JP2015151586A - Method for producing sintered metal component - Google Patents

Method for producing sintered metal component Download PDF

Info

Publication number
JP2015151586A
JP2015151586A JP2014027404A JP2014027404A JP2015151586A JP 2015151586 A JP2015151586 A JP 2015151586A JP 2014027404 A JP2014027404 A JP 2014027404A JP 2014027404 A JP2014027404 A JP 2014027404A JP 2015151586 A JP2015151586 A JP 2015151586A
Authority
JP
Japan
Prior art keywords
powder
sintered
sintered metal
metal part
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014027404A
Other languages
Japanese (ja)
Inventor
尚樹 八代
Naoki Yashiro
尚樹 八代
大平 晃也
Akinari Ohira
晃也 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2014027404A priority Critical patent/JP2015151586A/en
Publication of JP2015151586A publication Critical patent/JP2015151586A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method capable of stably producing a sintered metal component having high strength.SOLUTION: In the method for producing a sintered metal component including: a compressive molding step S2 of obtaining the green compact of metal powder; and a sintering step S3 of heating the green compact to obtain a sintered compact, before the performance of the compressive molding step S2, a surface modifying step S1 of performing surface modifying treatment such as reduction treatment, plasma treatment or the like of removing a passive state and its film formed on the surface of the metal powder is provided.

Description

本発明は、焼結金属部品の製造方法に関する。   The present invention relates to a method for manufacturing a sintered metal part.

近年、コスト低減を主たる目的として、自動車部品をはじめとする種々の機械部品が、いわゆる溶製品から、金属粉末の圧粉体を加熱・焼結して得られる焼結品(焼結金属部品)へと置き換わりつつある。しかしながら、焼結金属部品は無数の内部空孔を有する多孔質体である関係上、強度面では同種材料で作製された溶製品よりも劣る場合が多い。そのため、焼結金属部品の適用範囲は依然として限定的である。そこで、焼結金属部品の適用範囲を拡大すべく、焼結金属部品を高強度化するための種々の試みがなされている。   In recent years, mainly for cost reduction, various machine parts such as automobile parts are sintered products (sintered metal parts) obtained by heating and sintering metal powder compacts from so-called molten products. Is being replaced. However, since sintered metal parts are porous bodies having innumerable internal pores, they are often inferior to molten products made of the same kind of material in terms of strength. Therefore, the scope of application of sintered metal parts is still limited. Accordingly, various attempts have been made to increase the strength of sintered metal parts in order to expand the application range of sintered metal parts.

ところで、焼結金属部品は、金属粉末の製造工程、金属粉末(金属粉末に適宜の充填材を添加した混合粉末)の圧粉体を得る圧縮成形工程および圧粉体を加熱して焼結体を得る焼結工程などを経て完成するが、例えば鉄系の焼結金属部品を製造する際には、焼結工程が実施されるまでの間に、金属粉末の表面(表層部)に、金属の酸化物や水酸化物、あるいはオキシ水酸化物などの不動態およびその皮膜(以下、単に「不動態皮膜」という)が形成される。この不動態皮膜は、焼結工程のうち、特にその初期段階における金属粉末同士のネック形成を阻害する。すなわち、不動態皮膜は、焼結金属部品の高強度化を妨げる要因となる。このような問題は、例えば下記の特許文献1,2に開示された技術手段を採用することで可及的に回避できると考えられる。   By the way, the sintered metal part is a sintered body by manufacturing a metal powder, a compression molding process for obtaining a green compact of a metal powder (a mixed powder obtained by adding an appropriate filler to the metal powder), and heating the green compact. For example, when manufacturing an iron-based sintered metal part, the metal powder surface (surface layer part) is subjected to metal before the sintering process is performed. Passivities such as oxides, hydroxides, or oxyhydroxides and films thereof (hereinafter simply referred to as “passive films”) are formed. This passive film inhibits the formation of a neck between metal powders in the initial stage of the sintering process. That is, the passive film is a factor that hinders the strength of the sintered metal part from being increased. Such a problem can be avoided as much as possible by employing the technical means disclosed in Patent Documents 1 and 2 below.

特許文献1は、鉄系粉末に鱗片状黒鉛粉末および土状黒鉛粉末を所定の割合で添加した原料粉末を圧縮成形し、焼結する焼結金属部品の製造方法を開示している。土状黒鉛は鱗片状黒鉛に比べて結晶性が低く、炭素の固相拡散が活発化する900℃以下の温度域での反応性に富む。そのため、原料粉末に土状黒鉛粉末を含めておけば、圧粉体を加熱・焼結するのに伴って鉄系粉末の表層部に存在する不動態皮膜を還元除去することができる。これにより鉄系粉末同士のネック強度を高めて、高強度の焼結金属部品を得ることができる。   Patent Document 1 discloses a method for manufacturing a sintered metal part in which raw material powder obtained by adding scaly graphite powder and earthy graphite powder in a predetermined ratio to iron-based powder is compression-molded and sintered. Soil-like graphite has lower crystallinity than scale-like graphite, and is rich in reactivity in a temperature range of 900 ° C. or lower where carbon solid-phase diffusion is activated. Therefore, if earth powder is included in the raw material powder, the passive film present on the surface layer of the iron-based powder can be reduced and removed as the green compact is heated and sintered. Thereby, the neck intensity | strength of iron type powder can be raised and a high intensity | strength sintered metal component can be obtained.

また、特許文献2は、ジルコニウム(Zr)およびシリコン(Si)を所定の割合で含み、残部が鉄(Fe)、コバルト(Co)およびニッケル(Ni)の群から選択される少なくとも一種を含む金属および不可避元素で構成された金属粉末を圧縮成形し、焼結することを開示している。ZrおよびSiは酸素を除去する脱酸剤として機能するので、金属粉末の焼結を阻害する酸化物を除去して焼結性を向上することができる。   Patent Document 2 discloses a metal containing zirconium (Zr) and silicon (Si) in a predetermined ratio, and the balance including at least one selected from the group consisting of iron (Fe), cobalt (Co), and nickel (Ni). And compression molding and sintering of metal powder composed of inevitable elements. Since Zr and Si function as a deoxidizing agent for removing oxygen, it is possible to improve the sinterability by removing oxides that hinder the sintering of the metal powder.

特開平2−185944号公報Japanese Patent Laid-Open No. 2-185944 特開2012−7205号公報JP 2012-7205 A

しかしながら、特許文献1に開示された手法では、炭素粉末の体積比率が高い原料粉末を使用する必要がある。炭素粉末は、通常、圧粉体を加熱・焼結するのに伴って消失するため、焼結体のうち、圧粉体の段階で炭素粉末が存在していた箇所には空孔が形成される。そのため、炭素粉末の体積比率が高い原料粉末を使用すると、焼結体の相対密度が低くなるので、場合によっては、焼結体の相対密度低下(空孔率増大)に伴う強度低下分が、不動態皮膜の還元除去により享受されるネック強度向上分を上回り、結果として焼結金属部品の強度低下を招来する可能性がある。   However, in the technique disclosed in Patent Document 1, it is necessary to use a raw material powder having a high volume ratio of carbon powder. Since the carbon powder usually disappears as the green compact is heated and sintered, voids are formed in the sintered body where the carbon powder was present at the green compact stage. The Therefore, if the raw material powder having a high volume ratio of the carbon powder is used, the relative density of the sintered body is lowered. This may exceed the neck strength improvement enjoyed by reduction and removal of the passive film, resulting in a decrease in strength of the sintered metal part.

また、特許文献2に開示された技術手段では、焼結性向上の阻害要因となる基材成分の酸化物は除去できるものの、新たに生成されるZrやSiを含んだ酸化物(新規酸化物)が焼結体内部に残存してしまう。この新規酸化物は不純物であり、破壊の起点となるおそれがある。そのため、特許文献2の技術手段は、信頼性に富む高強度の焼結金属部品を安定的に得るのに好適な技術手段とは言い難い。   Further, according to the technical means disclosed in Patent Document 2, although the oxide of the base material component that hinders the improvement of the sinterability can be removed, a newly generated oxide containing Zr or Si (new oxide) ) Remains in the sintered body. This new oxide is an impurity and may be a starting point of destruction. Therefore, it is difficult to say that the technical means of Patent Document 2 is a suitable technical means for stably obtaining a high-strength sintered metal part with high reliability.

以上の実情に鑑み、本発明の主たる目的は、金属粉末同士のネック強度を高め、これを通じて高強度で信頼性に富む焼結金属部品を安定的に製造可能とすることにある。   In view of the above circumstances, a main object of the present invention is to increase the neck strength between metal powders, and to stably manufacture a sintered metal component having high strength and high reliability.

上記の目的を達成するために創案された本発明は、金属粉末の圧粉体を得る圧縮成形工程と、圧粉体を加熱して焼結体を得る焼結工程とを含む焼結金属部品の製造方法において、圧縮成形工程の実施に先立って、金属粉末表面の不動態およびその皮膜を除去する表面改質処理を実施することを特徴とする。   The present invention created to achieve the above object is a sintered metal part including a compression molding process for obtaining a green compact of a metal powder and a sintering process for obtaining a sintered body by heating the green compact. In this manufacturing method, prior to the compression molding step, the surface modification treatment for removing the passivation of the metal powder surface and the film thereof is performed.

このようにすれば、圧縮成形工程は、不動態およびその皮膜(以下、単に「不動態皮膜」ともいう)が上記の表面改質処理で除去されることにより新生面(活性面)が表出した金属粉末(以下、この粉末を「表面改質粉末」ともいう)を用いて実施することができ、さらに、焼結工程は、実質的に表面改質粉末の圧粉体に対して実施することができる。そのため、焼結工程においては、新生面同士が接触した状態で焼結が進行するので、粉末同士のネック強度が高められた高強度の焼結体を得ることができる。また、このようにすれば、充填材としての炭素粉末を多量に含む混合粉末を用いたり、不純物として焼結体内部に残存する可能性が高い成分を含む金属粉末を用いたりする必要がなくなるので製品品質が安定する。従って、高強度で信頼性に富む焼結金属部品を安定的に製造することができる。   In this way, in the compression molding process, the passive surface and its film (hereinafter, also simply referred to as “passive film”) are removed by the surface modification treatment described above, so that a new surface (active surface) is exposed. Metal powder (hereinafter, this powder is also referred to as “surface modified powder”) can be used, and the sintering process is substantially performed on the green compact of the surface modified powder. Can do. Therefore, in the sintering process, since the sintering proceeds in a state where the new surfaces are in contact with each other, a high-strength sintered body in which the neck strength between the powders is increased can be obtained. In addition, since it is not necessary to use a mixed powder containing a large amount of carbon powder as a filler or a metal powder containing a component that has a high possibility of remaining in the sintered body as an impurity, it is possible to do so. Product quality is stable. Therefore, it is possible to stably manufacture a sintered metal part having high strength and high reliability.

上記の表面改質処理としては、例えば、金属粉末にメディア(砥粒)を衝突させることにより粉末表層部の不動態皮膜を除去する方法を採用できる。しかし、このようにすると、不動態皮膜の除去に伴って表出する新生面に加工硬化が生じるため、圧縮成形時に表面改質粉末が塑性変形し難くなる。つまり、原料粉末を高密度に圧縮成形することが難しくなり、高強度の焼結金属部品を得ることが難しくなる。そのため、表面改質処理としては、この処理に伴って新生面に加工硬化が生じないような方法が好ましく、具体的には、還元処理あるいはプラズマ処理を採用するのが好ましい。   As said surface modification process, the method of removing the passive film of a powder surface layer part by making a medium (abrasive grain) collide with metal powder, for example is employable. However, if it does in this way, since work hardening will arise in the new surface exposed with the removal of a passive film, surface modification powder becomes difficult to carry out plastic deformation at the time of compression molding. That is, it becomes difficult to compression-mold the raw material powder at a high density, and it becomes difficult to obtain a high-strength sintered metal part. Therefore, as the surface modification treatment, a method that does not cause work hardening on the new surface accompanying this treatment is preferable, and specifically, reduction treatment or plasma treatment is preferably employed.

上記の還元処理は湿式と乾式とに大別することができ、湿式又は乾式の何れを採用しても構わない。湿式の還元処理法としては、例えば、還元性溶液中に金属粉末を浸漬した後、この還元性溶液を撹拌することで不動態皮膜を破砕・除去する方法を採用することができる。また、乾式の還元処理法としては、例えば、還元雰囲気に配置した金属粉末をA1変態点以上の温度に加熱することにより不動態皮膜を除去する方法(還元焼鈍法)を採用することができる。 The above reduction treatment can be broadly classified into wet and dry processes, and either wet or dry processes may be adopted. As a wet reduction treatment method, for example, a method of crushing and removing the passive film by immersing the metal powder in the reducing solution and stirring the reducing solution can be employed. As the reduction method of a dry, for example, it is possible to employ a method of removing the passivation film by heating the metal powder was placed in a reducing atmosphere to a temperature above the A 1 transformation point (reduction annealing method) .

一方、上記のプラズマ処理としては、例えば、真空チャンバ内に配置した金属粉末に対し、プラズマでガス化したArイオン等を照射する方法(イオンボンバードメント法)や、放電プラズマ焼結(SPS)用の金型内に充填した金属粉末に対して所定の条件でSPS処理を施す方法などを採用することができる。   On the other hand, as the above plasma treatment, for example, a metal powder placed in a vacuum chamber is irradiated with Ar gas or the like gasified by plasma (ion bombardment method), or for discharge plasma sintering (SPS). It is possible to employ a method of subjecting the metal powder filled in the mold to SPS treatment under predetermined conditions.

ところで、表面改質粉末を大気に晒すと、新生面が徐々に再酸化等して新規の不動態が形成・成長するため、焼結性が徐々に低下する。このため、時間経過に伴う焼結性の低下を可及的に防止するには、例えば、表面改質粉末を真空状態で保管すると共に真空下で圧縮成形するなどといった対策を講じるのが望ましいが、このような対策は、作業性等を考慮すると得策とは言い難い。これに対し、表面改質処理の実施後で圧縮成形工程の実施前に、新生面の再酸化を防止する保護層の形成処理を実施すれば、表面改質粉末の取り扱いを容易化しつつ、良好な焼結性を確保することができる。   By the way, when the surface-modified powder is exposed to the atmosphere, the new surface gradually re-oxidizes and a new passivation is formed and grows, so that the sinterability gradually decreases. For this reason, in order to prevent the deterioration of sinterability over time as much as possible, it is desirable to take measures such as storing the surface-modified powder in a vacuum and compressing it under vacuum. Such a measure is difficult to say in view of workability and the like. On the other hand, if the protective layer forming process that prevents reoxidation of the new surface is performed after the surface modification process and before the compression molding process, the surface modified powder can be handled easily and better. Sinterability can be ensured.

保護層は、新生面の再酸化防止機能を有するものであれば問題なく採用できるが、保護層が潤滑成分を有していれば、圧縮成形工程における圧縮成形性等を高めて高密度の圧粉体を得ることが、ひいては高強度の焼結金属部品を得ることができて好ましい。但し、焼結工程実施時の全期間に亘って保護層が残存していると、保護層がネック結合形成の阻害要因となり得るため好ましくない。そのため、保護層は、焼結工程の実施時、特に焼結工程の初期段階で消失する物質を主成分として形成するのが好ましい。   As long as the protective layer has a function to prevent reoxidation of the new surface, it can be adopted without any problem. However, if the protective layer has a lubricating component, it is possible to improve the compression moldability in the compression molding process and to increase the density of the powder. It is preferable to obtain a body because, in turn, a high-strength sintered metal part can be obtained. However, it is not preferable that the protective layer remains over the entire period when the sintering process is performed because the protective layer can be an obstacle to formation of a neck bond. Therefore, it is preferable that the protective layer is formed mainly of a substance that disappears at the initial stage of the sintering process when the sintering process is performed.

以上で述べた製造方法において、焼結体に高強度化処理を施す高強度化工程をさらに設けることができる。高強度化処理の方法に特段の制約はなく、使用する金属粉末の種類や要求される機械的特性等に応じて、例えば、浸炭焼入れ焼き戻し等の熱処理、ショットピーニングや冷間加工(冷間鍛造)等の塑性加工を一種又は複数種採用することができる。なお、選択する高強度化処理の方法によっては、焼結体の表面粗さが増大するため、応力集中箇所(破壊起点)が生じる恐れがある。このような場合、高強度化処理後の焼結体に対し、その表面粗さを低減させる仕上げ処理を実施するのが好ましい。仕上げ処理の方法に特段の限定はなく、例えば、研削や研磨等の機械加工、サイジング、転造およびバニシング等の塑性加工、放電加工、レーザ加工などを一種又は複数種採用することができる。   In the manufacturing method described above, it is possible to further provide a strengthening step for subjecting the sintered body to a strengthening treatment. There are no particular restrictions on the method of strengthening treatment, and depending on the type of metal powder used and the required mechanical properties, for example, heat treatment such as carburizing, quenching and tempering, shot peening and cold working (cold working) One or more types of plastic working such as forging) can be employed. Note that, depending on the method of increasing the strength selected, the surface roughness of the sintered body increases, and there is a possibility that a stress concentration point (breaking origin) may occur. In such a case, it is preferable to perform a finishing treatment for reducing the surface roughness of the sintered body after the high-strength treatment. There is no particular limitation on the method of finishing treatment, and for example, one kind or plural kinds of machining such as grinding and polishing, plastic working such as sizing, rolling, and burnishing, electric discharge machining, and laser machining can be employed.

本発明は、表面に不動態が形成される金属粉末、例えば、鉄、ステンレス、銅、アルミニウムおよびチタンの群から選択される少なくとも一種の金属を主成分とした金属粉末の焼結体からなる焼結金属部品を製造する場合に好ましく適用することができる。すなわち、本発明は、特に、鉄系、ステンレス系、銅系、アルミニウム系あるいはチタン系の焼結金属部品を製造する際に好ましく適用することができる。   The present invention relates to a sintered powder made of a sintered metal powder mainly composed of at least one metal selected from the group consisting of iron, stainless steel, copper, aluminum and titanium. This can be preferably applied when manufacturing a metal part. That is, the present invention can be preferably applied particularly when producing iron-based, stainless-based, copper-based, aluminum-based or titanium-based sintered metal parts.

以上で述べたように、本発明によれば、高強度で信頼性に富む焼結金属部品を安定的に製造することができる。   As described above, according to the present invention, a sintered metal component having high strength and high reliability can be stably manufactured.

焼結金属部品の一例を示す斜視図である。It is a perspective view which shows an example of a sintered metal component. 図1の要部拡大断面図である。It is a principal part expanded sectional view of FIG. 本発明の一実施形態を示す工程図である。It is process drawing which shows one Embodiment of this invention. 変形例に係る焼結金属部品の要部拡大断面図である。It is a principal part expanded sectional view of the sintered metal component which concerns on a modification. 本発明の他の実施形態を示す工程図である。It is process drawing which shows other embodiment of this invention. 比較試験の試験結果を示す図である。It is a figure which shows the test result of a comparative test.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本発明に係る製造方法を用いて製造された焼結金属部品Aの一例を示す。同図に示す焼結金属部品Aは、例えば鉄系粉末の焼結体からなり、外周部に凹部と凸部が交互に配置された歯面2を有する歯車1である。図2に示すように、この歯車1の表層部には、焼結後の高強度化処理により形成された硬化層3が設けられている。また、歯車1の各部の硬度は、表面が最も高く、芯部(厚さ方向の中央部)に向けて徐々に低下している。従って、歯面2の機械的強度や耐摩耗性等は、歯車1を構成する各部のうちで最も高められている。   FIG. 1 shows an example of a sintered metal part A manufactured using the manufacturing method according to the present invention. A sintered metal part A shown in FIG. 1 is a gear 1 made of, for example, a sintered body of iron-based powder and having tooth surfaces 2 in which concave portions and convex portions are alternately arranged on the outer peripheral portion. As shown in FIG. 2, a hardened layer 3 formed by a strengthening process after sintering is provided on the surface layer portion of the gear 1. Further, the hardness of each part of the gear 1 is highest on the surface, and gradually decreases toward the core part (central part in the thickness direction). Therefore, the mechanical strength, wear resistance, and the like of the tooth surface 2 are the highest among the parts constituting the gear 1.

焼結金属部品Aとしての歯車1は、図3に示すように、表面改質工程S1、圧縮成形工程S2、焼結工程S3および高強度化工程S4を順に経て製造される。以下、各工程について詳述する。   As shown in FIG. 3, the gear 1 as the sintered metal part A is manufactured through a surface modification step S1, a compression molding step S2, a sintering step S3, and a high strength step S4 in this order. Hereinafter, each process is explained in full detail.

[表面改質工程S1]
表面改質工程S1では、焼結金属部品Aの基材となる金属粉末(本実施形態では鉄を主成分とする鉄系粉末)に対し、その表層部に形成された金属の酸化物等の不動態およびその皮膜(以下、不動態皮膜という)を除去する処理を実施し、これにより、新生面(活性面)が表出した金属粉末(以下、これを表面改質粉末ともいう)を得る。
[Surface modification step S1]
In the surface modification step S1, for the metal powder that is the base material of the sintered metal component A (in this embodiment, iron-based powder containing iron as a main component), the metal oxide formed on the surface layer portion, etc. A treatment for removing the passivation and its film (hereinafter referred to as passive film) is carried out, thereby obtaining a metal powder (hereinafter also referred to as surface-modified powder) in which a new surface (active surface) is exposed.

表面改質処理の具体的な手法として、例えば、除錆剤や還元剤などの還元作用を有する還元性溶液中に金属粉末を浸漬させた後、還元性溶液を撹拌することにより、金属粉末の表層部に形成された不動態皮膜を破砕・除去して新生面(活性面)を表出させる、いわゆる湿式の還元処理を採用することができる。金属粉末を浸漬させた還元性溶液は、人力で撹拌しても良いが、超音波ホモジナイザーなどの超音波発生機を用いて撹拌させるのが好ましい。金属粉末を滑らかに流動させて粉末同士が凝集するのを可及的に防止し、個々の金属粉末の不動態皮膜を効率良く破砕・除去できるからである。   As a specific method of the surface modification treatment, for example, the metal powder is immersed in a reducing solution having a reducing action such as a rust remover or a reducing agent, and then the reducing solution is agitated. A so-called wet reduction treatment in which the passive film formed on the surface layer portion is crushed and removed to expose a new surface (active surface) can be employed. The reducing solution in which the metal powder is immersed may be stirred manually, but is preferably stirred using an ultrasonic generator such as an ultrasonic homogenizer. This is because the metal powder is smoothly flowed to prevent the powders from aggregating as much as possible, and the passive film of each metal powder can be efficiently crushed and removed.

表面改質粉末は、還元性溶液から取り出した後、その表面に付着した液体成分を強制的に除去するための乾燥処理に供しても良い。乾燥処理は、大気中で実施しても良いが、このようにすると、乾燥処理に伴って表面改質粉末の表面(新生面)に新たな不動態皮膜が形成され易くなる。そのため、新生面に新たな不動態皮膜が形成される可能性を減じるためにも、乾燥処理は真空下、あるいは不活性ガス雰囲気下で実施するのが好ましい。   After the surface modified powder is taken out from the reducing solution, it may be subjected to a drying treatment for forcibly removing the liquid component adhering to the surface. The drying process may be performed in the atmosphere, but if this is done, a new passive film is likely to be formed on the surface (new surface) of the surface-modified powder along with the drying process. Therefore, in order to reduce the possibility that a new passive film is formed on the new surface, the drying treatment is preferably performed under vacuum or in an inert gas atmosphere.

[圧縮成形工程S2]
この圧縮成形工程S2では、表面改質粉末に適当な充填材を添加・混合してなる混合粉末を成形金型で圧縮成形することにより、目的形状、ここでは歯車1の形状に対応した略完成品形状の圧粉体を得る。充填材としては、例えば、固体潤滑剤を好ましく使用することができる。圧縮成形時における粉末同士の摩擦力や粉末と金型内壁面との摩擦力を低減して圧縮成形性を高め、高密度の圧粉体を得るためである。
[Compression molding step S2]
In this compression molding step S2, a mixed powder obtained by adding and mixing an appropriate filler to the surface-modified powder is compression-molded with a molding die, thereby substantially completing the shape corresponding to the target shape, here the shape of the gear 1. A compact green compact is obtained. As the filler, for example, a solid lubricant can be preferably used. This is to reduce the frictional force between the powders during compression molding and the frictional force between the powder and the inner wall surface of the mold, thereby improving the compression moldability and obtaining a high-density green compact.

使用可能な固体潤滑剤に特段の限定はなく、例えば、ステアリン酸亜鉛やステアリン酸カルシウムなどに代表される金属石けん、あるいはステアリン酸アミドやエチレンビスステアリン酸アミドなどに代表されるアミドワックスを含む粉末、炭素粉末、二硫化モリブデンを含む粉末などの群から選択される一種又は二種以上を使用することができる。これらの中でも、溶融温度(融点)が70℃〜150℃程度と低いために後述する焼結工程S3の初期段階で溶融・揮発し、金属粉末(表面改質粉末)同士のネック形成に影響を与えない金属石けん、あるいはアミドワックスを含む粉末が特に好ましい。   There is no particular limitation on the solid lubricant that can be used, for example, a metal soap represented by zinc stearate or calcium stearate, or a powder containing an amide wax represented by stearic acid amide or ethylenebisstearic acid amide, One or more selected from the group of carbon powder, powder containing molybdenum disulfide, and the like can be used. Among these, since the melting temperature (melting point) is as low as about 70 ° C. to 150 ° C., it melts and volatilizes in the initial stage of the sintering step S3 to be described later, affecting the neck formation between the metal powders (surface modified powders). Particular preference is given to powders containing no metal soap or amide wax.

なお、圧縮成形時の成形圧力は、表面改質粉末が塑性変形し、隣接する表面改質粉末同士の接触面積を増大させ得るような圧力、例えば980MPa以上とする。これにより、表面改質粉末同士が強固に密着した高密度の圧粉体が得られる。   The molding pressure at the time of compression molding is set to a pressure at which the surface-modified powder is plastically deformed and can increase the contact area between adjacent surface-modified powders, for example, 980 MPa or more. Thereby, a high-density green compact in which the surface-modified powders are firmly adhered to each other is obtained.

[焼結工程S3]
この焼結工程S3では、圧縮成形工程S2で得られた圧粉体を、不活性ガス雰囲気下あるいは真空下に配置した上で、その主成分金属(ここでは鉄)の焼結温度以上で所定時間加熱する。これにより、圧粉体に含まれる固体潤滑剤が溶融・気化し、隣接する表面改質粉末同士が焼結結合(ネック結合)してなる焼結体が得られる。なお、鉄系粉末を主体として形成された本実施形態の圧粉体の加熱温度は、1200℃以上1300℃以下とするのが好ましい。1200℃未満(例えば、一般的な鉄系金属の焼結体を形成するための温度である1120℃)で圧粉体を加熱した場合、表面改質粉末同士を十分なネック強度でもって焼結することができず、また、1300℃を超えると強度向上効果が飽和するからである。
[Sintering step S3]
In this sintering step S3, the green compact obtained in the compression molding step S2 is placed in an inert gas atmosphere or in a vacuum, and at a temperature equal to or higher than the sintering temperature of the main component metal (here, iron). Heat for hours. Thereby, the solid lubricant contained in the green compact is melted and vaporized, and a sintered body formed by sintering bonding (neck bonding) between adjacent surface modified powders is obtained. In addition, it is preferable that the heating temperature of the green compact of this embodiment formed mainly with iron-based powder is 1200 ° C. or higher and 1300 ° C. or lower. When the green compact is heated below 1200 ° C (for example, 1120 ° C, which is a temperature for forming a general iron-based metal sintered body), the surface-modified powders are sintered with sufficient neck strength. This is because the strength improvement effect is saturated when the temperature exceeds 1300 ° C.

[高強度化工程S4]
この高強度化工程S4では、焼結工程S3で得られた焼結体に適当な高強度化処理を施し、焼結体の表層部に硬化層3(図2参照)を形成する。これにより、焼結体、ひいては焼結金属部品Aとしての歯車1の機械的強度や耐摩耗性が一層高められる。高強度化処理の方法に特段の制約はなく、浸炭焼入れ、ずぶ焼入れ、高周波焼入れなどの熱処理、もしくはショットピーニングや冷間加工(冷間鍛造)等の塑性加工を採用することができる。高強度化処理として熱処理を採用する場合には、焼結体(歯車1)に高い靭性を併せて付与するため、焼入れ後に焼戻し処理を実施するのが好ましい。
[Strengthening step S4]
In this strengthening step S4, the sintered body obtained in the sintering step S3 is subjected to an appropriate strengthening process to form a hardened layer 3 (see FIG. 2) on the surface layer portion of the sintered body. Thereby, the mechanical strength and wear resistance of the gear 1 as the sintered body and, as a result, the sintered metal part A, are further enhanced. There is no particular restriction on the method of increasing the strength, and heat treatment such as carburizing quenching, submerged quenching, induction quenching, or plastic working such as shot peening or cold working (cold forging) can be employed. When heat treatment is adopted as the strengthening treatment, it is preferable to perform a tempering treatment after quenching in order to impart high toughness to the sintered body (gear 1).

なお、特にコスト上問題がなければ、熱処理および塑性加工の双方を焼結体に施しても良く、この場合、熱処理又は塑性加工の何れを先に実施するかは適宜選択すれば良い。後述する他の実施形態においても同様である。このように、焼結体に熱処理および塑性加工の双方を施した場合、焼結体(歯車1)の表層部に形成される硬化層3は、図4に模式的に示すように、熱処理又は塑性加工の何れか一方の処理(例えば熱処理)により形成された第1の硬化層3aと、他方の処理(例えば塑性加工)により形成された第2の硬化層3bとで構成することができ、しかも第2の硬化層3bは、第1の硬化層3aの表層部に重複して形成される。そのため、焼結体、ひいては焼結金属部品Aとしての歯車1を一層高強度化することができる。   If there is no problem in terms of cost, both the heat treatment and the plastic working may be performed on the sintered body. In this case, it may be appropriately selected which heat treatment or plastic working is performed first. The same applies to other embodiments described later. As described above, when both the heat treatment and the plastic working are performed on the sintered body, the hardened layer 3 formed on the surface layer portion of the sintered body (gear 1) is subjected to heat treatment or A first hardened layer 3a formed by any one of the plastic processing (for example, heat treatment) and a second hardened layer 3b formed by the other processing (for example, plastic processing), Moreover, the second hardened layer 3b is formed so as to overlap the surface layer portion of the first hardened layer 3a. Therefore, the sintered body, and thus the gear 1 as the sintered metal part A can be further strengthened.

以上で説明した各工程を経て、図1および図2に示す焼結金属部品Aとしての歯車1が完成する。なお、高強度化工程S4で高強度化処理を実施した場合、選択する処理の種類によっては焼結金属部品Aの表面粗さが増大して応力集中箇所(破壊起点)が生じるおそれがある。このような表面粗さの増大が問題となるのであれば、研削加工、研磨加工、ラップ加工、超仕上げなどの機械加工、サイジング、転造、バニシングなどの塑性加工、放電加工又はレーザ加工などの群から選択される一種又は二種以上の仕上げ加工を高強度化処理後の焼結体に対して実施する仕上げ工程をさらに設けても良い。   Through the steps described above, the gear 1 as the sintered metal part A shown in FIGS. 1 and 2 is completed. When the strengthening process is performed in the strengthening process S4, the surface roughness of the sintered metal part A increases depending on the type of the process to be selected, and there is a possibility that a stress concentration point (breaking start point) may occur. If such an increase in surface roughness is a problem, mechanical processing such as grinding, polishing, lapping, super-finishing, plastic processing such as sizing, rolling, burnishing, electric discharge processing, laser processing, etc. You may further provide the finishing process which implements 1 type, or 2 or more types of finishing processing selected from a group with respect to the sintered compact after a high strengthening process.

以上で説明したように、本発明によれば、圧縮成形工程S2は、金属粉末表層部の不動態皮膜が表面改質処理(還元処理)で除去されることにより新生面が表出した金属粉末(表面改質粉末)を用いて実施することができ、さらに、焼結工程S3は、実質的に表面改質粉末の圧粉体に対して実施することができる。そのため、焼結工程S3においては、活性面同士が接触した状態で焼結が進行するので、粉末同士のネック強度が高められた高強度の焼結体を得ることができる。また、このようにすれば、炭素粉末を多量に含む原料粉末を用いたり、不純物として焼結体内部に残存する可能性が高い成分を含む金属粉末を用いたりする必要がなくなるので製品品質が安定する。従って、高強度で信頼性に富む焼結金属部品Aとしての歯車1を安定的に製造・量産することができる。   As described above, according to the present invention, the compression molding step S2 is performed in the metal powder having a new surface exposed by removing the passive film on the surface portion of the metal powder by surface modification treatment (reduction treatment) ( In addition, the sintering step S3 can be performed on the green compact of the surface-modified powder. Therefore, in the sintering step S3, since the sintering proceeds in a state where the active surfaces are in contact with each other, a high-strength sintered body in which the neck strength between the powders is increased can be obtained. In this way, it is not necessary to use raw material powder containing a large amount of carbon powder or metal powder containing components that are likely to remain inside the sintered body as impurities, so the product quality is stable. To do. Therefore, the gear 1 as the sintered metal part A having high strength and high reliability can be stably manufactured and mass-produced.

表面改質工程S1で採用する処理方法としては、例えば、金属粉末にメディア(砥粒)を衝突させることにより粉末表層部の不動態皮膜を除去する方法を採用できるが、この場合、不動態皮膜の除去に伴って表出する新生面に加工硬化が生じるため、圧縮成形時に表面改質粉末が塑性変形し難くなる。つまり、表面改質粉末を高密度に圧縮成形することが難しくなり、高強度の焼結金属部品Aを安定的に量産することが難しくなる。これに対し、本発明では、新生面に加工硬化が生じない処理法の一種である還元処理法を採用して不動態皮膜を除去するようにしたので、焼結金属部品Aの高強度化を適切に実現することができる。   As the treatment method employed in the surface modification step S1, for example, a method of removing the passive film on the powder surface layer by colliding a medium (abrasive grains) with the metal powder can be employed. Since work hardening occurs on the new surface that is exposed as a result of the removal, the surface-modified powder is difficult to be plastically deformed during compression molding. That is, it becomes difficult to compression-mold the surface-modified powder with high density, and it becomes difficult to stably mass-produce the high-strength sintered metal part A. On the other hand, in the present invention, since the passive film is removed by adopting a reduction treatment method which is a kind of treatment method in which work hardening does not occur on the new surface, it is appropriate to increase the strength of the sintered metal part A. Can be realized.

以上、本発明に係る焼結金属部品Aの製造方法の一実施形態について説明を行ったが、本発明はこれに限定されることなく、種々の変更を施すことが可能である。   As mentioned above, although one Embodiment of the manufacturing method of the sintered metal component A based on this invention was described, this invention is not limited to this, A various change can be given.

例えば、上述の実施形態では、焼結工程S3の実施後に高強度化工程S4を実施するようにしているが、焼結工程S3を経た段階で所望の機械的強度が得られていれば、高強度化工程S4は省略しても構わない。   For example, in the above-described embodiment, the high-strength step S4 is performed after the sintering step S3. If a desired mechanical strength is obtained in the stage after the sintering step S3, the high-strength step S4 is performed. The strengthening step S4 may be omitted.

また、図5に示すように、表面改質工程S1と圧縮成形工程S2との間に、表面改質粉末の表面(新生面)を被覆する保護層の形成工程S1’を設けても良い。このようにすれば、表面改質粉末の取り扱いを容易化しつつ、表面改質粉末の表面が再酸化等して焼結性が低下するような事態を可及的に防止することができる。   In addition, as shown in FIG. 5, a protective layer forming step S1 'for covering the surface (new surface) of the surface modified powder may be provided between the surface modifying step S1 and the compression molding step S2. In this way, it is possible to prevent as much as possible a situation in which the surface of the surface modified powder is reoxidized and the sinterability is lowered while facilitating the handling of the surface modified powder.

保護層は、表面改質処理により表出した新生面の再酸化防止機能を有するものであれば問題なく採用できるが、保護層が潤滑成分を有していれば、圧縮成形工程S2における表面改質粉末の圧縮成形性を高めて高密度の圧粉体を得ることが、ひいては高強度の焼結金属部品Aを得ることができて好ましい。但し、焼結工程S3実施時の全期間に亘って保護層が残存していると、保護層がネック結合形成の阻害要因となり得るため好ましくない。そのため、保護層は、焼結工程S3の実施時、特に焼結工程S3の初期段階で消失する物質(焼結時の熱処理温度以下で揮発・分解する物質)を主成分として形成するのが好ましい。   The protective layer can be used without any problem as long as it has a function of preventing reoxidation of the new surface exposed by the surface modification treatment. However, if the protective layer has a lubricating component, the surface modification in the compression molding step S2 is possible. It is preferable to obtain a high-density green compact by improving the compression moldability of the powder, which in turn can provide a sintered metal part A having high strength. However, it is not preferable that the protective layer remains over the entire period when the sintering step S3 is performed because the protective layer can be an obstacle to formation of a neck bond. Therefore, the protective layer is preferably formed mainly of a material that disappears at the initial stage of the sintering step S3 (a material that volatilizes and decomposes at a temperature lower than the heat treatment temperature during sintering) during the sintering step S3. .

また、以上で説明した実施形態では、表面改質工程S1でいわゆる湿式の還元処理法を採用することにより、新生面が表出した表面改質粉末を得るようにしたが、表面改質工程S1で採用できる処理方法はこれに限られない。   Further, in the embodiment described above, by adopting a so-called wet reduction treatment method in the surface modification step S1, a surface modified powder having a new surface exposed is obtained. In the surface modification step S1, The processing method that can be adopted is not limited to this.

例えば、乾式の還元処理法の一種である還元焼鈍法を用いて表面改質粉末を得ることも可能である。還元焼鈍法とは、簡単に述べると、還元雰囲気に配置した金属粉末をA1変態点以上の温度に加熱することにより不動態皮膜を除去する方法である。また、表面改質粉末は、還元処理のみならず、プラズマ処理によって得ることも可能である。採用できるプラズマ処理としては、例えば、真空チャンバ内に配置した金属粉末に対し、プラズマでガス化したアルゴンイオン、窒素イオン、水素イオン等を照射する方法(イオンボンバードメント法)や、放電プラズマ焼結(SPS)用の金型内に充填した金属粉末に対して所定の条件でSPS処理を施す方法などを挙げることができる。乾式の還元処理やプラズマ処理を採用すれば、湿式の還元処理法を採用した場合に事後的に実施される可能性がある乾燥処理が全くの不要となるので、工程を簡略化できるという利点がある。 For example, it is possible to obtain surface-modified powder using a reduction annealing method which is a kind of dry reduction treatment method. The reduction annealing method, Briefly, a method of removing the passivation film by heating the metal powder was placed in a reducing atmosphere to a temperature above the A 1 transformation point. The surface-modified powder can be obtained not only by reduction treatment but also by plasma treatment. Examples of the plasma treatment that can be employed include a method of irradiating a metal powder placed in a vacuum chamber with argon gas, nitrogen ion, hydrogen ion, etc. gasified by plasma (ion bombardment method), or discharge plasma sintering. Examples thereof include a method of subjecting the metal powder filled in the (SPS) mold to SPS treatment under predetermined conditions. If dry reduction treatment or plasma treatment is adopted, there is no advantage of drying treatment that may be performed afterwards when wet reduction treatment method is adopted, so that the process can be simplified. is there.

また、圧縮成形工程S2では、キャビティ内壁面の一部領域又は全域に潤滑剤が塗布された成形金型、あるいはキャビティ内壁面の一部領域又は全領域に、DLC被膜や窒化物の被膜などといった低摩擦の硬質被膜を形成した成形金型を用いて圧縮成形を実施しても良い。このようにすれば、表面改質粉末とキャビティ内壁面との摩擦力を減じることができるので、表面改質粉末に添加する充填材(特に固体潤滑剤)の量を減じることが、あるいは表面改質粉末への固体潤滑剤の添加を省略することができる。これにより、混合粉末に占める金属粉末(表面改質粉末)の比率が増加するので、高密度の圧粉体、ひいては高強度の焼結金属部品Aを得ることができる。   Further, in the compression molding step S2, a molding die in which a lubricant is applied to a partial area or the entire area of the cavity inner wall surface, or a DLC film or a nitride film on a partial area or the entire area of the cavity inner wall surface, etc. Compression molding may be performed using a molding die on which a low friction hard coating is formed. In this way, the frictional force between the surface modified powder and the inner wall surface of the cavity can be reduced, so that the amount of filler (particularly solid lubricant) added to the surface modified powder can be reduced or the surface modified. It is possible to omit the addition of a solid lubricant to the powder. Thereby, since the ratio of the metal powder (surface modified powder) to the mixed powder increases, a high-density green compact, and thus a high-strength sintered metal part A can be obtained.

また、圧縮成形工程S2で実施する圧縮成形は、例えば、50〜200℃程度に加温した成形金型および/又は表面改質粉末を用いて実施しても良い。このような、いわゆる温間成形法を採用すれば、表面改質粉末が塑性変形し易くなる(圧縮成形性が高まる)ので、高密度の圧粉体、ひいては高強度の焼結金属部品Aを得易くなる。   Moreover, you may implement the compression molding implemented by compression molding process S2 using the shaping | molding die and / or surface modification powder which were heated at about 50-200 degreeC, for example. By adopting such a so-called warm forming method, the surface-modified powder is easily plastically deformed (the compression moldability is increased). Therefore, a high-density green compact, and thus a high-strength sintered metal part A is formed. It becomes easy to obtain.

また、以上では、鉄を主成分とする金属粉末(鉄系粉末)を用いて焼結金属部品Aを得る際に本発明を適用したが、本発明は、表面に不動態皮膜が形成されるその他の金属粉末、例えば、ステンレス系粉末、銅系粉末、アルミニウム系粉末あるいはチタン系粉末を用いて金属焼結体Aを得る場合にも好ましく適用することができる。また、本発明は、鉄系粉末、ステンレス系粉末、銅系粉末、アルミニウム系粉末およびチタン系粉末等の群から選択される二種以上を予め混合したプレミックス粉末を用いて焼結金属部品Aを得る場合にも好ましく適用することができる。   In the above, the present invention is applied when the sintered metal part A is obtained using the metal powder (iron-based powder) containing iron as a main component. However, the present invention forms a passive film on the surface. The present invention can also be preferably applied to the case where the metal sintered body A is obtained using other metal powders such as stainless steel powder, copper powder, aluminum powder, or titanium powder. Further, the present invention provides a sintered metal part A using a premix powder in which two or more selected from the group of iron-based powder, stainless-based powder, copper-based powder, aluminum-based powder, titanium-based powder and the like are mixed in advance. It can be preferably applied also when obtaining

また、以上では、図1に示す焼結金属部品Aとしての歯車1を製造するに際して本発明を適用したが、本発明は焼結体(金属焼結体)からなるその他の機械部品、例えばカムや軸受等を製造する際にも好ましく適用することができる。   In the above description, the present invention is applied when the gear 1 as the sintered metal part A shown in FIG. 1 is manufactured. However, the present invention is applied to other mechanical parts made of a sintered body (metal sintered body), for example, a cam. It can also be preferably applied to the manufacture of bearings and bearings.

本発明の有用性を実証するため、本発明を適用して作製したリング状試験片(実施例1〜13)、及び本発明を適用せずに作製したリング状試験片(比較例1〜3)それぞれについての圧環強度をJIS Z 2507の規定に準拠した手法で算出し、得られた圧環強度の値に応じて以下に示す“D”,“C”,“B”,“A-”,“A+”,“S”の6段階で各試験片の圧環強度を評価した。なお、圧環強度の算出に際して試験片に付与すべき縮径方向の圧縮力は、島津製作所社製のオートグラフAG−5000Aを用いて付与した。
D:1000MPa未満
C:1000MPa以上1200MPa未満
B:1200MPa以上1400MPa未満
-:1400MPa以上1500MPa未満
+:1500MPa以上1600MPa未満
S:1600MPa以上
In order to demonstrate the usefulness of the present invention, a ring-shaped test piece prepared by applying the present invention (Examples 1 to 13) and a ring-shaped test piece manufactured without applying the present invention (Comparative Examples 1 to 3) ) The crushing strength for each is calculated by a method in accordance with the provisions of JIS Z 2507, and “D”, “C”, “B”, “A ”, shown below, according to the obtained crushing strength values. The crushing strength of each test piece was evaluated in six stages of “A + ” and “S”. The compressive force in the direction of diameter reduction to be applied to the test piece when calculating the crushing strength was applied using an autograph AG-5000A manufactured by Shimadzu Corporation.
D: less than 1000 MPa C: 1000 MPa or more 1200MPa less B: 1200MPa or more 1400 MPa less than A -: 1400 MPa or more 1500 MPa less than A +: 1500 MPa or more 1600MPa less S: 1600MPa or more

実施例1〜13および比較例1〜3に係るリング状試験片は、それぞれ、以下のようにして作製した。   The ring-shaped test pieces according to Examples 1 to 13 and Comparative Examples 1 to 3 were produced as follows.

[実施例1]
まず、ニッケル(Ni)およびモリブデン(Mo)をそれぞれ0.5質量%および1.0質量%含み、残部を鉄(Fe)および不可避的不純物としたプレアロイ型の鉄系粉末(株式会社神戸製鋼所製46F4H)を浸漬させた還元性溶液としての酸化皮膜除去剤を人力で1分間撹拌した後、上記の還元性溶液から取り出した鉄系粉末をエタノールで洗浄した。これにより、表層部の不動態皮膜が除去され、新生面が表出した鉄系粉末(表面改質粉末)を得た。次いで、この表面改質粉末に、アミドワックス系固体潤滑剤を0.5質量%添加し、これらをV型混合器で混合して混合粉末を生成した。次いで、この混合粉末を成形金型に充填して成形圧980MPaで軸方向に加圧することにより、外径23mm×内径16mm×高さ7mmのリング状圧粉体を得た。最後に、リング状圧粉体を窒素・水素混合ガス雰囲気において1250℃で加熱・焼結することにより、実施例1としてのリング状試験片を得た。
[実施例2]
炭素粉末としての人造黒鉛粉末0.5質量%をさらに添加した混合粉末を使用する以外は、実施例1に係る試験片を作製するのと同様にして実施例2に係るリング状試験片を作製した。
[実施例3]
実施例2に係る試験片に対して浸炭焼入れ焼戻しを実施することにより、実施例3に係るリング状試験片を得た。
[実施例4]
平均粒径D50=180μmの鉄系メディアを用いて実施例3に係る試験片に対してショットピーニングを施すことにより、実施例4に係るリング状試験片を得た。
[実施例5]
実施例4に係る試験片のうち、ショットピーニングにより粗面化された部分にバニシング加工を施すことにより、実施例5に係るリング状試験片を得た。
[実施例6]
上記の鉄系粉末を浸漬させてなる酸化皮膜除去剤の撹拌作業を、人力に替えて超音波発生機(超音波ホモジナイザー)を用いて実行する以外は、実施例3に係る試験片を作製するのと同様にして実施例6に係るリング状試験片を作製した。
[実施例7]
上記の表面改質粉末に上記の固体潤滑剤を吹き付け、表面改質粉末の表面に固体潤滑剤を付着させることで、表面改質粉末の表面が保護層としての潤滑被膜で被覆されてなる粉末を得た。この粉末を用いる以外は実施例3に係る試験片を作製するのと同様にして実施例7に係るリング状試験片を作製した。
[実施例8]
上記の鉄系粉末を窒素・水素混合ガス雰囲気で800℃×60分間保持した後徐冷することにより(上記の鉄系粉末に還元焼鈍を施すことにより)表面改質粉末を得た。その後は、実施例3に係る試験片を作製するのと同様にして実施例8に係るリング状試験片を作製した。
[実施例9]
プラズマ照射装置を用いて上記の鉄系粉末に1時間プラズマ処理を施すことにより表面改質粉末を得た。その後は、実施例3に係る試験片を作製するのと同様にして実施例9に係るリング状試験片を作製した。
[実施例10]
放電プラズマ焼結装置にセットした焼結用金型のキャビティ内に上記の鉄系粉末を投入した後、この鉄系粉末を真空中において面圧2MPaで軸方向に加圧しながら800℃で所定時間保持することにより、上記の表面改質粉末を得た。その後は、実施例3に係る試験片を作製するのと同様にして実施例10に係るリング状試験片を作製した。
[実施例11]
原料粉末として、上記の表面改質粉末に対する上記の固体潤滑剤の添加量を0.2質量%に減じたものを用いると共に、この原料粉末を、上記の固体潤滑剤を溶解させたエタノール溶液をキャビティ内壁面に塗布した成形金型を用いて圧縮成形した。これ以外は実施例3に係る試験片を作製するのと同様にして実施例11に係るリング状試験片を作製した。
[実施例12]
キャビティ内壁面にDLC膜(潤滑膜)を形成した成形金型を用いて原料粉末を圧縮成形する以外は、実施例3に係る試験片を作製するのと同様にして実施例12に係るリング状試験片を作製した。
[実施例13]
成形金型を100℃に加熱した状態で原料粉末を圧縮成形する以外は、実施例3に係る試験片を作製するのと同様にして実施例13に係るリング状試験片を作製した。
[比較例1〜3]
実施例1〜3に係る試験片の作製プロセスのうち、不動態皮膜の除去処理を省略する以外は実施例1〜3に係る試験片を作製するのと同様にして、比較例1〜3に係るリング状試験片をそれぞれ作製した。
[Example 1]
First, a prealloy type iron-based powder containing 0.5% by mass and 1.0% by mass of nickel (Ni) and molybdenum (Mo), respectively, and the balance being iron (Fe) and inevitable impurities (Kobe Steel Corporation) After the oxide film removing agent as a reducing solution in which 46F4H) was immersed was manually stirred for 1 minute, the iron-based powder taken out from the reducing solution was washed with ethanol. Thereby, the passive film of the surface layer portion was removed, and an iron-based powder (surface modified powder) in which a new surface was exposed was obtained. Next, 0.5% by mass of an amide wax solid lubricant was added to the surface-modified powder, and these were mixed by a V-type mixer to produce a mixed powder. Next, this mixed powder was filled in a molding die and pressed in the axial direction at a molding pressure of 980 MPa to obtain a ring-shaped green compact having an outer diameter of 23 mm × inner diameter of 16 mm × height of 7 mm. Finally, the ring-shaped green compact was heated and sintered at 1250 ° C. in a nitrogen / hydrogen mixed gas atmosphere to obtain a ring-shaped test piece as Example 1.
[Example 2]
A ring-shaped test piece according to Example 2 is produced in the same manner as the test piece according to Example 1 except that a mixed powder to which 0.5% by mass of artificial graphite powder as carbon powder is further added is used. did.
[Example 3]
A ring-shaped test piece according to Example 3 was obtained by performing carburizing, quenching and tempering on the test piece according to Example 2.
[Example 4]
A ring-shaped test piece according to Example 4 was obtained by subjecting the test piece according to Example 3 to shot peening using an iron-based medium having an average particle diameter D50 = 180 μm.
[Example 5]
The ring-shaped test piece which concerns on Example 5 was obtained by performing burnishing processing to the part roughened by shot peening among the test pieces which concern on Example 4.
[Example 6]
The test piece according to Example 3 is prepared except that the stirring work of the oxide film removing agent in which the iron-based powder is immersed is performed using an ultrasonic generator (ultrasonic homogenizer) instead of human power. In the same manner as described above, a ring-shaped test piece according to Example 6 was produced.
[Example 7]
Powder obtained by spraying the above-described solid lubricant onto the above-mentioned surface-modified powder and attaching the solid lubricant to the surface of the surface-modified powder so that the surface of the surface-modified powder is coated with a lubricating film as a protective layer Got. A ring-shaped test piece according to Example 7 was prepared in the same manner as the test piece according to Example 3 except that this powder was used.
[Example 8]
The iron-based powder was held in a nitrogen / hydrogen mixed gas atmosphere at 800 ° C. for 60 minutes and then slowly cooled (by subjecting the iron-based powder to reduction annealing) to obtain a surface-modified powder. Thereafter, a ring-shaped test piece according to Example 8 was produced in the same manner as the test piece according to Example 3.
[Example 9]
Surface-modified powder was obtained by subjecting the iron-based powder to plasma treatment for 1 hour using a plasma irradiation apparatus. Thereafter, a ring-shaped test piece according to Example 9 was produced in the same manner as the test piece according to Example 3.
[Example 10]
After the iron-based powder is put into the cavity of the sintering mold set in the discharge plasma sintering apparatus, the iron-based powder is pressed in the axial direction at a surface pressure of 2 MPa in vacuum for a predetermined time at 800 ° C. By holding this, the above-mentioned surface modified powder was obtained. Thereafter, a ring-shaped test piece according to Example 10 was produced in the same manner as the test piece according to Example 3.
[Example 11]
As the raw material powder, a material obtained by reducing the amount of the solid lubricant added to the surface modified powder to 0.2% by mass and using the raw material powder as an ethanol solution in which the solid lubricant is dissolved is used. Compression molding was performed using a molding die applied to the inner wall surface of the cavity. A ring-shaped test piece according to Example 11 was produced in the same manner as the test piece according to Example 3 except for this.
[Example 12]
The ring shape according to Example 12 is the same as that for producing the test piece according to Example 3 except that the raw material powder is compression molded using a molding die having a DLC film (lubricating film) formed on the inner wall surface of the cavity. A test piece was prepared.
[Example 13]
A ring-shaped test piece according to Example 13 was produced in the same manner as the test piece according to Example 3 except that the raw material powder was compression-molded while the molding die was heated to 100 ° C.
[Comparative Examples 1-3]
Among the preparation processes of the test pieces according to Examples 1 to 3, except for omitting the removal process of the passive film, Comparative Examples 1 to 3 are performed in the same manner as the preparation of the test pieces according to Examples 1 to 3. Each such ring-shaped test piece was produced.

以上で述べた実施例1〜13および比較例1〜3に係る試験片それぞれについての作製条件と、各試験片の圧環強度の評価とを図6にまとめて示す。同図からも明らかなように、実施例1〜13に係る試験片は、何れも、比較例1〜3に係る試験片に比べて圧環強度、すなわち機械的強度が高い。従って、表面(表層部)に生成された不動態皮膜を除去する表面改質処理を前もって施した金属粉末を使用して、圧粉体、さらには焼結体を得ることが、焼結金属部品の高強度化を図る上で有用であることが理解される。   The production conditions for each of the test pieces according to Examples 1 to 13 and Comparative Examples 1 to 3 described above and the evaluation of the crushing strength of each test piece are collectively shown in FIG. As is clear from the figure, all of the test pieces according to Examples 1 to 13 have higher crushing strength, that is, mechanical strength than the test pieces according to Comparative Examples 1 to 3. Therefore, it is possible to obtain a green compact and further a sintered body by using a metal powder that has been subjected to a surface modification treatment to remove the passive film formed on the surface (surface layer portion). It is understood that it is useful for increasing the strength of the steel.

また、実施例1と実施例2の判定結果から、表面改質粉末に炭素粉末を添加した上で圧縮成形を実施することが焼結金属部品の高強度化を図る上で有利であり、実施例2と実施例3,4の判定結果から、焼結体に浸炭焼入れ焼戻し等の熱処理、さらにはショットピーニング等の塑性加工を施すことが焼結金属部品を一層高強度化する上で有利であることが理解される。また、実施例3と実施例6の判定結果から、金属粉末に対して表面改質処理としての湿式の還元処理を施す際に、金属粉末を浸漬させた還元性溶液の撹拌を、超音波振動器を用いて実行する方が焼結金属部品の高強度化を図る上で有利であることが理解される。さらに、実施例3と実施例11〜13の判定結果から、原料粉末(圧粉体)の圧縮成形時に、いわゆる金型潤滑成形法や温間成形法を適用することが焼結金属部品の高強度化を図る上で有利であることが理解される。   Further, from the determination results of Example 1 and Example 2, it is advantageous to increase the strength of the sintered metal part by performing compression molding after adding carbon powder to the surface-modified powder. From the judgment results of Example 2 and Examples 3 and 4, it is advantageous to further increase the strength of the sintered metal part by subjecting the sintered body to heat treatment such as carburizing, quenching and tempering, and further to plastic processing such as shot peening. It is understood that there is. Further, from the determination results of Example 3 and Example 6, stirring of the reducing solution in which the metal powder was immersed was performed by ultrasonic vibration when the metal powder was subjected to wet reduction treatment as surface modification treatment. It is understood that it is advantageous to increase the strength of the sintered metal part by using a container. Furthermore, from the determination results of Example 3 and Examples 11 to 13, it is possible to apply so-called mold lubrication molding method and warm molding method at the time of compression molding of raw material powder (green compact). It is understood that it is advantageous in increasing the strength.

1 歯車(焼結金属部品)
2 破面
3 硬化層
A 焼結金属部品
S1 表面改質工程
S1’ 保護層形成工程
S2 圧縮成形工程
S3 焼結工程
S4 高強度化工程
1 Gear (sintered metal parts)
2 Fracture surface 3 Hardened layer A Sintered metal part S1 Surface modification process S1 'Protective layer formation process S2 Compression molding process S3 Sintering process S4 Strengthening process

Claims (9)

金属粉末の圧粉体を得る圧縮成形工程と、圧粉体を加熱して焼結体を得る焼結工程とを含む焼結金属部品の製造方法において、
前記圧縮成形工程の実施に先立って、前記金属粉末の表面に形成された不動態およびその皮膜を除去する表面改質処理を実施することを特徴とする焼結金属部品の製造方法。
In a method for producing a sintered metal part, comprising a compression molding step of obtaining a green compact of a metal powder, and a sintering step of obtaining a sintered body by heating the green compact,
Prior to performing the compression molding step, a surface reforming process is performed to remove the passivation formed on the surface of the metal powder and its film, and a method for producing a sintered metal part.
前記表面改質処理が還元処理である請求項1に記載の焼結金属部品の製造方法。   The method for manufacturing a sintered metal part according to claim 1, wherein the surface modification treatment is a reduction treatment. 前記表面改質処理がプラズマ処理である請求項1に記載の焼結金属部品の製造方法。   The method for manufacturing a sintered metal part according to claim 1, wherein the surface modification treatment is a plasma treatment. 前記表面改質処理の実施後で前記圧縮成形工程の実施前に、前記不動態およびその皮膜が除去されることで前記金属粉末に表出した新生面を被覆する保護層の形成処理を実施する請求項1〜3の何れか一項に記載の焼結金属部品の製造方法。   A process of forming a protective layer that covers the new surface exposed on the metal powder by removing the passivation and the film after the surface modification treatment and before the compression molding step. Item 4. A method for producing a sintered metal part according to any one of Items 1 to 3. 前記保護層が潤滑成分を有する請求項4に記載の焼結金属部品の製造方法。   The method for producing a sintered metal part according to claim 4, wherein the protective layer has a lubricating component. 前記保護層は、前記圧粉体の加熱時に揮発する化合物を主成分とする請求項4又は5に記載の焼結金属部品の製造方法。   The said protective layer is a manufacturing method of the sintered metal component of Claim 4 or 5 which has as a main component the compound which volatilizes when the said green compact is heated. 前記焼結体に高強度化処理を施す高強度化工程をさらに有する請求項1〜6の何れか一項に記載の焼結金属部品の製造方法。   The manufacturing method of the sintered metal component as described in any one of Claims 1-6 which further has the strengthening process which performs the strengthening process to the said sintered compact. 前記高強度化処理により得られた二次焼結体の表面粗さを低減させる仕上げ工程をさらに有する請求項7に記載の焼結金属部品の製造方法。   The manufacturing method of the sintered metal component of Claim 7 which further has a finishing process which reduces the surface roughness of the secondary sintered compact obtained by the said high strengthening process. 前記焼結体は、鉄、ステンレス、銅、アルミニウムおよびチタンの群から選択される少なくとも一種の金属を主成分としている請求項1〜8の何れか一項に記載の焼結金属部品の製造方法。   The method for producing a sintered metal part according to any one of claims 1 to 8, wherein the sintered body is mainly composed of at least one metal selected from the group consisting of iron, stainless steel, copper, aluminum, and titanium. .
JP2014027404A 2014-02-17 2014-02-17 Method for producing sintered metal component Pending JP2015151586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014027404A JP2015151586A (en) 2014-02-17 2014-02-17 Method for producing sintered metal component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014027404A JP2015151586A (en) 2014-02-17 2014-02-17 Method for producing sintered metal component

Publications (1)

Publication Number Publication Date
JP2015151586A true JP2015151586A (en) 2015-08-24

Family

ID=53894179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014027404A Pending JP2015151586A (en) 2014-02-17 2014-02-17 Method for producing sintered metal component

Country Status (1)

Country Link
JP (1) JP2015151586A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110294A (en) * 2015-12-10 2017-06-22 キヤノン株式会社 Raw material powder processing method, raw material powder processing device and manufacturing method of molding
KR101862263B1 (en) * 2016-12-16 2018-05-29 주식회사 포스코 Apparatus and method for feeding material
JP2018119202A (en) * 2017-01-27 2018-08-02 三菱重工業株式会社 Method for producing metal powder for three-dimensional laminated molding, three-dimensional laminated molding method, and three-dimensional laminated molding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110294A (en) * 2015-12-10 2017-06-22 キヤノン株式会社 Raw material powder processing method, raw material powder processing device and manufacturing method of molding
KR101862263B1 (en) * 2016-12-16 2018-05-29 주식회사 포스코 Apparatus and method for feeding material
WO2018110797A1 (en) * 2016-12-16 2018-06-21 주식회사 포스코 Device and method for supplying raw material
CN110177986A (en) * 2016-12-16 2019-08-27 株式会社Posco Device and method for base feed
JP2020514655A (en) * 2016-12-16 2020-05-21 ポスコPosco Raw material supply device and supply method
US11167347B2 (en) 2016-12-16 2021-11-09 Posco Apparatus and method for feeding material
JP2018119202A (en) * 2017-01-27 2018-08-02 三菱重工業株式会社 Method for producing metal powder for three-dimensional laminated molding, three-dimensional laminated molding method, and three-dimensional laminated molding

Similar Documents

Publication Publication Date Title
JP4304245B2 (en) Powder metallurgy object with a molded surface
JP6087042B2 (en) Method for manufacturing sintered member
JP2005213649A (en) Method of producing parts from powdered metal
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
JP2007138226A (en) Iron-base sintered parts, method for manufacturing iron-base sintered parts, and actuator
JP6309215B2 (en) Sintered machine part manufacturing method and mixed powder used therefor
JP2015151586A (en) Method for producing sintered metal component
JP5765654B2 (en) Method for manufacturing sintered parts
JP2008527166A (en) Method for producing surface densified powder metal parts
JP2014148693A (en) Cemented carbide and method for manufacturing the same as well as superhard tool
JP6149718B2 (en) Iron-based sintered alloy, method for producing the same, and high-carbon iron-based powder
US20160023274A1 (en) Machine part and process for producing same
JP2004323939A (en) Method for manufacturing sintered part
JP6819624B2 (en) Iron-based mixed powder for powder metallurgy, its manufacturing method, and sintered body with excellent tensile strength and impact resistance
US11883883B2 (en) Process for manufacturing toroid parts
JP2007077468A (en) Method for manufacturing sintered compact
US11097346B1 (en) Process for manufacturing toroid parts
WO2018181107A1 (en) Sintered aluminum alloy material and method for producing same
JP6743720B2 (en) Iron-based mixed powder for powder metallurgy, method for producing the same, and sintered body excellent in tensile strength and impact resistance
KR101874608B1 (en) A method of producing a connecting rod
JPH03226504A (en) Manufacture of high density titanium alloy powder sintered product
JP2019151910A (en) Method for producing composite sintered member and composite sintered member
JP7036216B2 (en) Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JP2006000952A (en) Method of machining sintered magnetic substance