sintering), and in some cases, there is an increased risk of cracking. Moreover, it is because it becomes difficult to generate | occur | produce the reduction | restoration phenomenon mentioned above stably, when the aluminum alloy powder of the said composition is not a fixed quantity (at least 5 weight%).
 また、本発明に係る焼結アルミニウム合金材においては、表面から深さ0.3mm以内の領域におけるマグネシウム濃度が、表面から深さ0.3mmより深い領域におけるマグネシウム濃度より高くてもよい。 Further, in the sintered aluminum alloy material according to the present invention, the magnesium concentration in a region within 0.3 mm from the surface may be higher than the magnesium concentration in a region deeper than 0.3 mm from the surface.
 このように、焼結アルミニウム合金材の表層部(表面から深さ0.3mm以内の領域)において、マグネシウムの高濃度化が生じることで、アルミニウムの酸化被膜が十分に還元される。従って、より強固なネッキング結合を生成して、焼結体のさらなる高強度を図ることが可能となる。 Thus, in the surface layer portion (region within a depth of 0.3 mm from the surface) of the sintered aluminum alloy material, the magnesium oxide film is highly concentrated, so that the oxide film of aluminum is sufficiently reduced. Therefore, it is possible to generate a stronger necking bond and to further increase the strength of the sintered body.
 また、本発明に係る焼結アルミニウム合金材においては、相対密度が重量比で90%以上であってもよい。なお、ここでいう相対密度とは、JIS Z 2501:2000に準拠のアルキメデス法に則って測定される焼結アルミニウム合金材の密度を、焼結アルミニウム合金材の原料粉末の真密度で割ることにより得られる値を指すものとする。 In the sintered aluminum alloy material according to the present invention, the relative density may be 90% or more by weight. The relative density referred to here is obtained by dividing the density of the sintered aluminum alloy material measured according to the Archimedes method in accordance with JIS Z 2501: 2000 by the true density of the raw material powder of the sintered aluminum alloy material. It shall refer to the value obtained.
 本発明に係る焼結アルミニウム合金材によれば、純アルミニウム粉末を含有させることによって、アルミニウム合金粉末を含有しつつも非常に緻密な圧粉体を形成することができる。よって、焼結アルミニウム合金材の相対密度を重量比で90%以上とすることにより、焼結体のベースとなる圧粉体自体の機械的強度を確保することができる。従って、焼結体の高強度化を十分かつ安定的に発現させることが可能となる。 According to the sintered aluminum alloy material of the present invention, by containing pure aluminum powder, it is possible to form a very dense green compact while containing the aluminum alloy powder. Therefore, by setting the relative density of the sintered aluminum alloy material to 90% or more by weight, the mechanical strength of the green compact itself that becomes the base of the sintered body can be ensured. Therefore, it is possible to sufficiently and stably develop the high strength of the sintered body.
 また、本発明に係る焼結アルミニウム合金材においては、圧環強さが120MPa以上であってもよい。なお、ここでいう圧環強さとは、JIS Z 2507「焼結軸受-圧環強さ試験方法」により評価される圧環強さを指すものとする。 In the sintered aluminum alloy material according to the present invention, the crushing strength may be 120 MPa or more. The crushing strength here refers to the crushing strength evaluated according to JIS Z 2507 “Sintered bearing—crushing strength test method”.
 本発明に係る焼結アルミニウム合金材によれば、強固なネッキング結合により非常に高強度の焼結体を得ることができる。よって、圧環強さを120MPa以上とすることにより、機械部品として要求されるレベルの機械的強度を発揮することが可能となる。 According to the sintered aluminum alloy material according to the present invention, a very high strength sintered body can be obtained by strong necking bonding. Therefore, by setting the crushing strength to 120 MPa or more, it is possible to exhibit the mechanical strength of a level required as a machine part.
 また、前記課題の解決は、本発明に係る焼結アルミニウム合金材の製造方法によっても達成される。すなわち、この製造方法は、マグネシウムを1~30重量%含むアルミニウム合金粉末と、純アルミニウム粉末とを混合してアルミニウム合金粉末と純アルミニウム粉末とを含有する原料粉末を作製する混合工程と、原料粉末を圧縮成形して圧粉体を成形する圧粉成形工程と、圧粉体を焼結することで焼結体を得る焼結工程とを備えた焼結アルミニウム合金材の製造方法であって、混合工程において、原料粉末に占める純アルミニウム粉末の割合が70~95重量%、アルミニウム合金粉末の割合が5~30重量%となるように、アルミニウム合金粉末と純アルミニウム粉末とを混合する点をもって特徴付けられる。 The solution to the above problem can also be achieved by the method for producing a sintered aluminum alloy material according to the present invention. That is, this manufacturing method includes a mixing step in which an aluminum alloy powder containing 1 to 30% by weight of magnesium and a pure aluminum powder are mixed to produce a raw material powder containing the aluminum alloy powder and the pure aluminum powder; A method for producing a sintered aluminum alloy material comprising a green compacting step of forming a green compact by compression molding, and a sintering step of obtaining a sintered body by sintering the green compact, It is characterized in that the aluminum alloy powder and the pure aluminum powder are mixed so that the proportion of the pure aluminum powder in the raw material powder is 70 to 95% by weight and the proportion of the aluminum alloy powder is 5 to 30% by weight in the mixing step. Attached.
 このように、マグネシウムを1~30重量%含むアルミニウム合金粉末と、純アルミニウム粉末とを含有する原料粉末を圧縮成形し、焼結することによって、本発明に係る焼結アルミニウム合金材と同様、強固なネッキング結合を生成して、高強度の焼結体を得ることができる。また、純マグネシウム粉末を含有可能とすることで、たとえ冷間成形であっても高密度に圧粉体を成形することができる。また、この焼結体(焼結アルミニウム合金材)は、温間成形や還元性ガスの導入などコストアップにつながる処理を施すことなく製造することができるので、製造コストの低減化を図ることができ、これにより量産化が可能となる。 Thus, by compressing and sintering the raw material powder containing magnesium alloy powder containing 1 to 30% by weight of magnesium and pure aluminum powder, it is strong like the sintered aluminum alloy material according to the present invention. A high-strength sintered body can be obtained by generating a simple necking bond. Further, by allowing pure magnesium powder to be contained, the green compact can be molded at a high density even in the case of cold molding. In addition, since this sintered body (sintered aluminum alloy material) can be manufactured without performing processing that leads to cost increase such as warm forming or introduction of reducing gas, the manufacturing cost can be reduced. This enables mass production.
 また、本発明に係る焼結アルミニウム合金材の製造方法においては、圧粉成形工程において、冷間成形により原料粉末から圧粉体を成形してもよい。 In the method for producing a sintered aluminum alloy material according to the present invention, the green compact may be formed from the raw material powder by cold forming in the green compact forming step.
 本発明に係る焼結アルミニウム合金材によれば、純アルミニウム粉末を含有させることによって、アルミニウム合金粉末を含有しつつも非常に緻密な圧粉体を形成することができる。よって、冷間成形により原料粉末から圧粉体を成形した場合であっても、非常に緻密な圧粉体を安定的に成形することができる。 According to the sintered aluminum alloy material of the present invention, by containing pure aluminum powder, it is possible to form a very dense green compact while containing the aluminum alloy powder. Therefore, even when the green compact is formed from the raw material powder by cold forming, a very dense green compact can be stably formed.
 また、本発明に係る焼結アルミニウム合金材の製造方法においては、焼結工程において、最高温度560~640℃で圧粉体を焼結してもよい。 In the method for producing a sintered aluminum alloy material according to the present invention, the green compact may be sintered at a maximum temperature of 560 to 640 ° C. in the sintering step.
 このように焼結工程において加熱する際、その最高温度を560~640℃の範囲に設定することによって、詳細は後述する実験結果に示すが、変形を生じることなく、かつ十分に焼結(ネッキング結合)を促進して、強固な焼結体を安定的に製造することが可能となる。 In this way, when heating in the sintering process, the maximum temperature is set in the range of 560 to 640 ° C., and the details will be shown in the experimental results to be described later. Bonding) is promoted, and a strong sintered body can be stably produced.
 また、本発明に係る焼結アルミニウム合金材の製造方法においては、焼結工程において、窒素雰囲気下で圧粉体を焼結してもよい。 In the method for producing a sintered aluminum alloy material according to the present invention, the green compact may be sintered in a nitrogen atmosphere in the sintering step.
 アルミニウムは他の金属と比べて容易に酸化物を生成する傾向にある。そのため、窒素雰囲気下で焼結することにより、酸化物の生成を抑制して、焼結の進行を促進することができる。よって、焼結体の強度を向上させることが可能となる。 Aluminum tends to generate oxides more easily than other metals. Therefore, by sintering in a nitrogen atmosphere, the generation of oxide can be suppressed and the progress of sintering can be promoted. Therefore, the strength of the sintered body can be improved.
 以上より、本発明によれば、緻密な圧粉体を成形して、高強度の焼結アルミニウム合金材を低コストに製造可能とすることが可能となる。 As described above, according to the present invention, a dense green compact can be formed, and a high-strength sintered aluminum alloy material can be manufactured at low cost.
本発明に係る焼結工程における温度パターンの一例である。It is an example of the temperature pattern in the sintering process which concerns on this invention.
 以下、本発明の一実施形態を説明する。 Hereinafter, an embodiment of the present invention will be described.
 本発明に係る純アルミニウム粉末としては、高純度のアルミニウム地金を使用し、ガスアトマイズ法で製造したものを利用することができる。純アルミニウム粉末は不可避不純物を含んでもよい。純アルミニウム粉末の粒度分布は特に限定されるものではないが、緻密な圧粉体を成形できる微粉末であることが好ましい。平均粒径としては100μm以下である。もちろん、製造方法はガスアトマイズ法に限定されず、遠心力アトマイズ法などの各種アトマイズ法をはじめとして、メカニカルアロイング法や還元法など公知の粉末製造技術を適用することが可能である。 As the pure aluminum powder according to the present invention, it is possible to use a high-purity aluminum metal manufactured by the gas atomization method. Pure aluminum powder may contain inevitable impurities. The particle size distribution of the pure aluminum powder is not particularly limited, but is preferably a fine powder capable of forming a dense green compact. The average particle size is 100 μm or less. Of course, the production method is not limited to the gas atomization method, and various powder methods such as a centrifugal atomization method, a known powder production technique such as a mechanical alloying method and a reduction method can be applied.
 本発明に係るアルミニウム合金粉末は、マグネシウムを1~30重量%含む限りにおいて任意の合金組成をとり得る。この所定の合金組成になるよう調整した溶湯を用い、ガスアトマイズ法で製造したものを利用することができる。マグネシウムは燃焼し易いため、30重量%を超えない範囲で組成を調製するのがよい。また、本発明の効果を損なわない範囲で、マグネシウム以外の金属を合金組成に加えてもよい。また、圧粉体を成形する際の金型への凝着を防止する目的で、潤滑剤を配合してもよい。この種の潤滑剤は、合金組成に加えてもよいし、後述する純アルミニウム粉末とアルミニウム合金粉末との混合粉末に加えてもよい。アルミニウム合金粉末の粒度分布は特に限定されるものではないが、緻密な圧粉体を成形できる微粉末であることが好ましい。平均粒径としては100μm以下が好ましい。もちろん、アルミニウム合金粉末についても、製造方法はガスアトマイズ法に限定されず、遠心力アトマイズ法などの各種アトマイズ法をはじめとして、メカニカルアロイング法や還元法など公知の粉末製造技術を適用することが可能である。 The aluminum alloy powder according to the present invention can have any alloy composition as long as it contains 1 to 30% by weight of magnesium. A molten metal prepared to have a predetermined alloy composition and manufactured by a gas atomizing method can be used. Since magnesium easily burns, it is preferable to prepare the composition within a range not exceeding 30% by weight. Further, a metal other than magnesium may be added to the alloy composition as long as the effects of the present invention are not impaired. Further, a lubricant may be blended for the purpose of preventing adhesion to the mold when the green compact is formed. This type of lubricant may be added to the alloy composition, or may be added to a mixed powder of pure aluminum powder and aluminum alloy powder described later. The particle size distribution of the aluminum alloy powder is not particularly limited, but is preferably a fine powder capable of forming a dense green compact. The average particle size is preferably 100 μm or less. Of course, for aluminum alloy powder, the production method is not limited to the gas atomization method, and it is possible to apply known powder production techniques such as mechanical alloying method and reduction method, including various atomization methods such as centrifugal atomization method. It is.
 純アルミニウム粉末とアルミニウム合金粉末は、既知の混合方法で混合し、本発明に係る原料粉末とすることができる(混合工程)。混合方法として、具体的にはV型混合機、ダブルコーン型混合機などが挙げられる。なお、この原料粉末には、本発明の効果を損なわない範囲で任意の成分を添加することも可能である。 Pure aluminum powder and aluminum alloy powder can be mixed by a known mixing method to obtain a raw material powder according to the present invention (mixing step). Specific examples of the mixing method include a V-type mixer and a double cone type mixer. In addition, it is also possible to add arbitrary components to this raw material powder as long as the effects of the present invention are not impaired.
 混合した原料粉末を用い、プレス金型を用いた冷間成形により圧粉体を成形する(圧粉成形工程)。この際、使用するプレス金型の表面に潤滑剤を塗布してもよい。成形圧力は例えば400~800MPaに設定され、好ましくは550~650MPaに設定される。成形圧力があまりに高い(例えば800MPa以上)と、金型寿命の点から量産性に乏しいため、成形圧力は、量産性を考慮すると、800MPa未満に設定するのがよい。 Using the mixed raw material powder, a green compact is formed by cold forming using a press die (compact forming process). At this time, a lubricant may be applied to the surface of the press mold to be used. The molding pressure is set, for example, to 400 to 800 MPa, preferably 550 to 650 MPa. If the molding pressure is too high (for example, 800 MPa or more), the mass productivity is poor from the viewpoint of the mold life. Therefore, the molding pressure is preferably set to less than 800 MPa in consideration of mass productivity.
 成形した圧粉体は、例えば窒素雰囲気下で熱処理することにより焼結される(焼結工程)。熱処理炉としてはバッチ式の炉が好ましく、炉内を窒素で十分に置換した状態で圧粉体を加熱する。窒素の流量は1L/min以上が好ましい。また、本焼結工程における温度パターンは原則任意であるが、例えば一段階又は二段階以上の昇温及び保温を有するものが使用される。ここで、例えば図1に示す温度パターンを考え、第一段の熱処理を脱脂とする場合、温度T1及び保持時間t1を、圧粉体の表面に付着した潤滑剤を脱脂可能な温度及び保持時間(例えば380~420℃、50~70min)に設定する。また、第二段の加熱工程を焼結とする場合、温度T2及び保持時間t2を、圧粉体の焼結に適した温度及び保持時間(好ましくは560~640℃、保持時間30min以上、より好ましくは580~620℃、保持時間60min以上)に設定する。ここでいう温度T2が焼結時の最高温度に相当する。焼結温度が最高温度で560℃より低いと焼結作用が十分に生じず、また、640℃より高いと焼結体に無視できない変形が生じるおそれがある。以上の理由より焼結時の最高温度は上記範囲内に設定するのが好ましい。なお、焼結工程は窒素雰囲気下に限らず、諸条件を満たす限りにおいて、他の雰囲気下で実施することも可能なことはもちろんである。 The formed green compact is sintered, for example, by heat treatment in a nitrogen atmosphere (sintering process). As the heat treatment furnace, a batch type furnace is preferable, and the green compact is heated in a state where the inside of the furnace is sufficiently replaced with nitrogen. The flow rate of nitrogen is preferably 1 L / min or more. In addition, the temperature pattern in the main sintering process is arbitrary in principle, but, for example, one having a temperature increase and a heat retention in one stage or two stages or more is used. Here, for example, when the temperature pattern shown in FIG. 1 is considered and the first heat treatment is degreasing, the temperature T1 and the holding time t1 are the temperature and holding time at which the lubricant adhering to the surface of the green compact can be degreased. (For example, 380 to 420 ° C., 50 to 70 min). When the second heating step is sintering, the temperature T2 and the holding time t2 are set to a temperature and holding time suitable for sintering of the green compact (preferably 560 to 640 ° C., holding time 30 min or more, Preferably, the temperature is set to 580 to 620 ° C. and the holding time is 60 minutes or more. The temperature T2 here corresponds to the maximum temperature during sintering. If the sintering temperature is lower than 560 ° C. at the maximum temperature, the sintering action is not sufficiently generated, and if it is higher than 640 ° C., there is a possibility that deformation that cannot be ignored occurs in the sintered body. For the above reasons, it is preferable to set the maximum temperature during sintering within the above range. Of course, the sintering step is not limited to a nitrogen atmosphere, and may be performed in other atmospheres as long as various conditions are satisfied.
 得られた焼結アルミニウム合金材の密度は、例えばJIS Z 2501:2000に準拠のアルキメデス法に則って測定される。そして、アルキメデス法で測定した密度を真密度で割ることで相対密度を算出する。 The density of the obtained sintered aluminum alloy material is measured in accordance with, for example, the Archimedes method according to JIS Z 2501: 2000. Then, the relative density is calculated by dividing the density measured by the Archimedes method by the true density.
 また、得られた焼結アルミニウム合金材の圧環強さは、例えばJIS Z 2507:2000に準拠の試験方法に則って測定される。 Further, the crushing strength of the obtained sintered aluminum alloy material is measured in accordance with, for example, a test method based on JIS Z 2507: 2000.
 このように、本発明に係る焼結アルミニウム合金材は、マグネシウムを1~30重量%含むアルミニウム合金粉末と、純アルミニウム粉末とを含有する原料粉末を圧縮成形し、焼結したものであるから、強固なネッキング結合を生成して、焼結体の高強度化を図ることが可能となる。また、純マグネシウム粉末を含有可能とすることで、たとえ冷間成形であっても高密度に圧粉体を成形することができる。また、この焼結体(焼結アルミニウム合金材)は、温間成形や還元性ガスの導入などコストアップにつながる処理を施すことなく製造することができるので、製造コストの低減化を図ることができ、これにより量産化が可能となる。 As described above, the sintered aluminum alloy material according to the present invention is obtained by compression-molding and sintering an aluminum alloy powder containing 1 to 30% by weight of magnesium and a pure aluminum powder. It is possible to generate a strong necking bond and increase the strength of the sintered body. Further, by allowing pure magnesium powder to be contained, the green compact can be molded at a high density even in the case of cold molding. In addition, since this sintered body (sintered aluminum alloy material) can be manufactured without performing processing that leads to cost increase such as warm forming or introduction of reducing gas, the manufacturing cost can be reduced. This enables mass production.
 特に、焼結工程において加熱する際、その最高温度(すなわち焼結温度)を560~640℃の範囲に設定することによって、変形を生じることなく、かつ十分に焼結(ネッキング結合)を促進して、強固な焼結体(焼結アルミニウム合金材)を安定的に製造することが可能となる。 In particular, when heating in the sintering process, the maximum temperature (that is, the sintering temperature) is set in the range of 560 to 640 ° C., and the sintering (necking bonding) is sufficiently promoted without causing deformation. Thus, it becomes possible to stably manufacture a strong sintered body (sintered aluminum alloy material).
 以上、本発明の一実施形態を説明したが、本発明に係る焼結アルミニウム合金材及びその製造方法は上記例示の形態に限定されることなく、本発明の範囲内において任意の形態を採り得ることはもちろんである。 As mentioned above, although one Embodiment of this invention was described, the sintered aluminum alloy material and its manufacturing method which concern on this invention are not limited to the form of the said illustration, It can take arbitrary forms within the scope of the present invention. Of course.
 以下、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.
 実施例(実施例1~10)、比較例(比較例1~9)ともに、純アルミニウム粉末と、表1に示す何れか一種類のアルミニウム合金粉末(合金粉末1~3)とをV型混合機で混合した粉末を原料粉末とした。ここで、合金粉末1~3は何れも、ガスアトマイズ法で作製したものである。
Figure JPOXMLDOC01-appb-T000001
In each of Examples (Examples 1 to 10) and Comparative Examples (Comparative Examples 1 to 9), pure aluminum powder and any one of the aluminum alloy powders (alloy powders 1 to 3) shown in Table 1 were mixed in a V shape. The powder mixed by the machine was used as the raw material powder. Here, all of the alloy powders 1 to 3 are produced by a gas atomizing method.
Figure JPOXMLDOC01-appb-T000001
 圧粉体は、上記組成の原料粉末を冷間成形で所定の円筒形状に成形した。詳述すると、成形金型に脂肪酸アミド系潤滑剤を塗布し、金型潤滑状態で圧粉成形を行った。成形圧力620MPa、保持時間5秒で加圧した後、成形金型から圧粉体を取出すことで、内径8mm、外径16mm、軸方向寸法5mmの円筒状圧粉体を得た。 As the green compact, the raw material powder having the above composition was formed into a predetermined cylindrical shape by cold forming. More specifically, a fatty acid amide-based lubricant was applied to the molding die, and compacting was performed in the mold lubrication state. After pressing at a molding pressure of 620 MPa and a holding time of 5 seconds, a green compact having an inner diameter of 8 mm, an outer diameter of 16 mm, and an axial dimension of 5 mm was obtained by taking out the green compact from the molding die.
 上述のようにして圧粉体を得た後、卓上型真空ガス置換炉(山田電機株式会社:VFN-1220)で圧粉体に対し所定の熱処理を行った。詳述すると、上記炉内に圧粉体を配置した後、ゲージ圧が-0.1MPaまで真空引きを行い、窒素ガスを炉内に導入した。炉内の圧力が大気圧と等しくなるまで窒素ガスを導入した後、排気バルブを開き、窒素ガスの排出流量を2L/minに設定した。この際の温度パターンは図1に示すように設定し、T1=400℃でt1=30min保持することで圧粉体の表面に付着した脂肪酸アミド系潤滑剤を脱脂し、実施例1~10については、T2=560~640℃(後述する表2~表4を参照)でt2=60min保持することで焼結を行った。比較例1~9については、T2=550~650℃でt2=60min保持した。 After obtaining the green compact as described above, a predetermined heat treatment was performed on the green compact in a desktop vacuum gas replacement furnace (Yamada Electric Co., Ltd .: VFN-1220). Specifically, after the green compact was placed in the furnace, the gauge pressure was evacuated to -0.1 MPa, and nitrogen gas was introduced into the furnace. After introducing nitrogen gas until the pressure in the furnace became equal to atmospheric pressure, the exhaust valve was opened and the discharge flow rate of nitrogen gas was set to 2 L / min. The temperature pattern at this time is set as shown in FIG. 1, and the fatty acid amide-based lubricant adhering to the surface of the green compact is degreased by holding t1 = 400 ° C. and t1 = 30 min. Was sintered by holding t2 = 60 min at T2 = 560-640 ° C. (see Table 2 to Table 4 described later). For Comparative Examples 1 to 9, T2 was held at 550 to 650 ° C. and t2 was maintained for 60 minutes.
 以上のようして得られた焼結体(実施例1~9)について、JIS Z 2501:2000に準拠のアルキメデス法に則って密度を測定した。さらに、JIS Z 2507:2000に準拠の試験方法に則って焼結体の圧環強さを測定した。比較例1~9については、変形やクラックを生じることなく圧粉成形及び焼結処理を実施することのできた比較例1、比較例3のみに対して圧環強さを測定した。その結果を表2~表4に示す。各表中、括弧内の圧環強さの数値については、ひずみ量が5mmに達するまで破壊しなかった場合における、ひずみ量1mmのときの応力値を示している。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
For the sintered bodies (Examples 1 to 9) obtained as described above, the density was measured in accordance with the Archimedes method based on JIS Z 2501: 2000. Furthermore, the crushing strength of the sintered body was measured in accordance with a test method based on JIS Z 2507: 2000. For Comparative Examples 1 to 9, the crushing strength was measured for only Comparative Example 1 and Comparative Example 3 in which the compacting and sintering processes could be performed without deformation or cracking. The results are shown in Tables 2 to 4. In each table, the value of the crushing strength in parentheses indicates the stress value when the strain amount is 1 mm when the fracture amount is not broken until the strain amount reaches 5 mm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2に示すように、組成Al-10Mg-1Siの合金粉末1を用いて、純アルミニウム粉末の配合量を70~95重量%とし、かつ最高温度560~640℃の範囲で熱処理を施した場合(実施例1~6)、得られた焼結体の圧環強さは何れも120MPa以上であった。これに対して、純アルミニウム粉末の配合量を70重量%未満とした場合(比較例4,5)、圧粉成形時あるいは焼結時にクラックが発生し、焼結体を得ることができなかった。また、純アルミニウム粉末の配合量を70~95重量%とした場合であっても、焼結時の最高温度が640℃を超える場合(比較例2)、熱処理時に変形が発生し、焼結体を得ることができなかった。比較例1,3については焼結体を得ることができたものの、比較例1については焼結時の最高温度が560℃未満であったこと、及び比較例3については合金粉末1の配合量が5重量%未満であったことにより、圧環強さはともに100MPa以下であった。 As shown in Table 2, when alloy powder 1 having the composition Al-10Mg-1Si is used and heat treatment is performed at a maximum temperature of 560-640 ° C. with a pure aluminum powder content of 70-95 wt% (Examples 1 to 6) The crushing strength of the obtained sintered bodies was 120 MPa or more. On the other hand, when the amount of pure aluminum powder was less than 70% by weight (Comparative Examples 4 and 5), cracks occurred during compacting or sintering, and a sintered body could not be obtained. . Even when the amount of pure aluminum powder is 70 to 95% by weight, if the maximum temperature during sintering exceeds 640 ° C. (Comparative Example 2), deformation occurs during heat treatment, and the sintered body Could not get. For Comparative Examples 1 and 3, sintered bodies could be obtained, but for Comparative Example 1, the maximum temperature during sintering was less than 560 ° C., and for Comparative Example 3, the blending amount of alloy powder 1 The crushing strength was 100 MPa or less.
 また、表3に示すように、組成Al-30Mgの合金粉末2を用いて、純アルミニウム粉末の配合量を95重量%(実施例7)、70重量%(実施例8)とした場合、得られた焼結体の圧環強さは何れも120MPa以上であった。これに対して、純アルミニウム粉末の配合量を70重量%未満とした場合(比較例6,7)、圧粉成形時あるいは焼結時にクラックが発生し、焼結体を得ることができなかった。 Further, as shown in Table 3, when alloy powder 2 having the composition Al-30Mg was used and the blending amount of pure aluminum powder was 95 wt% (Example 7) and 70 wt% (Example 8), it was obtained. The crushing strength of the obtained sintered bodies was 120 MPa or more. On the other hand, when the amount of pure aluminum powder was less than 70% by weight (Comparative Examples 6 and 7), cracks occurred during compacting or sintering, and a sintered body could not be obtained. .
 また、表4に示すように、組成Al-5Mgの合金粉末3を用いて、純アルミニウム粉末の配合量を95重量%(実施例9)、70重量%(実施例10)とした場合、得られた焼結体の圧環強さは何れも120MPa以上であった。これに対して、純アルミニウム粉末の配合量を70重量%未満とした場合(比較例8,9)、圧粉成形時あるいは焼結時にクラックが発生し、焼結体を得ることができなかった。 Further, as shown in Table 4, when alloy powder 3 of composition Al-5Mg was used and the blending amount of pure aluminum powder was 95 wt% (Example 9) and 70 wt% (Example 10), it was obtained. The crushing strength of the obtained sintered bodies was 120 MPa or more. On the other hand, when the amount of pure aluminum powder was less than 70% by weight (Comparative Examples 8 and 9), cracks occurred during compacting or sintering, and a sintered body could not be obtained. .
 また、実施例4で作製した焼結体の断面について、X線光電子分光法(XPS)により、表層部(表面から深さ0.3mm以内の領域)および深層部(表面から深さ0.3mmより深い領域)の状態分析を行った。マグネシウム、アルミニウムについての結果を表5に示す。表中の数値は、原子%であり、MgとAlの合計が100原子%となるように記載している。また、表5中において「-」は検出限界以下であったことを示している。
Figure JPOXMLDOC01-appb-T000005
Moreover, about the cross section of the sintered compact produced in Example 4, surface layer part (area | region within 0.3 mm in depth from the surface) and deep layer part (depth from surface to 0.3 mm) by X-ray photoelectron spectroscopy (XPS). A deeper region was analyzed. The results for magnesium and aluminum are shown in Table 5. The numerical values in the table are atomic%, and the total of Mg and Al is described to be 100 atomic%. In Table 5, “−” indicates that the value was below the detection limit.
Figure JPOXMLDOC01-appb-T000005
 表5に示す通り、マグネシウムは表層部、深層部に関係なく化合物として存在していることが分かる。また、マグネシウム濃度に関し、表層部のほうが深層部よりも高濃度であった。この場合、表2に示すように、圧環強さは非常に大きな値(200MPa以上)を示した。なお、表層部、深層部ともに焼結アルミニウム合金材(焼結体)全体の平均的な組成と異なっているのは、焼結体の断面が旧粉末粒界及び旧粉末表面であるためである。 As shown in Table 5, it can be seen that magnesium exists as a compound regardless of the surface layer portion and the deep layer portion. Moreover, regarding the magnesium concentration, the surface layer portion had a higher concentration than the deep layer portion. In this case, as shown in Table 2, the crushing strength showed a very large value (200 MPa or more). The reason why the surface layer portion and the deep layer portion are different from the average composition of the entire sintered aluminum alloy material (sintered body) is that the cross section of the sintered body is the old powder grain boundary and the old powder surface. .
 以上に述べたように、本発明に係る焼結アルミニウム合金材は、緻密で高強度であるから、例えば摺動部を有する機械部品(摺動部品)をはじめとして、種々の用途に係る機械部品に広範に適用可能である。 As described above, since the sintered aluminum alloy material according to the present invention is dense and has high strength, for example, machine parts having sliding parts (sliding parts) and machine parts for various applications. Widely applicable to.

Claims (8)

  1.  マグネシウムを1~30重量%含むアルミニウム合金粉末と、純アルミニウム粉末とを含有する原料粉末を圧縮成形して圧粉体を成形し、この圧粉体を焼結することで得られる焼結アルミニウム合金材であって、
     前記原料粉末に占める前記純アルミニウム粉末の割合が70~95重量%、前記アルミニウム合金粉末の割合が5~30重量%にそれぞれ設定されている焼結アルミニウム合金材。
    A sintered aluminum alloy obtained by compression molding a raw powder containing aluminum alloy powder containing 1 to 30% by weight of magnesium and pure aluminum powder to form a green compact and sintering the green compact Material,
    A sintered aluminum alloy material in which the ratio of the pure aluminum powder to the raw material powder is set to 70 to 95% by weight, and the ratio of the aluminum alloy powder to 5 to 30% by weight.
  2.  表面から深さ0.3mm以内の領域におけるマグネシウム濃度が、前記表面から深さ0.3mmより深い領域におけるマグネシウム濃度より高い請求項1に記載の焼結アルミニウム合金材。 2. The sintered aluminum alloy material according to claim 1, wherein a magnesium concentration in a region within a depth of 0.3 mm from the surface is higher than a magnesium concentration in a region deeper than a depth of 0.3 mm from the surface.
  3.  相対密度が重量比で90%以上である請求項1又は2に記載の焼結アルミニウム合金材。 The sintered aluminum alloy material according to claim 1 or 2, wherein the relative density is 90% or more by weight.
  4.  圧環強さが120MPa以上である請求項1~3の何れか一項に記載の焼結アルミニウム合金材。 The sintered aluminum alloy material according to any one of claims 1 to 3, wherein the crushing strength is 120 MPa or more.
  5.  マグネシウムを1~30重量%含むアルミニウム合金粉末と、純アルミニウム粉末とを混合して前記アルミニウム合金粉末と前記純アルミニウム粉末とを含有する原料粉末を作製する混合工程と、
     前記原料粉末を圧縮成形して圧粉体を成形する圧粉成形工程と、
     前記圧粉体を焼結することで焼結体を得る焼結工程とを備えた焼結アルミニウム合金材の製造方法であって、
     前記混合工程において、前記原料粉末に占める前記純アルミニウム粉末の割合が70~95重量%、前記アルミニウム合金粉末の割合が5~30重量%となるように、前記アルミニウム合金粉末と前記純アルミニウム粉末とを混合する、焼結アルミニウム合金材の製造方法。
    A mixing step of preparing a raw material powder containing the aluminum alloy powder and the pure aluminum powder by mixing aluminum alloy powder containing 1 to 30% by weight of magnesium and pure aluminum powder;
    A compacting step of compacting the raw material powder to form a compact,
    A method for producing a sintered aluminum alloy material comprising a sintering step of obtaining a sintered body by sintering the green compact,
    In the mixing step, the aluminum alloy powder and the pure aluminum powder are adjusted so that the proportion of the pure aluminum powder in the raw material powder is 70 to 95% by weight and the proportion of the aluminum alloy powder is 5 to 30% by weight. A method for producing a sintered aluminum alloy material.
  6.  前記圧粉成形工程において、冷間成形により前記原料粉末から前記圧粉体を成形する請求項5に記載の焼結アルミニウム合金材の製造方法。 The method for producing a sintered aluminum alloy material according to claim 5, wherein, in the compacting step, the compact is formed from the raw material powder by cold forming.
  7.  前記焼結工程において、最高温度560~640℃で前記圧粉体を焼結する請求項5又は6に記載の焼結アルミニウム合金材の製造方法。 The method for producing a sintered aluminum alloy material according to claim 5 or 6, wherein the green compact is sintered at a maximum temperature of 560 to 640 ° C in the sintering step.
  8.  前記焼結工程において、窒素雰囲気下で前記圧粉体を焼結する請求項5~7の何れか一項に記載の焼結アルミニウム合金材の製造方法。 The method for producing a sintered aluminum alloy material according to any one of claims 5 to 7, wherein the green compact is sintered in a nitrogen atmosphere in the sintering step.
PCT/JP2018/011997 2017-03-29 2018-03-26 Sintered aluminum alloy material and method for producing same WO2018181107A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017065456A JP2018168403A (en) 2017-03-29 2017-03-29 Sintered aluminum alloy material and manufacturing method therefor
JP2017-065456 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018181107A1 true WO2018181107A1 (en) 2018-10-04

Family

ID=63675795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011997 WO2018181107A1 (en) 2017-03-29 2018-03-26 Sintered aluminum alloy material and method for producing same

Country Status (2)

Country Link
JP (1) JP2018168403A (en)
WO (1) WO2018181107A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044793A (en) * 2022-06-16 2022-09-13 江苏精研科技股份有限公司 Manufacturing method for preparing two-phase high-entropy alloy by adopting powder injection molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202601A (en) * 1990-11-30 1992-07-23 Showa Denko Kk Manufacture of al alloy mixed powder and al alloy sintered body
JP2012505312A (en) * 2008-10-10 2012-03-01 ジーケーエヌ シンター メタルズ、エル・エル・シー Aluminum alloy powder metal mixture
JP2015004098A (en) * 2013-06-20 2015-01-08 株式会社豊田中央研究所 Iron-based sintered body and production method thereof
JP2015068185A (en) * 2013-09-27 2015-04-13 住友電工焼結合金株式会社 Rotor for oil pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202601A (en) * 1990-11-30 1992-07-23 Showa Denko Kk Manufacture of al alloy mixed powder and al alloy sintered body
JP2012505312A (en) * 2008-10-10 2012-03-01 ジーケーエヌ シンター メタルズ、エル・エル・シー Aluminum alloy powder metal mixture
JP2015004098A (en) * 2013-06-20 2015-01-08 株式会社豊田中央研究所 Iron-based sintered body and production method thereof
JP2015068185A (en) * 2013-09-27 2015-04-13 住友電工焼結合金株式会社 Rotor for oil pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044793A (en) * 2022-06-16 2022-09-13 江苏精研科技股份有限公司 Manufacturing method for preparing two-phase high-entropy alloy by adopting powder injection molding
CN115044793B (en) * 2022-06-16 2023-09-08 江苏精研科技股份有限公司 Manufacturing method for preparing two-phase high-entropy alloy by powder injection molding

Also Published As

Publication number Publication date
JP2018168403A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6261618B2 (en) Method for producing titanium material and nitrogen solid solution titanium powder material
JP6054553B2 (en) Oxygen solid solution titanium material, oxygen solid solution titanium powder material, and method for producing oxygen solid solution titanium powder material
JP4480084B2 (en) Iron-based sintered alloy member and manufacturing method thereof
US10174407B2 (en) Oxygen-enriched Ti-6AI-4V alloy and process for manufacture
US10427216B2 (en) Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member
JP2022025138A (en) Method for manufacturing titanium sintering material
JP6309215B2 (en) Sintered machine part manufacturing method and mixed powder used therefor
JP2009007650A (en) Mixed powder for sintered aluminum-containing copper alloy, and method for producing the same
WO2018181107A1 (en) Sintered aluminum alloy material and method for producing same
JP6149718B2 (en) Iron-based sintered alloy, method for producing the same, and high-carbon iron-based powder
JP4397425B1 (en) Method for producing Ti particle-dispersed magnesium-based composite material
JP2014019945A (en) Titanium alloy and method for producing the same
JP6675886B2 (en) Oil-impregnated bearing and its manufacturing method
JP5841089B2 (en) Molding powder, lubricant concentrated powder, and method for producing metal member
JP2016053210A (en) Exhaust valve device and gas cushion material
JP2015151586A (en) Method for producing sintered metal component
JP2001294905A (en) Method for producing micromodule gear
JP2008240031A (en) Preform for pressing using iron powder as raw material, and its manufacturing method
JP5786755B2 (en) Method for producing ferrous sintered material
JP4999283B2 (en) Iron-based powder for powder metallurgy
WO2015098407A1 (en) Machine component using powder compact and method for producing same
WO2020241087A1 (en) Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy
Petroni et al. Evaluation of press-and-sinter processing parameters in titanium hydride powder metallurgy
JP2017128764A (en) Iron-based sintered slide material and manufacturing method therefor
WO2016174985A1 (en) Mixed powder for powder metallurgy, powder compact and method for producing machine component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774592

Country of ref document: EP

Kind code of ref document: A1