WO2016174985A1 - Mixed powder for powder metallurgy, powder compact and method for producing machine component - Google Patents

Mixed powder for powder metallurgy, powder compact and method for producing machine component Download PDF

Info

Publication number
WO2016174985A1
WO2016174985A1 PCT/JP2016/060362 JP2016060362W WO2016174985A1 WO 2016174985 A1 WO2016174985 A1 WO 2016174985A1 JP 2016060362 W JP2016060362 W JP 2016060362W WO 2016174985 A1 WO2016174985 A1 WO 2016174985A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
lubricant
mixed powder
mixed
green compact
Prior art date
Application number
PCT/JP2016/060362
Other languages
French (fr)
Japanese (ja)
Inventor
孝洋 奥野
雄太 伊藤
大平 晃也
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015250084A external-priority patent/JP2016211068A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016174985A1 publication Critical patent/WO2016174985A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only

Definitions

  • the present invention relates to a mixed powder used in powder metallurgy.
  • Powder metallurgy is a technology capable of simultaneously producing a large number of complex shaped parts by pouring and molding mixed powder containing metal powder into a mold and then sintering.
  • powder metallurgical products mainly made of iron powder are widely used in the automotive field and the industrial machinery field.
  • a state in which the mixed powder is crushed at high pressure inside a mold and the powders are mechanically entangled to maintain one shape is called a green compact.
  • a green compact has a weak and fragile property to an external force because the bonds between the powders are weak. For this reason, when transferring a green compact to a sintering process etc., a chipping and a crack arise, and there exists a possibility of causing the defect of quality, or the fall of a yield.
  • an internal lubricant is often added to the raw material powder in order to improve the lubricity between the powders and between the powder and the mold.
  • metal soaps and waxes have been used as internal lubricants, but since they have a low melting point of 200 ° C. or less and are rich in ductility, they are drawn thin when mixed. Exists as a thin film on the surface of the powder or mold. Since this weakens the contact force between powders, it is a factor that hinders improvement of green compact strength.
  • the modified lubricant disclosed in the above-mentioned Patent Document 1 essentially comprises a known lubricant such as metal soap, and the weight ratio of the known lubricant to the cellulose fiber is 1: 2 to 10: The range is 1 (paragraph 0016).
  • a modified lubricant containing a relatively large amount (1/3 or more) of known lubricants inevitably leads to a reduction in the strength of the green compact due to the known lubricants.
  • the problem to be solved by the present invention is to provide a mixed powder for powder metallurgy that can obtain a high-strength green compact.
  • the present invention made to solve the above problems is a mixed powder for powder metallurgy comprising a metal powder and an internal lubricant, wherein the internal lubricant comprises 80 wt. % Or more.
  • cellulose fiber was not recognized as one that functions as a lubricant, but the present inventors have found that cellulose fiber can function as a lubricant during molding.
  • Cellulose fiber is not stretched during mixing and does not exist as a thin film on the surface of a powder or a mold, unlike metal soaps and waxes conventionally used as a lubricant, and does not reduce the strength of the green compact. Therefore, as described above, by using most of the internal lubricant (80 wt.% Or more) as the cellulose fiber, the amount of use of the conventional lubricant can be reduced or reduced to 0, and therefore, the green compact by the conventional lubricant Can be avoided.
  • an internal lubricant consisting only of cellulose fiber is not limited to the thing which does not contain components other than a cellulose fiber strictly at all, A slight impurity (For example, the impurity which arises inevitably in the manufacturing process of a cellulose fiber) May also be included.
  • the above-mentioned cellulose fibers having an average diameter of 20 ⁇ m or less and an average length of 100 ⁇ m or less. If the size of the cellulose fiber is increased, there is no room for the powders to enter or between the powder and the mold, which may cause a decrease in lubricity and a decrease in fluidity.
  • the average diameter and the average length are values obtained by an image analysis method (measurement based on an image photographed by a microscope or the like).
  • the content of the internal lubricant in the above powder metallurgical mixed powder is 0.2 wt. % Or more, 1.1 wt. It is preferable that it is% or less.
  • the addition amount of the internal lubricant is too small, the lubricity is insufficient, and when it is too large, the fluidity is insufficient.
  • the mixed powder for powder metallurgy according to the present invention uses an internal lubricant containing cellulose fiber as a main component, a high-strength green compact can be obtained. As a result, it is possible to prevent the occurrence of chipping or cracking when transferring the green compact to the sintering step, etc., thereby improving the quality of the sintered body and the yield.
  • mixed powder for powder metallurgy according to the present invention
  • the mixed powder contains a metal powder, a carbon-based powder, and an internal lubricant.
  • the metal powder for example, iron powder (or iron alloy powder) or copper powder (or copper alloy powder), or both of them as a main component can be used.
  • the iron powder can be used regardless of the production method, and for example, those produced by the atomization method, the reduction method, the stamp method, the carbonyl method and the like can be used.
  • the copper powder can also be used regardless of the manufacturing method, and for example, those manufactured by an electrolytic method, an atomizing method, a reduction method, a stamp method and the like can be used.
  • the mixed powder of the present embodiment is mainly composed of iron, and specifically, the ratio of iron in the mixed powder is 50 wt.
  • the metal powder of the present embodiment comprises only iron powder, or iron powder and copper powder, and the ratio of iron powder in the mixed powder is 50 wt. % Or more, preferably 80 wt. % Or more, more preferably 90 wt. % Or more.
  • a low melting point metal such as Sn or Zn
  • a low melting point metal having a melting point lower than the sintering temperature
  • the alloy powder for example, a pre-alloy powder obtained by pre-alloying a plurality of types of metals, a partial diffusion alloy powder obtained by partially diffusion alloying powders made of dissimilar metals, and the like can be used.
  • Graphite, carbon black or the like can be used as the carbon-based powder.
  • the internal lubricant is mainly composed of cellulose fiber, and specifically, 80 wt. % Or more, preferably 90 wt. % Or more is included.
  • an internal lubricant composed only of cellulose fibers is used.
  • Cellulose fiber is a plant-derived material and thermally decomposes at about 350 ° C. in an inert atmosphere.
  • the cellulose fiber it is preferable to use one having a size that is somewhat small in order to exhibit lubricity by intercalating powder and powder-mold. Specifically, it is preferable to use cellulose fibers having an average diameter of 20 ⁇ m or less and an average length of 100 ⁇ m or less according to an image analysis method, and those having an average diameter of 10 ⁇ m or less and an average length of 30 ⁇ m or less It is further preferred to use.
  • the cellulose fiber preferably has an average particle size of 50 ⁇ m or less according to a particle size distribution measuring device (laser diffraction method), and more preferably 12 ⁇ m or less. On the other hand, if the size of the cellulose fiber is too small, the effect of improving the green strength may not be sufficiently obtained. Therefore, an average diameter of 0.1 ⁇ m or more, an average length of 1 ⁇ m or more, and an average particle diameter of 3 ⁇ m or more is used. It is preferable to do.
  • the addition amount of cellulose fiber is 0.2 wt. % Or more, preferably 0.3 wt. It is more preferable to make it% or more.
  • the addition amount of the cellulose fiber is 1.1 wt. % Or less, preferably 1.0 wt. It is further more preferable to make it less than 0.5%. It is more preferable to make it% or less.
  • the mixed powder of the present embodiment does not contain a conventionally used lubricant (metal soap or wax), it is possible to avoid a reduction in the green strength due to the conventional lubricant.
  • the internal lubricant to be mixed with the mixed powder may contain a small amount of a conventional lubricant as long as the majority (80 wt.% Or more) is a cellulose fiber, but the strength of the green compact can be increased. For this reason, it is preferable to use an internal lubricant consisting only of cellulose fiber, which does not contain any conventional lubricant as in the present embodiment.
  • the green compact thus formed is conveyed to the sintering step and introduced into the sintering furnace. At this time, since the strength of the green compact is increased as described above, the green compact can be prevented from being damaged when it is transferred from the green compact to the sintering furnace. Then, the green compact is sintered at a predetermined sintering temperature for a predetermined time to generate a sintered body. Although the cellulose fibers contained in the green compact are thermally decomposed by the sintering, the load on the environment is low because the cellulose fibers are a plant-derived material. Thereafter, if necessary, the sintered body is subjected to sizing and heat treatment to complete a powder metallurgy product. This powder metallurgical product is used, for example, as mechanical parts such as gears, cams and bearings.
  • a mixed powder consisting of iron, copper powder, carbon-based powder, and an internal lubricant was used.
  • iron powder "JIP Sigma Roy 2010” which is a water atomized powder manufactured by JFE Steel Corporation was used.
  • copper powder “CE-25”, which is an electrolytic powder manufactured by Fukuda Metal Foil & Powder Co., Ltd., was used.
  • graphite “F-10” which is an artificial graphite manufactured by TIMCAL was used.
  • a mixed powder containing an internal lubricant consisting only of cellulose fibers was taken as an example, and a mixed powder containing a conventional lubricant was taken as a comparative example.
  • Cellulose fibers can be powdered cellulose manufactured by Nippon Paper Industries Co., Ltd. “KC floc W-100 GK” (hereinafter referred to as “100 GK”), “NP fiber W-10 MG2” (hereinafter referred to as “10 MG2”), or “NP fiber W— "06MG” (hereinafter referred to as “06MG”) was used.
  • ACRAWAXC atomize As a conventional lubricant, "ACRAWAXC atomize” (hereinafter referred to as ACRA), which is ethylenebisstearic acid amide manufactured by LONZA Corporation, was used. The appearance of each internal lubricant is shown in FIG. 1, and the particle size distribution is shown in FIG. The specifications of each internal lubricant are shown in Table 1 below.
  • Example 1 using 06MG as an internal lubricant Example 2 using 10MG 2 as an internal lubricant, and Example using 100 GK as an internal lubricant are performed.
  • Comparative Example 1 using ACRA as the internal lubricant Comparative Example 2. What used% each was set as Comparative Example 2.
  • Each powder was individually weighed, and then mixed for 40 minutes with a V-type mixer manufactured by Tsutsui Rikagaku Instrument Co., Ltd.
  • the mixed powder was compacted, and cylindrical test pieces of outer diameter 23.2 mm ⁇ inner diameter 16.4 mm ⁇ axial length 7 mm and ⁇ 11.3 mm ⁇ axial length 10 mm were produced.
  • the molding conditions were such that the molding pressure was 1176 MPa at room temperature.
  • Examples 1 to 3 using a cellulose fiber as an internal lubricant all had excellent fluidity, latra value and radial crushing strength, and exhibited good physical properties.
  • Example 1 using 06MG showed a very excellent value of less than 35 sec / 50 g in fluidity.
  • Comparative Examples 1 and 2 including the conventional lubricant (ACRA) resulted in inferior physical properties to Examples 1 to 3 using cellulose fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

This mixed powder for powder metallurgy contains a metal powder and an internal lubricant, and this internal lubricant contains 80 wt% or more of cellulose fibers. Consequently, the amount of a conventional lubricant such as a metallic soap used therefor is able to be lowered or reduced to zero, thereby avoiding decrease in the strength of a powder compact due to the conventional lubricant.

Description

[規則37.2に基づきISAが決定した発明の名称] 粉末冶金用混合粉末、圧粉体および機械部品の製造方法[Name of the invention determined by ISA based on rule 37.2] Method of manufacturing mixed powder for powder metallurgy, green compact and machine part
 本発明は、粉末冶金に用いられる混合粉末に関する。 The present invention relates to a mixed powder used in powder metallurgy.
 粉末冶金は、金属粉末を含む混合粉末を金型に流し込んで成形した後、焼結することで、大量の複雑形状部品を同時に作製できる技術である。特に鉄粉を主原料にした粉末冶金製品は、自動車分野や産業機械分野を始め幅広く用いられている。 Powder metallurgy is a technology capable of simultaneously producing a large number of complex shaped parts by pouring and molding mixed powder containing metal powder into a mold and then sintering. In particular, powder metallurgical products mainly made of iron powder are widely used in the automotive field and the industrial machinery field.
 この粉末冶金分野において、混合粉末を金型内部で高圧で押しつぶし、粉末同士が機械的に絡み合って一つの形状を保った状態を圧粉体と呼ぶ。圧粉体は、粉末同士の結びつきが弱いため、外部からの力に弱く脆い性質がある。このため、圧粉体を焼結工程へ移送させる際などに欠けやクラックが生じ、品質の不具合や歩留まりの低下を招く恐れがある。  In this powder metallurgy field, a state in which the mixed powder is crushed at high pressure inside a mold and the powders are mechanically entangled to maintain one shape is called a green compact. A green compact has a weak and fragile property to an external force because the bonds between the powders are weak. For this reason, when transferring a green compact to a sintering process etc., a chipping and a crack arise, and there exists a possibility of causing the defect of quality, or the fall of a yield.
 そこで、圧粉体強度を向上させることを目的に様々な検討が重ねられている。例えば、粉末同士の機械的な絡み合いを増加させるために不規則な形状の還元粉を用いたり、粉末同士の接触点を増加させるために圧粉体の密度(圧粉密度)を高めたりすることが行われている。 Therefore, various studies have been repeated for the purpose of improving the green strength. For example, using irregularly shaped reduced powder to increase mechanical entanglement between powders, or increasing the density of green compact (powder density) to increase contact points between powders Has been done.
 ところで、粉末冶金では、通常、粉末同士や粉末-金型間の潤滑性を向上させる目的で、原料粉末に内部潤滑剤を添加することが多い。従来、内部潤滑剤としては、金属セッケンやワックス(脂肪酸アミド等)が用いられていたが、これらは融点が200℃以下と低く、また延性に富んでいるために、混合時に薄く引き延ばされて粉末や金型の表面に薄膜として存在する。これが、粉末同士の接触力を弱めることになるため、圧粉体強度の向上を妨げる要因となっている。 By the way, in powder metallurgy, usually, an internal lubricant is often added to the raw material powder in order to improve the lubricity between the powders and between the powder and the mold. Conventionally, metal soaps and waxes (fatty acid amides etc.) have been used as internal lubricants, but since they have a low melting point of 200 ° C. or less and are rich in ductility, they are drawn thin when mixed. Exists as a thin film on the surface of the powder or mold. Since this weakens the contact force between powders, it is a factor that hinders improvement of green compact strength.
 そこで、内部潤滑剤を工夫することで圧粉体強度を向上させることも提案されている。例えば、下記の特許文献1では、従来から用いられている潤滑剤に断片化セルロース繊維を添加することで、圧粉体強度が向上すると述べられている。具体的に、同文献によれば、潤滑性が無い断片化セルロース繊維と、脂肪酸モノアミド類、脂肪酸ビスアミド類、金属セッケン類およびポリオレフィンワックス類等の既知の潤滑剤とを組み合わせることにより、繊維無しの潤滑剤と同じ物性を有するだけでなく、同等の見かけ密度及び優れた強度を有する成形体の原料をもたらす「変性潤滑剤」が得られるとされている。 Therefore, it has also been proposed to improve the green strength by devising an internal lubricant. For example, in Patent Document 1 below, it is stated that the green strength is improved by adding fragmented cellulose fiber to a conventionally used lubricant. Specifically, according to the same document, no fiber is obtained by combining fragmented cellulose fibers having no lubricity with known lubricants such as fatty acid monoamides, fatty acid bisamides, metallic soaps and polyolefin waxes. It is believed that a "modified lubricant" is obtained which not only has the same physical properties as the lubricant but also provides the raw material of the shaped body with an equivalent apparent density and excellent strength.
特表2007-517985号公報Japanese Patent Publication No. 2007-517985
 しかし、上記特許文献1に示されている変性潤滑剤は、金属セッケン等の既知の潤滑剤を必須とするものであり、既知の潤滑剤とセルロースファイバーとの重量比は1:2~10:1の範囲とされる(段落0016)。このように、既知の潤滑剤を比較的多く(1/3以上)含む変性潤滑剤を使用すると、既知の潤滑剤による圧粉体の強度の低下は避けられない。 However, the modified lubricant disclosed in the above-mentioned Patent Document 1 essentially comprises a known lubricant such as metal soap, and the weight ratio of the known lubricant to the cellulose fiber is 1: 2 to 10: The range is 1 (paragraph 0016). Thus, the use of a modified lubricant containing a relatively large amount (1/3 or more) of known lubricants inevitably leads to a reduction in the strength of the green compact due to the known lubricants.
 以上のような事情に鑑み、本発明が解決すべき課題は、高強度の圧粉体を得ることができる粉末冶金用混合粉末を提供することにある。 In view of the above circumstances, the problem to be solved by the present invention is to provide a mixed powder for powder metallurgy that can obtain a high-strength green compact.
 前記課題を解決するためになされた本発明は、金属粉末と内部潤滑剤とを含む粉末冶金用混合粉末であって、前記内部潤滑剤が、セルロースファイバーを80wt.%以上含むことを特徴とするものである。 The present invention made to solve the above problems is a mixed powder for powder metallurgy comprising a metal powder and an internal lubricant, wherein the internal lubricant comprises 80 wt. % Or more.
 従来、セルロースファイバーは潤滑剤として機能するものとして認識されていなかったが、本発明者らの検証によれば、セルロースファイバーが成形時に潤滑剤として機能し得ることが明らかになった。セルロースファイバーは、従来潤滑剤として使用されていた金属セッケンやワックスのように、混合時に引き延ばされて粉末や金型表面に薄膜として存在することがなく、圧粉体の強度を低下させない。従って、上記のように、内部潤滑剤の大部分(80wt.%以上)をセルロースファイバーとすることで、従来の潤滑剤の使用量を低減あるいは0にできるため、従来の潤滑剤による圧粉体の強度低下を回避できる。 Conventionally, cellulose fiber was not recognized as one that functions as a lubricant, but the present inventors have found that cellulose fiber can function as a lubricant during molding. Cellulose fiber is not stretched during mixing and does not exist as a thin film on the surface of a powder or a mold, unlike metal soaps and waxes conventionally used as a lubricant, and does not reduce the strength of the green compact. Therefore, as described above, by using most of the internal lubricant (80 wt.% Or more) as the cellulose fiber, the amount of use of the conventional lubricant can be reduced or reduced to 0, and therefore, the green compact by the conventional lubricant Can be avoided.
 特に、上記の粉末冶金用混合粉末において、内部潤滑剤をセルロースファイバーのみで構成すれば、従来の潤滑剤を全く使用しなくて済むため、圧粉体の強度のさらなる向上が図られる。尚、「セルロースファイバーのみからなる内部潤滑剤」とは、セルロースファイバー以外の成分を厳密に全く含まないものに限定されず、僅かな不純物(例えば、セルロースファイバーの製造工程で不可避的に生じる不純物)を含むこともある。 In particular, in the above-mentioned mixed powder for powder metallurgy, if the internal lubricant is composed of only cellulose fibers, it is possible to eliminate the use of the conventional lubricant at all, and therefore the strength of the green compact can be further improved. In addition, "an internal lubricant consisting only of cellulose fiber" is not limited to the thing which does not contain components other than a cellulose fiber strictly at all, A slight impurity (For example, the impurity which arises inevitably in the manufacturing process of a cellulose fiber) May also be included.
 上記のセルロースファイバーは、平均直径20μm以下、且つ、平均長さ100μm以下のものを使用することが好ましい。セルロースファイバーのサイズが大きくなると、粉末同士や粉末-金型間に入り込む余地が無くなり、潤滑性の低下や流動度の低下を招く恐れがあるからである。尚、平均直径及び平均長さは、画像解析法(顕微鏡等により撮影した画像に基づく測定)による値である。 It is preferable to use the above-mentioned cellulose fibers having an average diameter of 20 μm or less and an average length of 100 μm or less. If the size of the cellulose fiber is increased, there is no room for the powders to enter or between the powder and the mold, which may cause a decrease in lubricity and a decrease in fluidity. The average diameter and the average length are values obtained by an image analysis method (measurement based on an image photographed by a microscope or the like).
 上記の粉末冶金用混合粉末における前記内部潤滑剤の含有量は、全体の0.2wt.%以上、1.1wt.%以下であることが好ましい。内部潤滑剤の添加量が少なすぎると潤滑性が不足し、多すぎると流動度が不足するからである。 The content of the internal lubricant in the above powder metallurgical mixed powder is 0.2 wt. % Or more, 1.1 wt. It is preferable that it is% or less. When the addition amount of the internal lubricant is too small, the lubricity is insufficient, and when it is too large, the fluidity is insufficient.
 以上のように、本発明に係る粉末冶金用混合粉末は、セルロースファイバーを主成分とする内部潤滑剤を用いているため、高強度の圧粉体を得ることができる。これにより、圧粉体を焼結工程へ移送する際などに欠けやクラックの発生が生じる事態を防止できるため、焼結体の品質向上及び歩留まりの向上が図られる。 As described above, since the mixed powder for powder metallurgy according to the present invention uses an internal lubricant containing cellulose fiber as a main component, a high-strength green compact can be obtained. As a result, it is possible to prevent the occurrence of chipping or cracking when transferring the green compact to the sintering step, etc., thereby improving the quality of the sintered body and the yield.
各種セルロースファイバー(100GK、10MG2、06MG)、及び従来の潤滑剤(エチレンビスステアリン酸アミド(ACRA))の外観の拡大写真である。It is an enlarged photograph of the appearance of various cellulose fibers (100 GK, 10 MG2, 06 MG), and a conventional lubricant (ethylene bis-stearic acid amide (ACRA)). 図1の各粉末の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of each powder of FIG.
 以下、本発明に係る粉末冶金用混合粉末(以下、単に「混合粉末」と言う。)の実施形態を説明する。 Hereinafter, an embodiment of the mixed powder for powder metallurgy according to the present invention (hereinafter, simply referred to as "mixed powder") will be described.
 混合粉末は、金属粉末と、炭素系粉末と、内部潤滑剤とを含む。金属粉末は、例えば鉄粉(あるいは鉄合金粉)又は銅粉(あるいは銅合金粉)、あるいはこれらの双方を主成分としたものを使用することができる。鉄粉は、製法を問わず使用可能であり、例えば、アトマイズ法、還元法、スタンプ法、カルボニル法などにより製造されたものが使用できる。銅粉も、製法を問わず使用可能であり、例えば電解法、アトマイズ法、還元法、スタンプ法などにより製造されたものが使用できる。本実施形態の混合粉末は主成分が鉄であり、具体的には、混合粉末中の鉄の比率が50wt.%以上、好ましくは80wt.%以上、さらに好ましくは90wt.%以上となっている。より具体的には、本実施形態の金属粉末は鉄粉のみ、あるいは鉄粉及び銅粉からなり、混合粉末中の鉄粉の比率が50wt.%以上、好ましくは80wt.%以上、さらに好ましくは90wt.%以上となっている。 The mixed powder contains a metal powder, a carbon-based powder, and an internal lubricant. As the metal powder, for example, iron powder (or iron alloy powder) or copper powder (or copper alloy powder), or both of them as a main component can be used. The iron powder can be used regardless of the production method, and for example, those produced by the atomization method, the reduction method, the stamp method, the carbonyl method and the like can be used. The copper powder can also be used regardless of the manufacturing method, and for example, those manufactured by an electrolytic method, an atomizing method, a reduction method, a stamp method and the like can be used. The mixed powder of the present embodiment is mainly composed of iron, and specifically, the ratio of iron in the mixed powder is 50 wt. % Or more, preferably 80 wt. % Or more, more preferably 90 wt. % Or more. More specifically, the metal powder of the present embodiment comprises only iron powder, or iron powder and copper powder, and the ratio of iron powder in the mixed powder is 50 wt. % Or more, preferably 80 wt. % Or more, more preferably 90 wt. % Or more.
 金属粉末としては、鉄粉や銅粉の他、焼結温度よりも融点の低い低融点金属(Sn、Znなど)を配合してもよい。また、金属粉末には、複数種の金属を合金化した合金粉を配合してもよい。合金粉としては、例えば、複数種の金属を予合金化したプレアロイ粉や、異種金属からなる粉末を部分的に拡散合金化させて結合した部分拡散合金粉等を用いることができる。 As the metal powder, in addition to iron powder and copper powder, a low melting point metal (such as Sn or Zn) having a melting point lower than the sintering temperature may be blended. Moreover, you may mix | blend the metal powder with the alloy powder which alloyed multiple types of metals. As the alloy powder, for example, a pre-alloy powder obtained by pre-alloying a plurality of types of metals, a partial diffusion alloy powder obtained by partially diffusion alloying powders made of dissimilar metals, and the like can be used.
 炭素系粉末としては、黒鉛やカーボンブラックなどを使用することができる。尚、特に必要がなければ、混合粉末に炭素系粉末を配合しなくてもよい。 Graphite, carbon black or the like can be used as the carbon-based powder. In addition, it is not necessary to mix | blend carbon-type powder with mixed powder, if it is not necessary in particular.
 内部潤滑剤は、大部分がセルロースファイバーで構成されており、具体的には、内部潤滑剤全量に対してセルロースファイバーが80wt.%以上、好ましくは90wt.%以上含まれる。本実施形態では、セルロースファイバーのみで構成された内部潤滑剤が使用される。セルロースファイバーは、植物由来の材料であり、不活性雰囲気において約350℃で熱分解する。 The internal lubricant is mainly composed of cellulose fiber, and specifically, 80 wt. % Or more, preferably 90 wt. % Or more is included. In this embodiment, an internal lubricant composed only of cellulose fibers is used. Cellulose fiber is a plant-derived material and thermally decomposes at about 350 ° C. in an inert atmosphere.
 セルロースファイバーは、粉末同士や粉末-金型間に入り込んで潤滑性を発揮するために、サイズがある程度小さいものを使用することが好ましい。具体的に、セルロースファイバーは、画像解析法による平均直径が20μm以下、且つ、平均長さが100μm以下のものを使用することが好ましく、平均直径が10μm以下、平均長さが30μm以下のものを使用することがさらに好ましい。また、セルロースファイバーは、粒度分布測定器(レーザー回折法)による平均粒径が50μm以下のものを使用することが好ましく、平均粒径が12μm以下のものを使用することがさらに好ましい。一方、セルロースファイバーのサイズが小さすぎると、圧粉強度の向上効果が十分に得られない恐れがあるため、平均直径0.1μm以上、平均長さ1μm以上、平均粒径3μm以上のものを使用することが好ましい。 As the cellulose fiber, it is preferable to use one having a size that is somewhat small in order to exhibit lubricity by intercalating powder and powder-mold. Specifically, it is preferable to use cellulose fibers having an average diameter of 20 μm or less and an average length of 100 μm or less according to an image analysis method, and those having an average diameter of 10 μm or less and an average length of 30 μm or less It is further preferred to use. The cellulose fiber preferably has an average particle size of 50 μm or less according to a particle size distribution measuring device (laser diffraction method), and more preferably 12 μm or less. On the other hand, if the size of the cellulose fiber is too small, the effect of improving the green strength may not be sufficiently obtained. Therefore, an average diameter of 0.1 μm or more, an average length of 1 μm or more, and an average particle diameter of 3 μm or more is used. It is preferable to do.
 セルロースファイバーが少なすぎると、成形時の潤滑性が不足して成形不良が生じる恐れがある。このため、セルロースファイバーの添加量は、混合粉末の全量に対し0.2wt.%以上とすることが好ましく、0.3wt.%以上とすることがさらに好ましい。また、セルロースファイバーが多すぎると、混合粉末の流動度が悪化する。このため、セルロースファイバーの添加量は、混合粉末の全量に対し1.1wt.%以下とすることが好ましく、1.0wt.%以下とすることがさらに好ましく、0.5wt.%以下とすることがさらに好ましい。 If the amount of the cellulose fiber is too small, there is a possibility that the lubricity at the time of molding may be insufficient to cause molding failure. For this reason, the addition amount of cellulose fiber is 0.2 wt. % Or more, preferably 0.3 wt. It is more preferable to make it% or more. Moreover, when there are too many cellulose fibers, the flowability of mixed powder will deteriorate. For this reason, the addition amount of the cellulose fiber is 1.1 wt. % Or less, preferably 1.0 wt. It is further more preferable to make it less than 0.5%. It is more preferable to make it% or less.
 上記の混合粉末を金型の内部に供給して圧縮成形することで、所定形状の圧粉体が得られる。このとき、混合粉末に含まれるセルロースファイバーからなる内部潤滑剤が、粉末同士や粉末-金型間に入り込んで潤滑機能を果たすことにより、成形が可能となる。さらに、本実施形態の混合粉末は、従来用いられていた潤滑剤(金属セッケンやワックス)を含んでいないため、従来の潤滑剤に起因する圧粉強度の低下を回避できる。尚、混合粉末に配合される内部潤滑剤は、大部分(80wt.%以上)がセルロースファイバーであれば、従来の潤滑剤を少量含むものであってもよいが、圧粉体の強度を高めるためには、本実施形態のように従来の潤滑剤を一切含まず、セルロースファイバーのみからなる内部潤滑剤を使用することが好ましい。 By supplying the above-mentioned mixed powder to the inside of the mold and performing compression molding, a green compact having a predetermined shape can be obtained. At this time, the internal lubricant consisting of cellulose fibers contained in the mixed powder penetrates one another or between the powder and the mold to perform a lubricating function, thereby enabling molding. Furthermore, since the mixed powder of the present embodiment does not contain a conventionally used lubricant (metal soap or wax), it is possible to avoid a reduction in the green strength due to the conventional lubricant. The internal lubricant to be mixed with the mixed powder may contain a small amount of a conventional lubricant as long as the majority (80 wt.% Or more) is a cellulose fiber, but the strength of the green compact can be increased. For this reason, it is preferable to use an internal lubricant consisting only of cellulose fiber, which does not contain any conventional lubricant as in the present embodiment.
 こうして成形された圧粉体は、焼結工程に搬送され、焼結炉内に投入される。このとき、上記のように圧粉体の高強度化が図られていることにより、圧粉金型から焼結炉に移送する際に圧粉体が損傷する事態を防止できる。そして、圧粉体を、所定の焼結温度で所定時間焼成することで、焼結体が生成される。焼結により、圧粉体に含まれるセルロースファイバーは熱分解するが、セルロースファイバーは植物由来の材料であるため、環境への負荷は低い。その後、必要に応じて、焼結体にサイジングや熱処理が施され、粉末冶金製品が完成する。この粉末冶金製品は、例えばギヤ、カム、軸受等の機械部品として使用される。 The green compact thus formed is conveyed to the sintering step and introduced into the sintering furnace. At this time, since the strength of the green compact is increased as described above, the green compact can be prevented from being damaged when it is transferred from the green compact to the sintering furnace. Then, the green compact is sintered at a predetermined sintering temperature for a predetermined time to generate a sintered body. Although the cellulose fibers contained in the green compact are thermally decomposed by the sintering, the load on the environment is low because the cellulose fibers are a plant-derived material. Thereafter, if necessary, the sintered body is subjected to sizing and heat treatment to complete a powder metallurgy product. This powder metallurgical product is used, for example, as mechanical parts such as gears, cams and bearings.
 本発明の作用効果を確認するために、以下の実験を実施した。 The following experiments were performed to confirm the effects of the present invention.
 本実験では、鉄分、銅粉、炭素系粉末、及び内部潤滑剤からなる混合粉末を使用した。鉄粉はJFEスチール株式会社製の水アトマイズ粉末である「JIPシグマロイ2010」を用いた。銅粉は、福田金属箔粉工業株式会社製の電解粉末である「CE-25」を用いた。黒鉛は、TIMCAL社製の人造黒鉛である「F-10」を用いた。 In this experiment, a mixed powder consisting of iron, copper powder, carbon-based powder, and an internal lubricant was used. As iron powder, "JIP Sigma Roy 2010" which is a water atomized powder manufactured by JFE Steel Corporation was used. As the copper powder, “CE-25”, which is an electrolytic powder manufactured by Fukuda Metal Foil & Powder Co., Ltd., was used. As the graphite, “F-10” which is an artificial graphite manufactured by TIMCAL was used.
 セルロースファイバーのみからなる内部潤滑剤を含む混合粉末を実施例とし、従来の潤滑剤を含む混合粉末を比較例とした。セルロースファイバーは、日本製紙株式会社製の粉末セルロースである「KCフロック W-100GK」(以下、100GKと記す)、「NPファイバー W-10MG2」(以下、10MG2と記す)、あるいは「NPファイバー W-06MG」(以下、06MGと記す)を用いた。また、従来の潤滑剤としては、LONZA社製のエチレンビスステアリン酸アミドである「ACRAWAXCアトマイズ」(以下、ACRAと記す)を用いた。各内部潤滑剤の外観を図1に、粒度分布を図2に示す。また、各内部潤滑剤の諸元を下記の表1に示す。 A mixed powder containing an internal lubricant consisting only of cellulose fibers was taken as an example, and a mixed powder containing a conventional lubricant was taken as a comparative example. Cellulose fibers can be powdered cellulose manufactured by Nippon Paper Industries Co., Ltd. “KC floc W-100 GK” (hereinafter referred to as “100 GK”), “NP fiber W-10 MG2” (hereinafter referred to as “10 MG2”), or “NP fiber W— "06MG" (hereinafter referred to as "06MG") was used. As a conventional lubricant, "ACRAWAXC atomize" (hereinafter referred to as ACRA), which is ethylenebisstearic acid amide manufactured by LONZA Corporation, was used. The appearance of each internal lubricant is shown in FIG. 1, and the particle size distribution is shown in FIG. The specifications of each internal lubricant are shown in Table 1 below.
 混合粉末中における各粉末の比率は、銅粉を1.5wt.%、黒鉛を0.2wt.%、内部潤滑剤を0.5wt.%とし、残部を鉄粉とした。そして、下記の表2に示すように、内部潤滑剤として06MGを用いたものを実施例1、内部潤滑剤として10MG2を用いたものを実施例2、内部潤滑剤として100GKを用いたものを実施例3、内部潤滑剤としてACRAを用いたものを比較例1、内部潤滑剤としてACRA及び100GKをそれぞれ50wt.%ずつ用いたものを比較例2とした。各粉末をそれぞれ秤量した後、筒井理化学器械株式会社のV型混合器で40分混合した。 The ratio of each powder in the mixed powder was 1.5 wt. %, 0.2 wt. %, Internal lubricant 0.5 wt. And the rest was iron powder. Then, as shown in Table 2 below, Example 1 using 06MG as an internal lubricant, Example 2 using 10MG 2 as an internal lubricant, and Example using 100 GK as an internal lubricant are performed. In Example 3, Comparative Example 1 using ACRA as the internal lubricant, and 50 wt. What used% each was set as Comparative Example 2. Each powder was individually weighed, and then mixed for 40 minutes with a V-type mixer manufactured by Tsutsui Rikagaku Instrument Co., Ltd.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 そして、各混合粉末の流れやすさを調査するため、流動度を測定した。測定方法はJIS Z2502に則り、50gに秤量した混合粉末を、オリフィスがある容器から落下させ、流れきるまでの時間を測定した。結果を上記表2に示す。 Then, in order to investigate the flowability of each mixed powder, the fluidity was measured. The measurement method was in accordance with JIS Z 2502, and the mixed powder weighed to 50 g was dropped from a container with an orifice, and the time until it flowed was measured. The results are shown in Table 2 above.
 その後、混合粉末を圧粉成形し、外径23.2mm×内径16.4mm×軸方向長さ7mmの円筒試験片と、φ11.3mm×軸方向長さ10mmの円柱試験片を作製した。成形条件は、室温で成形圧力を1176MPaとした。 Thereafter, the mixed powder was compacted, and cylindrical test pieces of outer diameter 23.2 mm × inner diameter 16.4 mm × axial length 7 mm and φ11.3 mm × axial length 10 mm were produced. The molding conditions were such that the molding pressure was 1176 MPa at room temperature.
 そして、圧粉体の欠けやすさを調査するため、ラトラ値を測定した。測定方法はJPMA P11に則り、5個の円柱試験片をステンレス金網が張られた円筒かごに投入し、87min-1の回転速度で1000回転させ、その重量減少率を測定した。結果を上記表2に示す。 Then, the rattler value was measured in order to investigate the chipping tendency of the green compact. The measurement method pursuant to JPMA P11, five cylindrical test piece was placed in a cylindrical cage stainless wire mesh is stretched, is 1000 rotated at a rotational speed of 87Min -1, measured its weight reduction rate. The results are shown in Table 2 above.
 次に、圧粉体の強さを調査するため、圧環強さを測定した。測定方法はJIS Z2507に則り、円筒試験片を軸に対して垂直方向に負荷をかけ、破断時の荷重を測定した。試験は万能試験機を用い、ストローク制御で行った。試験時のストローク速度は0.1mm/minとした。結果を上記表2に示す。 Next, in order to investigate the strength of the green compact, the radial crushing strength was measured. According to JIS Z 2507, the load was applied to the cylindrical test piece in the direction perpendicular to the axis, and the load at break was measured. The test was performed using a universal testing machine with stroke control. The stroke speed at the time of the test was 0.1 mm / min. The results are shown in Table 2 above.
 上記表2に示すように、内部潤滑剤としてセルロースファイバーを用いた実施例1~3は、いずれも優れた流動度、ラトラ値、圧環強さであり、良好な物性を示した。特に、06MGを用いた実施例1は、流動度において35sec/50g未満という非常に優れた値を示した。一方、従来の潤滑剤(ACRA)を含む比較例1及び2は、いずれの物性も、セルロースファイバーを用いた実施例1~3に劣る結果となった。 As shown in Table 2 above, Examples 1 to 3 using a cellulose fiber as an internal lubricant all had excellent fluidity, latra value and radial crushing strength, and exhibited good physical properties. In particular, Example 1 using 06MG showed a very excellent value of less than 35 sec / 50 g in fluidity. On the other hand, Comparative Examples 1 and 2 including the conventional lubricant (ACRA) resulted in inferior physical properties to Examples 1 to 3 using cellulose fibers.
 次に、潤滑剤としてセルロースファイバー(10MG2)を用い、その添加量を変化させた場合の混合粉末および圧粉体の諸物性を調査した。潤滑剤の添加量は、0、0.3、0.5、1.0、1.2wt.%とした。その結果、下記の表3に示すように、セルロースファイバーを添加しなかった比較例3は、潤滑性不足のため圧粉体を成形することができなかったが、セルロースファイバーを添加した実施例1及び4~6は圧粉体を成形することができた。このことから、セルロースファイバーが成形時に潤滑剤として機能していることが確認された。特に、セルロースファイバーの添加量が0.3~1.0wt.%の範囲である実施例1、4、及び5の混合粉末を用いた圧粉体は、優れた物性を示した。一方、セルロースファイバーの添加量が1.2wt.%である実施例6は、圧粉体は優れた物性を示したものの、流動度が低かった。以上より、セルロースファイバーの添加量は、混合粉末全体に対して0.2~1.1wt.%が好ましいと言える。 Next, using a cellulose fiber (10MG2) as a lubricant, various physical properties of the mixed powder and the green compact when the amount of addition was changed were investigated. The amount of lubricant added is 0, 0.3, 0.5, 1.0, 1.2 wt. %. As a result, as shown in Table 3 below, in Comparative Example 3 in which no cellulose fiber was added, although a green compact could not be formed because of insufficient lubricity, Example 1 in which cellulose fiber was added And 4 to 6 were able to form a green compact. From this, it was confirmed that the cellulose fiber functions as a lubricant at the time of molding. In particular, green compacts using the mixed powders of Examples 1, 4 and 5 in which the amount of cellulose fiber added was in the range of 0.3 to 1.0 wt.% Showed excellent physical properties. On the other hand, the amount of cellulose fiber added is 1.2 wt. Although Example 6 which is% showed the physical property which was excellent in the green compact, the fluidity was low. From the above, the addition amount of cellulose fiber is 0.2 to 1.1 wt. It can be said that% is preferable.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (7)

  1.  金属粉末及び内部潤滑剤を含む粉末冶金用混合粉末であって、
     前記内部潤滑剤が、セルロースファイバーを80wt.%以上含むことを特徴とする粉末冶金用混合粉末。
    A mixed powder for powder metallurgy comprising a metal powder and an internal lubricant,
    The internal lubricant comprises 80 wt. The mixed powder for powder metallurgy characterized by containing more than%.
  2.  前記内部潤滑剤が、セルロースファイバーのみからなる請求項1に記載の粉末冶金用混合粉末。 The mixed powder for powder metallurgy according to claim 1, wherein the internal lubricant consists only of cellulose fibers.
  3.  前記セルロースファイバーが、平均直径20μm以下、平均長さ100μm以下である請求項1又は2に記載の粉末冶金用混合粉末。 The mixed powder for powder metallurgy according to claim 1 or 2, wherein the cellulose fiber has an average diameter of 20 μm or less and an average length of 100 μm or less.
  4.  前記内部潤滑剤の含有量が、粉末全体の0.2wt.%以上、1.1wt.%以下である請求項1~3の何れか1項に記載の粉末冶金用混合粉末。 The content of the internal lubricant is 0.2 wt. % Or more, 1.1 wt. The mixed powder for powder metallurgy according to any one of claims 1 to 3, which is at most%.
  5.  前記金属粉末の主成分が鉄粉である請求項1~4の何れか1項に記載の粉末冶金用混合粉末。 The mixed powder for powder metallurgy according to any one of claims 1 to 4, wherein the main component of the metal powder is iron powder.
  6.  請求項1~5の何れか1項に記載の粉末冶金用混合粉末からなる圧粉体。 A green compact comprising the mixed powder for powder metallurgy according to any one of claims 1 to 5.
  7.  請求項1~5の何れか1項に記載の粉末冶金用混合粉末を圧縮成形して圧粉体を得る工程と、前記圧粉体を焼結して焼結体を得る工程とを含む機械部品の製造方法。 A machine comprising the steps of compression molding the mixed powder for powder metallurgy according to any one of claims 1 to 5 to obtain a green compact, and sintering the green compact to obtain a sintered body. Method of manufacturing parts.
PCT/JP2016/060362 2015-04-30 2016-03-30 Mixed powder for powder metallurgy, powder compact and method for producing machine component WO2016174985A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-093113 2015-04-30
JP2015093113 2015-04-30
JP2015250084A JP2016211068A (en) 2015-04-30 2015-12-22 Mixed powder for powder metallurgy
JP2015-250084 2015-12-22

Publications (1)

Publication Number Publication Date
WO2016174985A1 true WO2016174985A1 (en) 2016-11-03

Family

ID=57198330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060362 WO2016174985A1 (en) 2015-04-30 2016-03-30 Mixed powder for powder metallurgy, powder compact and method for producing machine component

Country Status (1)

Country Link
WO (1) WO2016174985A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328301A (en) * 1989-06-23 1991-02-06 Asahi Tec Corp Method for compacting metal
JPH07138608A (en) * 1993-11-17 1995-05-30 Tomoegawa Paper Co Ltd Production of metallic fiber sintered sheet
JP2007517985A (en) * 2004-01-14 2007-07-05 リアクト−エヌティーアイ,エルエルシー Powder metal mixture containing micronized cellulose fibers
JP2015012188A (en) * 2013-06-28 2015-01-19 住友電気工業株式会社 Method of manufacturing powder magnetic core, and powder magnetic core

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328301A (en) * 1989-06-23 1991-02-06 Asahi Tec Corp Method for compacting metal
JPH07138608A (en) * 1993-11-17 1995-05-30 Tomoegawa Paper Co Ltd Production of metallic fiber sintered sheet
JP2007517985A (en) * 2004-01-14 2007-07-05 リアクト−エヌティーアイ,エルエルシー Powder metal mixture containing micronized cellulose fibers
JP2015012188A (en) * 2013-06-28 2015-01-19 住友電気工業株式会社 Method of manufacturing powder magnetic core, and powder magnetic core

Similar Documents

Publication Publication Date Title
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
TWI413685B (en) Lubricant for powder metallurgical compositions
JP2016188432A (en) Production method of powder metallurgy workpiece and workpiece
WO2014157089A1 (en) Copper alloy powder, sintered copper alloy body and brake lining for use in high-speed railway
JP6440297B2 (en) Cu-based sintered bearing
JP2018003135A (en) Sintered tungsten-based alloy and manufacturing method therefor
WO2015001894A1 (en) Sintered mechanical component and manufacturing method therefor
JP6675886B2 (en) Oil-impregnated bearing and its manufacturing method
WO2016174985A1 (en) Mixed powder for powder metallurgy, powder compact and method for producing machine component
US9815114B2 (en) Powder for molding, lubricant-concentrated powder and method for producing metal member
CN108883472B (en) Cu-based sintered sliding material and method for producing same
US20160311026A1 (en) Machine component using powder compact and method for producing same
KR101650174B1 (en) Cu-Carbon binded powder and pressed articles and slide material manufactured therewith
JP4770667B2 (en) Iron-based powder mixture for warm mold lubrication molding
JP2016141815A (en) Sliding member and manufacturing method therefor
JP2001294905A (en) Method for producing micromodule gear
JP2010156059A (en) Iron-based powdery mixture for warm die lubrication molding
JP2016211068A (en) Mixed powder for powder metallurgy
WO2018181107A1 (en) Sintered aluminum alloy material and method for producing same
JPWO2020202805A1 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
WO2016148137A1 (en) Machine component and production method therefor
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
JP3931503B2 (en) Lubricant for warm mold lubrication, high-density iron-based powder molded body, and method for producing high-density iron-based sintered body
JP2019151910A (en) Method for producing composite sintered member and composite sintered member
JP6450213B2 (en) Warm forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786262

Country of ref document: EP

Kind code of ref document: A1