JP2017128764A - Iron-based sintered slide material and manufacturing method therefor - Google Patents

Iron-based sintered slide material and manufacturing method therefor Download PDF

Info

Publication number
JP2017128764A
JP2017128764A JP2016008585A JP2016008585A JP2017128764A JP 2017128764 A JP2017128764 A JP 2017128764A JP 2016008585 A JP2016008585 A JP 2016008585A JP 2016008585 A JP2016008585 A JP 2016008585A JP 2017128764 A JP2017128764 A JP 2017128764A
Authority
JP
Japan
Prior art keywords
iron
mass
powder
surface pressure
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016008585A
Other languages
Japanese (ja)
Inventor
翔太 大平
Shota Ohira
翔太 大平
淳一 本郷
Junichi Hongo
淳一 本郷
勉 後迫
Tsutomu Ushirozako
勉 後迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Sinter Co Ltd
Original Assignee
Fine Sinter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fine Sinter Co Ltd filed Critical Fine Sinter Co Ltd
Priority to JP2016008585A priority Critical patent/JP2017128764A/en
Publication of JP2017128764A publication Critical patent/JP2017128764A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an iron-based sintered slide material capable of increasing deposition amount of Cu single substance in an Fe substrate based on property of Cu and extremely enhancing slidable characteristic by increasing the content of Cu in the iron-based sintered slide material of 15% or more by mass ratio.SOLUTION: There is provided an iron-based sintered slide material having a metallic structure having a whole composition consisting of a substrate consisting of, by mass ratio, S:0.2 to 3.0%, Cu:15 to 50% and the balance:Fe with inevitable impurities and having sulfide particles dispersed and a pore, wherein the substrate is a ferrite phase or a ferrite phase with a copper phase dispersed.SELECTED DRAWING: None

Description

本発明は、各種の摺動部材の製造に好適な鉄基焼結摺動材料に関し、特に、油圧ギアポンプ等に使用される側板(サイドプレート)を製造するに好適な鉄基焼結摺動材料及びその製造方法に関する。   The present invention relates to an iron-based sintered sliding material suitable for manufacturing various sliding members, and particularly, an iron-based sintered sliding material suitable for manufacturing a side plate (side plate) used for a hydraulic gear pump or the like. And a manufacturing method thereof.

従来より、各種装置の摺動部に使用される摺動部材を製造するため、摺動特性及び機械的強度に優れた種々の摺動材料が提案されている。
例えば、粉末冶金法で製造される焼結摺動材料として、特開2014−177658号公報には、固体潤滑剤が気孔中及び粉末粒界のみならず、粉末粒内にも均一に分散されるとともに基地に強固に固着され、摺動特性及び機械的強度に優れた鉄基焼結摺動部材が提案されている。
Conventionally, various sliding materials excellent in sliding characteristics and mechanical strength have been proposed in order to manufacture sliding members used in sliding portions of various devices.
For example, as a sintered sliding material manufactured by a powder metallurgy method, Japanese Patent Application Laid-Open No. 2014-177658 discloses that a solid lubricant is uniformly dispersed not only in pores and powder grain boundaries but also in powder grains. At the same time, an iron-based sintered sliding member that is firmly fixed to the base and has excellent sliding characteristics and mechanical strength has been proposed.

具体的に、前記特開2014−177658号公報には、全体組成が、質量比で、S:0.2〜3.24%、Cu:3〜10%および残部:Feおよび不可避不純物からなるとともに、硫化物粒子が分散する基地と、気孔とからなる金属組織を有し、前記基地は、フェライト相もしくは銅相が分散するフェライト相であり、前記硫化物粒子は、基地に対して0.8〜15.0体積%の割合で分散した鉄基焼結摺動部材が記載されている。   Specifically, in the above-mentioned Japanese Patent Application Laid-Open No. 2014-177658, the total composition is composed of S: 0.2 to 3.24%, Cu: 3 to 10%, and the balance: Fe and inevitable impurities in terms of mass ratio. , Having a metal structure composed of a matrix in which sulfide particles are dispersed and pores, the matrix being a ferrite phase in which a ferrite phase or a copper phase is dispersed, and the sulfide particles being 0.8% relative to the matrix. An iron-based sintered sliding member dispersed at a rate of ˜15.0% by volume is described.

特開2014−177658号公報JP 2014-177658 A

特許文献1に記載された鉄基焼結摺動部材では、質量比でCuが3〜10%含有されているが、Cuは、Fe基地中に固溶されたCuと硫化物として存在し、Cu単体としては殆ど存在していない。   In the iron-based sintered sliding member described in Patent Document 1, Cu is contained in a mass ratio of 3 to 10%, but Cu exists as Cu and sulfide dissolved in Fe base, There is almost no Cu as a simple substance.

しかしながら、前記した特許文献1に記載された鉄基焼結摺動部材では、質量比でCuは3〜10%程度しか含有されておらず、Cu単体の割合は少ないので、鉄基焼結摺動部材中に単体で存在するCuによる摺動特性の更なる向上を図ることは困難なものであった。   However, the iron-based sintered sliding member described in Patent Document 1 described above contains only about 3 to 10% of Cu by mass ratio, and the ratio of Cu alone is small. It has been difficult to further improve the sliding characteristics due to Cu existing alone in the moving member.

本発明は前記従来の問題点を解消するためになされたものであり、鉄基焼結摺動材料におけるCuの含有量を質量比で15%以上に増加することにより、Cu単体の割合を増大し、摺動特性を格段に向上することができる鉄基焼結摺動材料を提供することを目的とする。   The present invention has been made to solve the above-mentioned conventional problems, and by increasing the Cu content in the iron-based sintered sliding material to a mass ratio of 15% or more, the proportion of Cu alone is increased. And it aims at providing the iron-based sintered sliding material which can improve a sliding characteristic markedly.

前記目的を達成するため請求項1に係る鉄基焼結衝動材料は、 全体組成が、質量比で、S:0.2〜3.0%、Cu:15〜50%、残部:Feおよび不可避不純物からなるとともに硫化物粒子が分散する基地と気孔とからなる金属組織を有し、 前記基地は、フェライト相もしくは銅相が分散するフェライト相であることを特徴とする。   In order to achieve the above object, the iron-based sintered impulse material according to claim 1 has an overall composition, by mass ratio, of S: 0.2 to 3.0%, Cu: 15 to 50%, the balance: Fe and inevitable. It has a metal structure composed of impurities and a matrix in which sulfide particles are dispersed and pores, and the matrix is a ferrite phase in which a ferrite phase or a copper phase is dispersed.

請求項3に係る鉄基焼結摺動材料の製造方法は、 鉄粉末に、質量比で0.2〜3.0%のS粉と、15〜50%のCu粉とを添加して混合した原料粉末を用い、押型内で圧粉成形し、得られた成形体を非酸化性ガス雰囲気中、1100〜1300℃で焼結することを特徴とする。   The method for producing an iron-based sintered sliding material according to claim 3 is as follows: iron powder is mixed with 0.2 to 3.0% S powder and 15 to 50% Cu powder in a mass ratio The obtained raw material powder is compacted in a pressing die, and the obtained molded body is sintered at 1100 to 1300 ° C. in a non-oxidizing gas atmosphere.

本願発明に係る鉄基摺動材料は、質量比でCuが15〜50%含有されているので、Cu単体の割合を増大し、摺動特性を格段に向上することができる。   Since the iron-based sliding material according to the present invention contains 15 to 50% of Cu by mass ratio, the percentage of Cu alone can be increased and the sliding characteristics can be remarkably improved.

第1実施例〜第5実施例に係る鉄基焼結摺動材料の生成条件及び摩擦摩耗試験の試験結果を示すテーブルである。It is a table | surface which shows the production | generation conditions of the iron-base sintered sliding material which concerns on 1st Example-5th Example, and the test result of a friction abrasion test. 各実施例におけるCu添加量と焼付面圧との関係を示すグラフである。It is a graph which shows the relationship between Cu addition amount and baking surface pressure in each Example. 第3実施例に係る鉄基焼結摺動材料の断面組織を撮影した写真である。It is the photograph which image | photographed the cross-sectional structure | tissue of the iron-based sintered sliding material which concerns on 3rd Example. Cuにより摺動特性が向上する例を記載した模式断面図である。It is a schematic cross section describing an example in which sliding characteristics are improved by Cu.

以下、本発明の実施形態に係る鉄基焼結摺動材料の金属組織及び数値限定の根拠について、本実施形態の作用とともに説明する。本実施形態の鉄基焼結摺動材料では、主成分をFeとする。ここで、主成分とは、焼結摺動材料中の過半を占める成分の意味であり、本実施形態においては全体組成におけるFe量が50質量%以上である。金属組織は、Fe硫化物粒子とCu硫化物粒子と銅相が分散する鉄基地(鉄合金基地)と気孔とからなる。鉄基地は、鉄粉末及び/又は鉄合金粉末により形成される。気孔は、粉末冶金法に起因して生じるものであり、原料粉末を圧粉成形した際の粉末間の空隙が、原料粉末の結合により形成された鉄基地中に残留したものである。   Hereinafter, the metal structure of the iron-based sintered sliding material according to the embodiment of the present invention and the grounds for numerical limitation will be described together with the operation of the present embodiment. In the iron-based sintered sliding material of this embodiment, the main component is Fe. Here, the main component means a component that occupies a majority in the sintered sliding material, and in this embodiment, the Fe amount in the overall composition is 50 mass% or more. The metal structure is composed of iron bases (iron alloy bases) and pores in which Fe sulfide particles, Cu sulfide particles, and a copper phase are dispersed. The iron base is formed of iron powder and / or iron alloy powder. The pores are caused by the powder metallurgy method, and voids between the powders when the raw material powder is compacted are left in the iron base formed by the bonding of the raw material powders.

また、鉄基地にSを付与し、Feと結合して硫化鉄を生成する。このように鉄基地中に析出する硫化物は、主成分であるFeと結合されて生成する硫化鉄である。   Moreover, S is given to the iron base and combined with Fe to generate iron sulfide. Thus, the sulfide precipitated in the iron base is iron sulfide generated by being combined with Fe as the main component.

ここで、Cuは室温ではFeと比較すると硫化物を形成し難いが、高温下ではFeよりも標準生成自由エネルギーが小さく、硫化物を形成し易い。また、Cuはα-Fe中への固溶限が小さく、化合物を生成しないため、高温下でγ-Fe中に固溶したCuは冷却過程でα-Fe中にCu単体で析出する特性を持っている。そのため、焼結中の冷却過程で一度固溶したCuはFe基地中から均一に析出する。このとき、Cuと硫化物はこの基地中から析出したCuを核として金属硫化物(硫化銅、鉄と銅の複合硫化物)を形成するとともに、その周囲に硫化物粒子(硫化鉄)の析出を促進する作用を有する。   Here, Cu is less likely to form a sulfide at room temperature than Fe, but at a high temperature, the standard free energy of formation is smaller than that of Fe, and a sulfide is easily formed. Also, since Cu has a small solid solubility limit in α-Fe and does not produce a compound, Cu dissolved in γ-Fe at a high temperature has the property of being precipitated as a simple substance in α-Fe during the cooling process. have. Therefore, Cu once dissolved in the cooling process during sintering is uniformly deposited from within the Fe base. At this time, Cu and sulfide form a metal sulfide (copper sulfide, composite sulfide of iron and copper) with Cu precipitated from the base as a nucleus, and precipitate sulfide particles (iron sulfide) around it. Has the effect of promoting

なお、Cuは硫化物の生成を促進させることから、Cu量に比してS量が多い場合には鉄基地中に硫化銅もしくは鉄と銅の複合硫化物等の形態で析出するが、Cu量に比してS量が少ない場合には鉄基地中に銅相として析出して分散する。     Since Cu promotes the formation of sulfides, when the amount of S is larger than the amount of Cu, it precipitates in the form of copper sulfide or a composite sulfide of iron and copper in the iron matrix. When the amount of S is smaller than the amount, it precipitates and disperses as a copper phase in the iron matrix.

Sは硫黄粉末の形態で付与される。この方が硫化物の形態で付与するよりも安価であり、また、Sの含有量を簡単にコントロールできる。   S is provided in the form of sulfur powder. This method is cheaper than the case where it is applied in the form of sulfide, and the S content can be easily controlled.

Cuは、銅粉末、銅合金粉末もしくは鉄に銅を部分的に拡散した粉末の形態で付与される。Cuは、上述のとおり、硫化物粒子の析出を促進する効果があるとともに、鉄基地中に銅相が析出して分散する場合、軟質な銅相が、相手部材とのなじみ性を向上させる作用を有する。本実施形態において、Cu量は全体組成において15〜50質量%の範囲、望ましくは20〜40質量%の範囲で付与する。   Cu is applied in the form of a powder obtained by partially diffusing copper into copper powder, copper alloy powder or iron. As described above, Cu has the effect of promoting the precipitation of sulfide particles, and when the copper phase precipitates and disperses in the iron matrix, the soft copper phase improves the compatibility with the mating member. Have In the present embodiment, the amount of Cu is given in the range of 15 to 50% by mass, desirably 20 to 40% by mass in the overall composition.

尚、一般に、鉄基焼結合金は、鉄基地の強化のため、Cを鉄基地に固溶させて鋼として使用するが、本実施形態に係る鉄基焼結摺動材料においても同様にCを追加することができる。Cは、合金粉末の形態で付与すると合金粉末の硬さが高くなって原料粉末の圧縮性が低下するため、黒鉛粉末の形態で付与する。
ここに、Cを基地に固溶させず気孔中に黒鉛の状態で残留させると、この黒鉛が固体潤滑剤として機能し、摩擦係数の低減、摩耗の抑制等の効果が得られ、摺動特性を向上させることができる。
また、Cの一部あるいは全部が気孔中に黒鉛として分散していることが好ましい。この場合、Cを黒鉛粉末の形態で添加する。
In general, the iron-based sintered alloy is used as steel by dissolving C in the iron matrix for strengthening the iron matrix. However, in the iron-based sintered sliding material according to the present embodiment, C is similarly used. Can be added. When C is applied in the form of an alloy powder, the hardness of the alloy powder increases and the compressibility of the raw material powder decreases, so it is applied in the form of graphite powder.
Here, if C is not dissolved in the base without remaining as a solid solution in the pores, this graphite functions as a solid lubricant, and effects such as reduction of friction coefficient and suppression of wear are obtained, and sliding characteristics are obtained. Can be improved.
Moreover, it is preferable that part or all of C is dispersed as graphite in the pores. In this case, C is added in the form of graphite powder.

鉄基地の金属組織は、Cを与えない場合フェライト組織となる。また、Cを与える場合において、Cを気孔中に黒鉛の状態で残留させたとき、鉄基地の金属組織はフェライトとなる。そして、Cの一部および全部を鉄基地に拡散させたとき、鉄基地の金属組織はフェライトとパーライトの混合組織もしくはパーライトとなる。   The metal structure of the iron base becomes a ferrite structure when C is not given. In addition, when C is provided, when C is left in the pores in the form of graphite, the metal structure of the iron base becomes ferrite. When part and all of C is diffused into the iron base, the metal structure of the iron base becomes a mixed structure of ferrite and pearlite or pearlite.

原料粉末は、従来から行われているように、製品の外周形状を造形する型孔を有する金型と、金型の型孔と摺動自在に嵌合し、製品の下端面を造形する下パンチと、製品の上端面を造形する上パンチにより原料粉末を圧縮成形した後、金型の型孔から抜き出す方法(押型法)により成形体に成形される。   As in the past, the raw material powder is slidably fitted into a mold having a mold hole for shaping the outer peripheral shape of the product and the mold hole of the mold, and forms the lower end surface of the product. After the raw material powder is compression-molded by a punch and an upper punch that shapes the upper end surface of the product, it is molded into a molded body by a method of extracting from a mold hole (molding method).

得られた成形体は、焼結炉で加熱されて焼結が行われる。このときの加熱保持温度、すなわち焼結温度は、焼結の進行および硫化物の形成に重要な影響を与える。ここで、Cuの融点が1084.5℃であることから、Cu液相を充分に発生させるため焼結温度を1100℃以上とする。一方、焼結温度が1300℃より高くなると、液相発生量が過多となり型くずれが生じ易くなる。なお、焼結雰囲気は非酸化性の雰囲気であればよいが、上述のようにSはH、Oと反応しやすいため、露点が低い雰囲気を用いることが好ましい。   The obtained molded body is heated and sintered in a sintering furnace. The heating and holding temperature at this time, that is, the sintering temperature, has an important influence on the progress of sintering and the formation of sulfides. Here, since the melting point of Cu is 1084.5 ° C., the sintering temperature is set to 1100 ° C. or higher in order to sufficiently generate the Cu liquid phase. On the other hand, when the sintering temperature is higher than 1300 ° C., the amount of liquid phase generated becomes excessive, and mold deformation is likely to occur. The sintering atmosphere may be a non-oxidizing atmosphere. However, since S easily reacts with H and O as described above, it is preferable to use an atmosphere with a low dew point.

以下、図1に示すテーブルを参照しつつ第1実施例〜第6実施例に基づき説明する。
[第1実施例]
Cu:10質量%及びS:2質量%を鉄粉末(88質量%)に添加し、混合して原料粉末を得た。そして、原料粉末を成形面圧:400[MPa]、成形密度:6.05[g/cm3]で成形し、30mm×30mmの平板状の圧粉体を作製した。次いで、非酸化性ガス雰囲気中、焼結温度:1100℃で焼結時間:30分間焼結して第1実施例に係る第1焼結体(Fe−10Cu−2S)を作製した。かかる第1焼結体につき、下記条件でリングオンディスク試験を行った。

試料:30mm×30mmの平板形状
相手材:クロムモリブデン鋼(SCM415)に浸炭焼入れしたリング材
表面粗さ:試料及びリング材共にRa0.2
荷重ステップ:0.25MPa/5min
周速:6m/sec
油種:作動油
油温:100℃
焼付きの判断は、摩擦係数が0.15以上になったときを基準とした。
Hereinafter, description will be made based on the first to sixth embodiments with reference to the table shown in FIG.
[First embodiment]
Cu: 10% by mass and S: 2% by mass were added to iron powder (88% by mass) and mixed to obtain a raw material powder. The raw material powder was molded at a molding surface pressure of 400 [MPa] and a molding density of 6.05 [g / cm 3 ] to produce a 30 mm × 30 mm flat green compact. Subsequently, sintering was carried out in a non-oxidizing gas atmosphere at a sintering temperature of 1100 ° C. for a sintering time of 30 minutes to produce a first sintered body (Fe-10Cu-2S) according to the first example. The first sintered body was subjected to a ring-on-disk test under the following conditions.
Sample: Flat plate shape of 30 mm x 30 mm Mating material: Ring material carburized and quenched in chromium molybdenum steel (SCM415) Surface roughness: Ra0.2 for both sample and ring material
Load step: 0.25 MPa / 5 min
Peripheral speed: 6m / sec
Oil type: Hydraulic oil Oil temperature: 100 ° C
The determination of seizure was based on when the friction coefficient became 0.15 or more.

かかる第1焼結体の焼結密度は、5.88[g/cm3]であり、作動油(100℃)環境下ですべり速度6[m/s]時のリングオンディスク試験により3.25[MPa]の焼付面圧が得られた。 The sintered density of the first sintered body is 5.88 [g / cm 3 ], and is 3 in a ring-on-disk test under a hydraulic oil (100 ° C.) environment and a sliding speed of 6 [m / s]. A seizure surface pressure of 25 [MPa] was obtained.

[第2実施例]
Cu:15質量%及びS:2質量%を鉄粉末(83質量%)に添加し、混合して原料粉末を得た。そして、原料粉末を成形面圧:400[MPa]、成形密度:6.05[g/cm3]で成形し、30mm×30mmの平板状の圧粉体を作製した。次いで、非酸化性ガス雰囲気中、焼結温度:1100℃で焼結時間:30分間焼結して第2実施例に係る第2焼結体(Fe−15Cu−2S)を作製した。かかる第2焼結体につき、前記第1実施例にて行ったものと同一条件でリングオンディスク試験を行った。
[Second Embodiment]
Cu: 15% by mass and S: 2% by mass were added to iron powder (83% by mass) and mixed to obtain a raw material powder. The raw material powder was molded at a molding surface pressure of 400 [MPa] and a molding density of 6.05 [g / cm 3 ] to produce a 30 mm × 30 mm flat green compact. Subsequently, sintering was carried out in a non-oxidizing gas atmosphere at a sintering temperature of 1100 ° C. for a sintering time of 30 minutes to produce a second sintered body (Fe-15Cu-2S) according to the second example. The second sintered body was subjected to a ring-on-disk test under the same conditions as those performed in the first example.

かかる第2焼結体の焼結密度は、5.97[g/cm3]であり、作動油(100℃)環境下ですべり速度6[m/s]時のリングオンディスク試験により4.25[MPa]の焼付面圧が得られた。 The sintered density of the second sintered body is 5.97 [g / cm 3 ], and is 4 in a ring-on-disk test under a hydraulic oil (100 ° C.) environment and a sliding speed of 6 [m / s]. A seizure surface pressure of 25 [MPa] was obtained.

[第3実施例]
Cu:20質量%及びS:2質量%を鉄粉末(78質量%)に添加し、混合して原料粉末を得た。そして、原料粉末を成形面圧:400[MPa]、成形密度:6.08[g/cm3]で成形し、30mm×30mmの平板状の圧粉体を作製した。次いで、非酸化性ガス雰囲気中、焼結温度:1100℃で焼結時間:30分間焼結して第3実施例に係る第3焼結体(Fe−20Cu−2S)を作製した。かかる第3焼結体につき、前記第1実施例にて行ったものと同一条件でリングオンディスク試験を行った。
[Third embodiment]
Cu: 20% by mass and S: 2% by mass were added to iron powder (78% by mass) and mixed to obtain a raw material powder. The raw material powder was molded at a molding surface pressure of 400 [MPa] and a molding density of 6.08 [g / cm 3 ] to produce a 30 mm × 30 mm flat green compact. Subsequently, sintering was carried out in a non-oxidizing gas atmosphere at a sintering temperature of 1100 ° C. for a sintering time of 30 minutes to produce a third sintered body (Fe-20Cu-2S) according to the third example. The third sintered body was subjected to a ring-on-disk test under the same conditions as those performed in the first example.

かかる第3焼結体の焼結密度は、6.06[g/cm3]であり、作動油(100℃)環境下ですべり速度6[m/s]時のリングオンディスク試験により4.75[MPa]の焼付面圧が得られた。 The sintered density of the third sintered body is 6.06 [g / cm 3 ], and according to a ring-on-disk test under a hydraulic oil (100 ° C.) environment and a sliding speed of 6 [m / s]. A seizure surface pressure of 75 [MPa] was obtained.

[第4実施例]
Cu:30質量%及びS:2質量%を鉄粉末(68質量%)に添加し、混合して原料粉末を得た。そして、原料粉末を成形面圧:400[MPa]、成形密度:6.18[g/cm3]で成形し、30mm×30mmの平板状の圧粉体を作製した。次いで、非酸化性ガス雰囲気中、焼結温度:1100℃で焼結時間:30分間焼結して第4実施例に係る第4焼結体(Fe−30Cu−2S)を作製した。かかる第4焼結体につき、前記第1実施例にて行ったものと同一条件でリングオンディスク試験を行った。
[Fourth embodiment]
Cu: 30% by mass and S: 2% by mass were added to iron powder (68% by mass) and mixed to obtain a raw material powder. The raw material powder was molded at a molding surface pressure of 400 [MPa] and a molding density of 6.18 [g / cm 3 ] to produce a 30 mm × 30 mm flat green compact. Subsequently, sintering was carried out in a non-oxidizing gas atmosphere at a sintering temperature of 1100 ° C. for a sintering time of 30 minutes to produce a fourth sintered body (Fe-30Cu-2S) according to the fourth example. With respect to the fourth sintered body, a ring-on-disk test was performed under the same conditions as those performed in the first example.

かかる第4焼結体の焼結密度は、6.37[g/cm3]であり、作動油(100℃)環境下ですべり速度6[m/s]時のリングオンディスク試験により5.00[MPa]の焼付面圧が得られた。 The sintered density of the fourth sintered body is 6.37 [g / cm 3 ], and is 5 in a ring-on-disk test under a hydraulic oil (100 ° C.) environment and a sliding speed of 6 [m / s]. A seizure surface pressure of 00 [MPa] was obtained.

[第5実施例]
Cu:40質量%及びS:2質量%を鉄粉末(58質量%)に添加し、混合して原料粉末を得た。そして、原料粉末を成形面圧:400[MPa]、成形密度:6.28[g/cm3]で成形し、30mm×30mmの平板状の圧粉体を作製した。次いで、非酸化性ガス雰囲気中、焼結温度:1100℃で焼結時間:30分間焼結して第5実施例に係る第5焼結体(Fe−40Cu−2S)を作製した。かかる第5焼結体につき、前記第1実施例にて行ったものと同一条件でリングオンディスク試験を行った。
[Fifth embodiment]
Cu: 40% by mass and S: 2% by mass were added to iron powder (58% by mass) and mixed to obtain a raw material powder. The raw material powder was molded at a molding surface pressure of 400 [MPa] and a molding density of 6.28 [g / cm 3 ] to produce a 30 mm × 30 mm flat green compact. Subsequently, sintering was carried out in a non-oxidizing gas atmosphere at a sintering temperature of 1100 ° C. for a sintering time of 30 minutes to prepare a fifth sintered body (Fe-40Cu-2S) according to the fifth example. The fifth sintered body was subjected to a ring-on-disk test under the same conditions as those performed in the first example.

かかる第5焼結体の焼結密度は、6.57[g/cm3]であり、作動油(100℃)環境下ですべり速度6[m/s]時のリングオンディスク試験により5.25[MPa]の焼付面圧が得られた。 The sintered density of the fifth sintered body is 6.57 [g / cm 3 ], which is determined by a ring-on-disk test in a hydraulic oil (100 ° C.) environment at a sliding speed of 6 [m / s]. A seizure surface pressure of 25 [MPa] was obtained.

[第6実施例]
Cu:50質量%及びS:2質量%を鉄粉末(48質量%)に添加し、混合して原料粉末を得た。そして、原料粉末を成形面圧:400[MPa]、成形密度:6.43[g/cm3]で成形し、30mm×30mmの平板状の圧粉体を作製した。次いで、非酸化性ガス雰囲気中、焼結温度:1100℃で焼結時間:30分間焼結して第6実施例に係る第6焼結体(Fe−50Cu−2S)を作製した。かかる第6焼結体につき、前記第1実施例にて行ったものと同一条件でリングオンディスク試験を行った。
[Sixth embodiment]
Cu: 50% by mass and S: 2% by mass were added to iron powder (48% by mass) and mixed to obtain a raw material powder. The raw material powder was molded at a molding surface pressure of 400 [MPa] and a molding density of 6.43 [g / cm 3 ] to produce a 30 mm × 30 mm flat green compact. Next, sintering was carried out in a non-oxidizing gas atmosphere at a sintering temperature of 1100 ° C. for a sintering time of 30 minutes to produce a sixth sintered body (Fe-50Cu-2S) according to the sixth example. The sixth sintered body was subjected to a ring-on-disk test under the same conditions as those performed in the first example.

かかる第6焼結体の焼結密度は、7.11[g/cm3]であり、作動油(100℃)環境下ですべり速度6[m/s]時のリングオンディスク試験により5.00[MPa]の焼付面圧が得られた。 The sintered density of the sixth sintered body is 7.11 [g / cm 3 ], which is determined by a ring-on-disk test in a hydraulic oil (100 ° C.) environment at a sliding speed of 6 [m / s]. A seizure surface pressure of 00 [MPa] was obtained.

尚、図1のテーブルに示すように、鉄粉末(100質量%)のみで原料粉末を生成し、かかる原料粉末を成形面圧:400[MPa]、成形密度:6.28[g/cm3]で成形し、30mm×30mmの平板状の圧粉体を作製した。次いで、非酸化性ガス雰囲気中、焼結温度:1100℃で焼結時間:30分間焼結して比較例1に係る焼結体(Fe)を作製した。
かかる焼結体の焼結密度は、6.27[g/cm3]であり、作動油(100℃)環境下ですべり速度6[m/s]時のリングオンディスク試験により2.50[MPa]の焼付面圧が得られた。
As shown in the table of FIG. 1, a raw material powder is produced only from iron powder (100% by mass), and the raw material powder is molded with a molding surface pressure of 400 [MPa] and a molding density of 6.28 [g / cm 3. ] To produce a 30 mm × 30 mm flat green compact. Subsequently, sintering was performed in a non-oxidizing gas atmosphere at a sintering temperature of 1100 ° C. and a sintering time of 30 minutes to prepare a sintered body (Fe) according to Comparative Example 1.
The sintered density of the sintered body is 6.27 [g / cm 3 ], and it is 2.50 [g / cm 3 ] under a hydraulic oil (100 ° C.) environment at a sliding speed of 6 [m / s] and a ring-on-disk test. A seizure surface pressure of [MPa] was obtained.

更に、図1のテーブルに示すように、S:2質量%を鉄粉末(98質量%)に添加し、混合して原料粉末を得た。かかる原料粉末を成形面圧:400[MPa]、成形密度:6.09[g/cm3]で成形し、30mm×30mmの平板状の圧粉体を作製した。次いで、非酸化性ガス雰囲気中、焼結温度:1100℃で焼結時間:30分間焼結して比較例2に係る焼結体(Fe−2S)を作製した。
かかる焼結体の焼結密度は、6.12[g/cm3]であり、作動油(100℃)環境下ですべり速度6[m/s]時のリングオンディスク試験により3.50[MPa]の焼付面圧が得られた。
Furthermore, as shown in the table of FIG. 1, S: 2% by mass was added to iron powder (98% by mass) and mixed to obtain a raw material powder. This raw material powder was molded at a molding surface pressure of 400 [MPa] and a molding density of 6.09 [g / cm 3 ] to produce a 30 mm × 30 mm flat green compact. Subsequently, sintering was performed in a non-oxidizing gas atmosphere at a sintering temperature of 1100 ° C. and a sintering time of 30 minutes, thereby producing a sintered body (Fe-2S) according to Comparative Example 2.
The sintered density of such a sintered body is 6.12 [g / cm 3 ], and it is 3.50 [g / s] according to a ring-on-disk test at a sliding speed of 6 [m / s] in a hydraulic oil (100 ° C.) environment. A seizure surface pressure of [MPa] was obtained.

続いて、第1比較例、第2比較例、第1実施例〜第6実施例に関して、Cu添加量[wt%]と焼付面圧[MPa]との関係について調べた。その結果が図2のグラフに示されている。
図2のグラフにおいて、第1比較例はCuを添加することなくFeのみを焼結して得られた焼結体であり、焼付面圧は2.5[MPa]である。また、第2比較例はS:2質量%のみをFe粉末に添加した原料粉末を焼結して得られた焼結体であり、焼付面圧は3.5[MPa]である。第1比較例と第2比較例とを比較すれば明らかなように、Sは焼付面圧を増加して摺動特性を向上させる作用を奏する。
Subsequently, for the first comparative example, the second comparative example, and the first to sixth examples, the relationship between the Cu addition amount [wt%] and the baking surface pressure [MPa] was examined. The result is shown in the graph of FIG.
In the graph of FIG. 2, the first comparative example is a sintered body obtained by sintering only Fe without adding Cu, and the baking surface pressure is 2.5 [MPa]. The second comparative example is a sintered body obtained by sintering raw material powder in which only S: 2% by mass is added to Fe powder, and the baking surface pressure is 3.5 [MPa]. As is apparent from a comparison between the first comparative example and the second comparative example, S has an effect of increasing the seizing surface pressure and improving the sliding characteristics.

第1実施例〜第6実施例のそれぞれに係る第1焼結体〜第6焼結体は、それぞれ2質量%のSが添加された原料粉末で作製しているが、Cuの含有量はそれぞれ異なっている。   The first sintered body to the sixth sintered body according to each of the first embodiment to the sixth embodiment are made of raw material powder to which 2 mass% of S is added, but the content of Cu is Each is different.

先ず、第1実施例に係る第1焼結体を作製するための原料粉には、10質量%のCuが含有されているが、測定された焼付面圧は3.25[MPa]であり、第2比較例の焼結体で測定された焼付面圧(3.5[MPa])よりも低い値である。これは、Cuが鉄基地中に拡散され、鉄基地が硬くなったこと、及び、銅相が未拡散銅として殆ど存在していないことに起因して、焼付面圧の値が低くなったものと考えられる。   First, the raw material powder for producing the first sintered body according to the first example contains 10% by mass of Cu, but the measured baking surface pressure is 3.25 [MPa]. The value is lower than the seizure surface pressure (3.5 [MPa]) measured with the sintered body of the second comparative example. This is due to the fact that Cu is diffused in the iron base, the iron base is hardened, and the value of the baking surface pressure is low due to the fact that the copper phase hardly exists as undiffused copper. it is conceivable that.

第2実施例に係る第2焼結体を作製するための原料粉には、15質量%のCuが含有されており、測定された焼付面圧は4.25[MPa]である。このように比較的高い焼付面圧の値が得られたのは、Cuの含有量が10質量%から15質量%に増加するに従って焼結体2において析出した銅相が未拡散銅として残存していることに基づくと考えられる。未拡散銅の存在に基づき焼付面圧の値が高くなり、摺動特性が向上するものである。   The raw material powder for producing the second sintered body according to the second example contains 15% by mass of Cu, and the measured baking surface pressure is 4.25 [MPa]. The relatively high seizure surface pressure value was obtained because the copper phase precipitated in the sintered body 2 remained as undiffused copper as the Cu content increased from 10% by mass to 15% by mass. It is thought that it is based on that. Based on the presence of undiffused copper, the value of the seizure surface pressure is increased, and the sliding characteristics are improved.

第3実施例に係る第3焼結体を作製するための原料粉には、20質量%のCuが含有されており、測定された焼付面圧は4.75[MPa]である。このように更に高い焼付面圧の値が得られたのは、Cuの含有量が15質量%から20質量%に増加するに従って焼結体3において析出した銅相が未拡散銅として残存していることに基づくと考えられる。未拡散銅の存在に基づき焼付面圧の値が高くなり、摺動特性が向上するものである。   The raw material powder for producing the third sintered body according to the third example contains 20% by mass of Cu, and the measured baking surface pressure is 4.75 [MPa]. Thus, the higher baking surface pressure was obtained because the copper phase precipitated in the sintered body 3 remained as undiffused copper as the Cu content increased from 15% by mass to 20% by mass. It is thought that it is based on being. Based on the presence of undiffused copper, the value of the seizure surface pressure is increased, and the sliding characteristics are improved.

第4実施例に係る第4焼結体を作製するための原料粉には、30質量%のCuが含有されており、測定された焼付面圧は5.00[MPa]である。このように第3実施例と比較して高い焼付面圧の値が得られたのは、Cuの含有量が20質量%から30質量%に増加するに従って焼結体4において析出した銅相がより多くの未拡散銅として残存していることに基づくと考えられる。多くの未拡散銅の存在に基づき焼付面圧の値が高くなり、更に摺動特性が向上するものである。   The raw material powder for producing the fourth sintered body according to the fourth example contains 30% by mass of Cu, and the measured baking surface pressure is 5.00 [MPa]. Thus, the value of the seized surface pressure higher than that in the third example was obtained because the copper phase precipitated in the sintered body 4 as the Cu content increased from 20% by mass to 30% by mass. It is thought that it is based on remaining as more undiffused copper. Based on the presence of a large amount of undiffused copper, the seizure surface pressure value is increased, and the sliding characteristics are further improved.

第5実施例に係る第5焼結体を作製するための原料粉には、40質量%のCuが含有されており、測定された焼付面圧は5.25[MPa]である。このように第4実施例と比較して高い焼付面圧の値が得られたのは、Cuの含有量が30質量%から40質量%に増加するに従って焼結体5において析出した銅相がより多くの未拡散銅として残存していることに基づくと考えられる。更に多くの未拡散銅の存在に基づき焼付面圧の値が高くなり、更に摺動特性が向上するものである。   The raw material powder for producing the fifth sintered body according to the fifth example contains 40% by mass of Cu, and the measured baking surface pressure is 5.25 [MPa]. Thus, the value of the seizing surface pressure higher than that in the fourth example was obtained because the copper phase precipitated in the sintered body 5 as the Cu content increased from 30% by mass to 40% by mass. It is thought that it is based on remaining as more undiffused copper. Further, the seizure surface pressure is increased due to the presence of more undiffused copper, and the sliding characteristics are further improved.

第6実施例に係る第6焼結体を作製するための原料粉には、50質量%のCuが含有されており、測定された焼付面圧は5.00[MPa]である。このように第5実施例と比較して低い焼付面圧の値が得られている。これについては以下のように考えられる。
即ち、Cuが40質量%から50質量%に増加するに従って焼結体5において析出した銅相がより多くの未拡散銅として残存するものではあるが、Cuの含有量に基づく焼付面圧の値は、Cuの含有量が40質量%程度でピークとなり、40質量%を超えるCuに基づく銅相は焼付面圧の値には寄与しなくなるものと考えられる。
The raw material powder for producing the sixth sintered body according to the sixth example contains 50% by mass of Cu, and the measured baking surface pressure is 5.00 [MPa]. In this way, a low seizure surface pressure value is obtained as compared with the fifth embodiment. This is considered as follows.
That is, as the Cu increases from 40% by mass to 50% by mass, the copper phase precipitated in the sintered body 5 remains as more undiffused copper, but the value of the baking surface pressure based on the Cu content. It is considered that the Cu content peaks at about 40% by mass, and the copper phase based on Cu exceeding 40% by mass does not contribute to the value of the baking surface pressure.

ここで、前記第1実施例〜第6実施例係る第1焼結体〜第6焼結体の内、第4実施例に係る第4焼結体を例として、その断面組織写真を図3に示す。図3において、鉄基地は白色の部分であり、硫化物は灰色の部分である。気孔は黒色の部分である。図3において硫化物(灰色)は鉄基地(白色)中に析出して分散しており、基地への固着性が良好であることが伺える。なお、気孔(黒色)は比較的丸みを帯びた形状となっている。
また、銅相は薄い灰色の部分であり、鉄基地の金属組織中に未拡散銅として比較的均一に分散されている。
Here, among the first sintered body to the sixth sintered body according to the first embodiment to the sixth embodiment, the fourth sintered body according to the fourth embodiment is taken as an example, and a cross-sectional structure photograph thereof is shown in FIG. Shown in In FIG. 3, the iron base is a white portion, and the sulfide is a gray portion. The pores are black portions. In FIG. 3, the sulfide (gray) is precipitated and dispersed in the iron matrix (white), indicating that the adhesion to the matrix is good. The pores (black) have a relatively round shape.
In addition, the copper phase is a light gray portion and is relatively uniformly dispersed as undiffused copper in the metal structure of the iron base.

前記したように、鉄基焼結摺動材料中に析出されて未拡散銅として分散されている場合には、銅相に基づき焼付面圧の値が増加して摺動特性を向上することに加えて、図4に模式的に示すように、Fe粒子の間に存在するCu相は軟質であることから、酸化物等の不純物が発生しても、かかる不純物はCu相中に埋没させることができる。これにより、鉄基焼結摺動材料における摺動特性を向上させることができる。   As described above, when precipitated in the iron-based sintered sliding material and dispersed as undiffused copper, the value of the seizing surface pressure is increased based on the copper phase to improve the sliding characteristics. In addition, as schematically shown in FIG. 4, since the Cu phase existing between Fe particles is soft, even if impurities such as oxides are generated, such impurities should be buried in the Cu phase. Can do. Thereby, the sliding characteristics in the iron-based sintered sliding material can be improved.

尚、本発明は前記実施形態により限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能であることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various improvements and changes can be made without departing from the gist of the present invention.

Claims (2)

全体組成が、質量比で、S:0.2〜3.0%、Cu:15〜50%、残部:Feおよび不可避不純物からなるとともに硫化物粒子が分散する基地と気孔とからなる金属組織を有し、
前記基地は、フェライト相もしくは銅相が分散するフェライト相であることを特徴とする鉄基焼結摺動材料。
The overall composition is, by mass ratio, S: 0.2 to 3.0%, Cu: 15 to 50%, the balance: Fe and an inevitable impurity, and a metal structure composed of bases and pores in which sulfide particles are dispersed. Have
The base is a ferrite phase in which a ferrite phase or a copper phase is dispersed.
鉄粉末に、質量比で0.2〜3.0%のS粉と、15〜50%のCu粉とを添加して混合した原料粉末を用い、押型内で圧粉成形し、得られた成形体を非酸化性雰囲気中、1100〜1300℃で焼結することを特徴とする鉄基焼結摺動材料の製造方法。
It was obtained by compacting in a pressing mold using raw material powder in which 0.2 to 3.0% S powder and 15 to 50% Cu powder were added to iron powder and mixed. A method for producing an iron-based sintered sliding material, comprising sintering a molded body at 1100 to 1300 ° C in a non-oxidizing atmosphere.
JP2016008585A 2016-01-20 2016-01-20 Iron-based sintered slide material and manufacturing method therefor Pending JP2017128764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016008585A JP2017128764A (en) 2016-01-20 2016-01-20 Iron-based sintered slide material and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016008585A JP2017128764A (en) 2016-01-20 2016-01-20 Iron-based sintered slide material and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2017128764A true JP2017128764A (en) 2017-07-27

Family

ID=59396657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016008585A Pending JP2017128764A (en) 2016-01-20 2016-01-20 Iron-based sintered slide material and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2017128764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110735106A (en) * 2019-10-31 2020-01-31 合肥波林新材料股份有限公司 Iron-based sintered vulcanized material and preparation method thereof, iron-based side plate and oil distribution disc

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171806A (en) * 1974-12-19 1976-06-22 Toyota Motor Co Ltd TETSUKEISHOKETSUGOKINDEDEKITAJIKUKE
JP2014177658A (en) * 2013-03-13 2014-09-25 Hitachi Chemical Co Ltd Iron-based sintered sliding member and production method thereof
JP2014181381A (en) * 2013-03-19 2014-09-29 Hitachi Chemical Co Ltd Iron-based sintered sliding member and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171806A (en) * 1974-12-19 1976-06-22 Toyota Motor Co Ltd TETSUKEISHOKETSUGOKINDEDEKITAJIKUKE
JP2014177658A (en) * 2013-03-13 2014-09-25 Hitachi Chemical Co Ltd Iron-based sintered sliding member and production method thereof
JP2014181381A (en) * 2013-03-19 2014-09-29 Hitachi Chemical Co Ltd Iron-based sintered sliding member and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110735106A (en) * 2019-10-31 2020-01-31 合肥波林新材料股份有限公司 Iron-based sintered vulcanized material and preparation method thereof, iron-based side plate and oil distribution disc

Similar Documents

Publication Publication Date Title
JP5308123B2 (en) High-strength composition iron powder and sintered parts using it
KR100841162B1 (en) Sintered metal parts and method for the manufacturing thereof
JP5773267B2 (en) Iron-based sintered sliding member and manufacturing method thereof
JP5992402B2 (en) Manufacturing method of nitrided sintered component
KR101066789B1 (en) Sinter bearing and maufacturing method thereof
JP5588879B2 (en) Pre-alloyed copper alloy powder forged connecting rod
JP6112473B2 (en) Iron-based sintered sliding member
JP6194613B2 (en) Iron-based sintered alloy for sliding member and manufacturing method thereof
CN104368816B (en) A kind of manufacture method of iron-based powder metallurgy parts
JP6142987B2 (en) Iron-based sintered sliding member
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
JP2017504717A (en) Method for manufacturing sintered member and sintered member
CN107282932B (en) A kind of Al2O3The preparation method of dispersion-strengthened Cu base oil containing bearing
CN1018657B (en) Heat-resistant antifriction self-lubricating material and its manufacturing method
JP6461626B2 (en) Manufacturing method of sliding member
JP6935503B2 (en) Sintered oil-impregnated bearing
JP2017128764A (en) Iron-based sintered slide material and manufacturing method therefor
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
JP4121383B2 (en) Iron-base metal bond excellent in dimensional accuracy, strength and sliding characteristics and method for manufacturing the same
JP2008223053A (en) Alloy steel powder for powder metallurgy
JP6519955B2 (en) Iron-based sintered sliding member and method of manufacturing the same
JP6341455B2 (en) Manufacturing method of iron-based sintered sliding member
JP6384687B2 (en) Manufacturing method of iron-based sintered sliding member
CN1206068C (en) Stainless steel powder hot pressing shaping method
Kandavel et al. Experimental Investigations on Plastic Deformation and Densification Characteristics of P/M Fe–C–Cu–Mo Alloy Steels Under Cold Upsetting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190212