JP4401326B2 - Method for producing high-strength wear-resistant aluminum sintered alloy - Google Patents

Method for producing high-strength wear-resistant aluminum sintered alloy Download PDF

Info

Publication number
JP4401326B2
JP4401326B2 JP2005139397A JP2005139397A JP4401326B2 JP 4401326 B2 JP4401326 B2 JP 4401326B2 JP 2005139397 A JP2005139397 A JP 2005139397A JP 2005139397 A JP2005139397 A JP 2005139397A JP 4401326 B2 JP4401326 B2 JP 4401326B2
Authority
JP
Japan
Prior art keywords
powder
aluminum
sintering
mass
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005139397A
Other languages
Japanese (ja)
Other versions
JP2006316312A (en
Inventor
淳一 市川
謙三 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2005139397A priority Critical patent/JP4401326B2/en
Priority to DE102005032544A priority patent/DE102005032544B4/en
Priority to AT0117705A priority patent/AT500508B1/en
Priority to US11/182,653 priority patent/US20060013719A1/en
Publication of JP2006316312A publication Critical patent/JP2006316312A/en
Application granted granted Critical
Publication of JP4401326B2 publication Critical patent/JP4401326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、コネクティングロッドやピストン等の各種摺動部材として好適な高強度と耐摩耗性を有するアルミニウム焼結部品の製造方法に関し、特に、耐摩耗性とともに、引張り強さと伸びが改善された高強度耐摩耗性アルミニウム焼結合金の製造方法に関する。なお、本明細書において、Al、Zn、Mgなどは元素記号である。   The present invention relates to a method for producing a sintered aluminum part having high strength and wear resistance suitable as various sliding members such as a connecting rod and a piston, and in particular, a high strength with improved tensile strength and elongation as well as wear resistance. The present invention relates to a method for producing a strong and wear-resistant aluminum sintered alloy. In this specification, Al, Zn, Mg, and the like are element symbols.

粉末冶金法によるアルミニウム焼結部品は、軽量であることに加えて、溶製材料では得られない強度、耐摩耗性等の特性が得られることから近年需要が増しつつある。例えば、Siを多量に含む鋳造合金では初晶Siが粗大化した金属組織の合金しか得られないが、焼結アルミニウム合金では微細な初晶Siが分散するAl−Si系合金相と初晶Siを含まないAl固溶体相とを斑状に分散させた金属組織を呈し、強度と耐摩耗性に優れたアルミニウム焼結合金(特許文献1〜4)等が実用化されている。これらのアルミニウム焼結合金は、耐摩耗性に優れてはいるものの、その強度は、鍛造や熱処理を施してもその強度が360MPa程度であるため、その適用が制限され、より一層高強度の耐摩耗性アルミニウム焼結合金が望まれている。   In recent years, the demand for aluminum sintered parts by powder metallurgy has been increasing because they are lightweight and have properties such as strength and wear resistance that cannot be obtained with melted materials. For example, in a cast alloy containing a large amount of Si, only an alloy having a metal structure with coarse primary crystal Si can be obtained, but in a sintered aluminum alloy, an Al—Si based alloy phase in which fine primary crystal Si is dispersed and primary crystal Si are obtained. An aluminum sintered alloy (Patent Documents 1 to 4), which has a metal structure in which an Al solid solution phase not containing aluminum is dispersed in a patch shape and is excellent in strength and wear resistance, has been put into practical use. Although these aluminum sintered alloys are excellent in wear resistance, their strength is limited to about 360 MPa even when forging or heat treatment is applied. Abradable aluminum sintered alloys are desired.

このため、本発明者等は超々ジュラルミンとして知られる7000系のアルミニウム合金を粉末冶金法で製造する方法を開発し出願(特願2004−206957号)するとともに、さらにこの合金をベースに硬質粒子を添加することで、高強度と耐摩耗性を兼ね備えた焼結アルミニウム合金を開発し出願(特願2004−207586号、以下これを先願と称する)している。前記先願の高強度耐摩耗性アルミニウム焼結合金は、全体組成が、質量比で、Zn:3.0〜10%、Mg:0.5〜5.0%、Cu:0.5〜5.0、硬質粒子:0.1〜10質量%、および残部がアルミニウムからなるとともに、金属間化合物が析出分散するアルミニウム合金基地中に、硬質粒子が分散する金属組織を呈することを特徴とする(請求項1)もので、450〜520MPa程度(実施例)の高い引張り強さを有するとともに、高い耐摩耗性を有するという高強度耐摩耗性アルミニウム焼結合金である。また、先願には上記の高強度耐摩耗性アルミニウム焼結合金を得るための製造方法として、アルミニウム粉末に、硬質粒子粉末と、亜鉛、マグネシウム、銅の単味粉末、もしくは亜鉛、マグネシウムおよび銅の少なくとも2種の合金粉末、もしくはそれらの混合粉末とを添加した原料粉末を用いることが記載されている。   For this reason, the present inventors have developed and filed a method for producing a 7000 series aluminum alloy known as ultra-super duralumin by a powder metallurgy method (Japanese Patent Application No. 2004-206957), and further, based on this alloy, hard particles By adding, a sintered aluminum alloy having high strength and wear resistance has been developed and applied (Japanese Patent Application No. 2004-207586, hereinafter referred to as a prior application). The high-strength wear-resistant aluminum sintered alloy of the prior application has a mass ratio of Zn: 3.0 to 10%, Mg: 0.5 to 5.0%, Cu: 0.5 to 5 0.0, hard particles: 0.1 to 10% by mass, and the balance is made of aluminum, and presents a metal structure in which hard particles are dispersed in an aluminum alloy matrix in which intermetallic compounds are precipitated and dispersed ( A high strength wear-resistant aluminum sintered alloy having high tensile strength of about 450 to 520 MPa (Example) and high wear resistance. In addition, in the prior application, as a manufacturing method for obtaining the above-mentioned high-strength wear-resistant aluminum sintered alloy, an aluminum powder, a hard particle powder, and a simple powder of zinc, magnesium, copper, or zinc, magnesium and copper It is described that a raw material powder to which at least two kinds of alloy powders or a mixed powder thereof is added is used.

特開平4−365832号公報Japanese Patent Laid-Open No. 4-365832 特開平7−197168号公報JP-A-7-197168 特開平7−197167号公報JP-A-7-197167 特開平7−224341号公報JP-A-7-224341

上記最後に挙げた先願の高強度耐摩耗性アルミニウム焼結合金は、上述した通り、特に機械的強さと耐摩耗性に優れているが、そこに開示されている高強度耐摩耗性アルミニウム焼結合金の製造方法は、焼結時に揮発しやすいZnを亜鉛粉末の形態で用いることから、焼結後に得られるアルミニウム焼結合金中のZn量が安定せず、Zn量にばらつきが生じ易くなっている。Znはアルミニウム合金基地中で金属間化合物として析出して機械的強度の向上に寄与するため、Zn量にばらつきが生じると、焼結後に得られるアルミニウム焼結合金の機械的強度にばらつきが生じることとなる。このため、上記のアルミニウム合金を具体的な製品に適用しようとすると、製品の安全性を考慮して機械的強度のばらつきの下限で設計を行わなければならず、上記高強度耐摩耗性アルミニウム焼結合金の特性を十分に発揮し難くいという欠点があった。   The high-strength wear-resistant aluminum sintered alloy of the previous application mentioned above is particularly excellent in mechanical strength and wear resistance as described above, but the high-strength wear-resistant aluminum sintered alloy disclosed therein is disclosed. The manufacturing method of the bond gold uses Zn which is volatile at the time of sintering in the form of zinc powder, so the amount of Zn in the sintered aluminum alloy obtained after sintering is not stable, and the amount of Zn tends to vary. ing. Zn precipitates as an intermetallic compound in the aluminum alloy matrix and contributes to the improvement of mechanical strength. Therefore, if the amount of Zn varies, the mechanical strength of the sintered aluminum alloy obtained after sintering also varies. It becomes. For this reason, if the above-mentioned aluminum alloy is applied to a specific product, it must be designed with the lower limit of variation in mechanical strength in consideration of product safety, and the high-strength wear-resistant aluminum There was a drawback that it was difficult to fully exhibit the properties of the bond gold.

そこで、本発明の目的は、上記最後に挙げた先願で開示の高強度耐摩耗性アルミニウム焼結合金の製造方法について、特にZnを安定して供給できる構成を工夫して、機械的強度のばらつきの小さいアルミニウム焼結合金を確実に量産可能にすることにある。   Therefore, the object of the present invention is to improve the mechanical strength of the method for producing a high-strength wear-resistant aluminum sintered alloy disclosed in the last-mentioned prior application, in particular by devising a structure that can stably supply Zn. The purpose is to enable mass production of aluminum sintered alloys with small variations.

上記課題を解消するため、本発明の高強度耐摩耗性アルミニウム焼結合金の製造方法は、Znの全量をアルミニウム合金粉末の形態で与えることで、Znの揮発を防止してZnを安定供給するとともに、原料粉末に15質量%以上のアルミニウム粉末を併用することで、上記Znの合金化による原料粉末の圧縮性低下を抑制したことを骨子とする。
すなわち、本発明の高強度耐摩耗性アルミニウム焼結合金の製造方法は、原料粉末全体の成分組成が、質量比で、Zn:3.0〜10%、Mg:0.5〜5.0%、Cu:0.5〜5.0%、硬質粒子:0.1〜10%、並びに残部が不可避不純物およびAlからなり、かつ、原料として15質量%以上のアルミニウム粉末と、Znの全量を含むアルミニウム合金粉末と、0.1〜10質量%の硬質粒子粉末とを少なくとも用い、それらの原料粉末を混合する原料粉末配合工程と、前記原料粉末配合工程により得られた原料粉末を用いて、所望の形状の金型に充填した後、200MPa以上の成形圧力で圧粉成形する成形工程と、前記成形工程で得られた成形体を、非酸化性雰囲気中で、焼結保持温度:580〜610℃、焼結保持時間:10分以上で焼結した後、常温まで冷却する焼結工程と、前記焼結工程で得られた焼結体を、460〜490℃に加熱して水焼き入れして溶体化した後、110〜200℃で2〜28時間保持して時効析出させる熱処理工程、を順に行うことを特徴としている。
In order to solve the above problems, the method for producing a high-strength wear-resistant aluminum sintered alloy according to the present invention prevents the volatilization of Zn and stably supplies Zn by giving the total amount of Zn in the form of aluminum alloy powder. At the same time, the fact that the lowering of the compressibility of the raw material powder due to the alloying of Zn is suppressed by using 15% by mass or more of aluminum powder in the raw material powder is essential.
That is, in the method for producing a high-strength wear-resistant aluminum sintered alloy of the present invention, the component composition of the entire raw material powder is, by mass ratio, Zn: 3.0 to 10%, Mg: 0.5 to 5.0% Cu: 0.5 to 5.0%, hard particles: 0.1 to 10%, the balance is made of inevitable impurities and Al, and contains 15% by mass or more of aluminum powder as a raw material, and the total amount of Zn Using at least an aluminum alloy powder and 0.1 to 10% by mass of hard particle powder, mixing the raw material powder, and using the raw material powder obtained by the raw material powder blending step, the desired After filling the metal mold of the shape, a molding step of compacting at a molding pressure of 200 MPa or more, and a compact obtained in the molding step in a non-oxidizing atmosphere, sintering holding temperature: 580 to 610 ° C, sintering holding time: 1 After sintering for more than minutes, the sintering process is cooled to room temperature, and the sintered body obtained in the sintering process is heated to 460-490 ° C. and water-quenched to form a solution. A heat treatment step of aging precipitation by holding at 200 ° C. for 2 to 28 hours is performed in order.

以上の本発明の製造方法にあっては、前記焼結工程を経た焼結体を、室温で据え込み率:3〜40%の据え込み率で冷間鍛造を行う冷間鍛造工程、もしくは100〜450℃で据え込み率:3〜70%の据え込み率で熱間鍛造を行う熱間鍛造工程のいずれかによる鍛造工程を行った後、前記熱処理工程を行うこと(請求項2)、前記アルミニウム合金粉末が、Zn:10〜30質量%で、残部がAlおよび不可避不純物よりなること(請求項3)、前記アルミニウム合金粉末が、Cu:10質量%以下をさらに含むこと(請求項4)、前記硬質粒子粉末として、硬さが1000Hv以上で、アルミニウムと反応しないものを用いること(請求項5)、前記硬質粒子粉末が、炭化珪素粉末、硼化クロム粉末、炭化硼素粉末の少なくとも1種であること(請求項6)、記原料粉末中に、原料粉末の全体組成に対して0.01〜0.5質量%のSn単味粉末、Bi単味粉末、In単味粉末、および、Sn、Bi、Inのいずれかを主成分とし前記主成分の共晶液相を生じる共晶化合物粉末および偏晶化合物粉末、の少なくとも1種の粉末をさらに添加、混合したこと(請求項7)、上記アルミニウム粉末およびアルミニウム合金粉末の大きさがそれぞれ100メッシュ以下、硬質粒子粉末の大きさが125メッシュ以下、およびその他の粉末の大きさが200メッシュ以下であること(請求項8)、前記焼結工程おける非酸化性雰囲気が、露点が−40℃以下の窒素ガス雰囲気であること(請求項9)が好ましい。   In the manufacturing method of the present invention described above, a cold forging process in which the sintered body that has undergone the sintering process is cold forged at an upsetting rate of 3 to 40% at room temperature, or 100 Upsetting rate at ˜450 ° C .: After performing the forging step by any one of hot forging steps in which hot forging is performed at an upsetting rate of 3 to 70%, the heat treatment step is performed (claim 2), The aluminum alloy powder is Zn: 10 to 30% by mass, the balance is made of Al and inevitable impurities (Claim 3), and the aluminum alloy powder further contains Cu: 10% by mass or less (Claim 4). The hard particle powder has a hardness of 1000 Hv or more and does not react with aluminum (Claim 5), and the hard particle powder is at least one of silicon carbide powder, chromium boride powder, and boron carbide powder. In (Claim 6) In the raw material powder, 0.01 to 0.5% by mass of Sn simple powder, Bi simple powder, In simple powder, and Sn, based on the total composition of the raw material powder, At least one powder of a eutectic compound powder and a monotectic compound powder containing either Bi or In as a main component and generating a eutectic liquid phase of the main component is further added and mixed (Claim 7), The size of the aluminum powder and the aluminum alloy powder is 100 mesh or less, the size of the hard particle powder is 125 mesh or less, and the size of the other powder is 200 mesh or less (claim 8), the sintering step The non-oxidizing atmosphere is preferably a nitrogen gas atmosphere having a dew point of −40 ° C. or lower.

上記本発明の製造方法は、超々ジュラルミンとして知られる7000系のアルミニウム焼結合金をベースに硬質粒子を分散させた、高い引張り強さと伸びを有するとともに、高い耐摩耗性を有する優れた高強度耐摩耗性アルミニウム焼結合金を製造するための方法であり、特に揮発しやすいZnを合金粉末の形態で付与したことにより、アルミニウム焼結合金中のZn量が安定し、機械的強度のばらつきの小さい高強度耐摩耗性アルミニウム焼結合金が確実に得られる。   The production method of the present invention has a high tensile strength and elongation in which hard particles are dispersed based on a 7000 series aluminum sintered alloy known as ultra-super duralumin, and has high wear resistance and excellent high strength resistance. This is a method for producing a wearable aluminum sintered alloy. By applying Zn, which is particularly volatile, in the form of alloy powder, the amount of Zn in the aluminum sintered alloy is stabilized and the variation in mechanical strength is small. A high-strength, wear-resistant aluminum sintered alloy can be reliably obtained.

(1)原料粉末配合工程
(1)−1 原料粉末全体の成分組成
Zn:
Znは、MgとともにAl基地中にMgZn(η相)やAlMgZn(Τ相)として析出して強度を高める作用を有する。また、Znは、Al−Zn合金粉末の形態で付与されるが、焼結の昇温時にAl−Zn合金粉末より発生するAl−Zn液相は、アルミニウム粉末の表面に濡れて表面の酸化被膜を除去し、アルミニウム基地中に拡散するとともに、アルミニウム粉末どうしの拡散による結合を促進する作用も有する。Znの含有量は、3質量%に満たないと上記の作用が十分に得られず強度向上の効果が乏しくなる。一方、10質量%を超えると焼結中のZnまたはZn系共晶液相の量が過多となり、形状の維持が不可能となるとともに、アルミニウム基地中でZn量が過多の部位がZnリッチ相として残留する。また、Znが多量となると揮発し易くなり、炉内を汚染・堆積することとなる。よって、Zn含有量を3〜10質量%とする。
(1) Raw material powder blending step (1) -1 Component composition of the entire raw material powder Zn:
Zn has the effect of increasing the strength by being precipitated together with Mg as MgZn 2 (η phase) or Al 2 Mg 3 Zn 3 (solid phase) in the Al matrix. Also, Zn is applied in the form of Al-Zn alloy powder, but the Al-Zn liquid phase generated from the Al-Zn alloy powder at the time of temperature rise during sintering wets the surface of the aluminum powder and the oxide film on the surface. And is diffused in the aluminum matrix and has an action of promoting bonding by diffusion of aluminum powders. If the Zn content is less than 3% by mass, the above-described effects cannot be obtained sufficiently and the effect of improving the strength becomes poor. On the other hand, if the amount exceeds 10% by mass, the amount of Zn or Zn-based eutectic liquid phase during sintering becomes excessive, making it impossible to maintain the shape, and the excessively Zn content in the aluminum base is a Zn-rich phase. Remains as. Moreover, when Zn becomes large quantity, it will become easy to volatilize, and the inside of a furnace will be contaminated and deposited. Therefore, Zn content shall be 3-10 mass%.

Mg:
Mgは上記のZnとともに上記の析出化合物を形成して強度の向上に寄与する。また、Mgも融点が低く、焼結時の昇温過程で液相を発生して、酸化被膜を除去し、焼結の進行を促進する作用を有する。Mgの含有量は、0.5質量%に満たないと上記の効果が乏しく、5.0質量%を超えると液相量として過剰となり、形状が維持できなくなる。よって、Mg含有量を0.5〜5.0質量%とする。
Mg:
Mg contributes to the improvement of strength by forming the above-mentioned precipitated compound together with the above-mentioned Zn. Mg also has a low melting point and has a function of generating a liquid phase during the temperature rising process during sintering, removing the oxide film, and promoting the progress of sintering. If the content of Mg is less than 0.5% by mass, the above effect is poor, and if it exceeds 5.0% by mass, the liquid phase becomes excessive and the shape cannot be maintained. Therefore, Mg content shall be 0.5-5.0 mass%.

Cu:
Cuは、Al基地中に固溶されCuAl(θ相)を析出させて強度の向上に寄与する他、焼結時に液相を発生して焼結の進行を促進する作用を有する。Cuの含有量は、0.5質量%に満たないと上記の作用が十分に得られず、5.0質量%を超えるとZnと不要なCu−Zn合金相を形成し、粒界に沿って大きく析出して強度および伸びを低下させるので、Cu含有量は0.5〜5.0質量%とする。
Cu:
Cu is dissolved in the Al matrix and precipitates CuAl 2 (θ phase) to contribute to improvement of strength, and also has a function of generating a liquid phase during sintering and promoting the progress of sintering. If the Cu content is less than 0.5% by mass, the above-described effect cannot be obtained sufficiently. If it exceeds 5.0% by mass, an unnecessary Cu—Zn alloy phase is formed with Zn, and along the grain boundary. Therefore, the Cu content is set to 0.5 to 5.0% by mass.

硬質粒子:
一般に合金基地への硬質相の添加は合金の強度および伸びの低下をもたらすが、ベースとなるアルミニウム合金基地を上記の元素で合金化して高強度のアルミニウム焼結合金としたことから、硬質粒子の添加により強度および伸びが若干低下しても、従来のアルミニウム−珪素系耐摩耗性アルミニウム焼結合金等に比して、極めて高い強度および伸びを示す。また、本発明においては摺動条件(特に摺動相手)により、分散させる硬質粒子の種類および量を容易に変更できるという利点を有する。例えば従来のアルミニウム−珪素系耐摩耗性アルミニウム焼結合金は硬質粒子として初晶Siを分散するものであるが、摺動相手が鉄系材料の場合、FeとSiの間の親和性により摩擦係数が高くなる傾向を有する。しかし、本発明のアルミニウム焼結合金においては、例えば、硼化クロム等のFeとの親和性が低い硬質粒子を選択することで、摩擦係数の低減および耐摩耗性の向上を果たすことが可能である。
Hard particles:
In general, the addition of a hard phase to an alloy matrix causes a decrease in the strength and elongation of the alloy. However, since the base aluminum alloy matrix is alloyed with the above elements to form a high-strength aluminum sintered alloy, Even if the strength and elongation are slightly reduced by the addition, extremely high strength and elongation are exhibited as compared with a conventional aluminum-silicon wear-resistant aluminum sintered alloy or the like. Moreover, in this invention, it has the advantage that the kind and quantity of the hard particle to disperse | distribute can be easily changed with sliding conditions (especially sliding partner). For example, a conventional aluminum-silicon wear resistant aluminum sintered alloy disperses primary crystal Si as hard particles, but when the sliding partner is an iron-based material, the friction coefficient depends on the affinity between Fe and Si. Tends to be high. However, in the aluminum sintered alloy of the present invention, for example, by selecting hard particles having low affinity with Fe such as chromium boride, it is possible to reduce the friction coefficient and improve the wear resistance. is there.

硬質粒子の添加量は0.1質量%以上で、耐摩耗性改善の効果が顕著となり、一方、硬質粒子の添加量が10質量%を超えると、強度および伸びの低下が著しくなることから、硬質粒子の添加量は1〜10質量%とする必要がある。また、硬質粒子は、硬さが低いと硬質粒子自体が塑性流動を起こすこととなり耐摩耗性が低下することとなるため、硬さが1000Hv以上のものが好ましい。   Since the addition amount of hard particles is 0.1% by mass or more, the effect of improving the wear resistance becomes remarkable. On the other hand, when the addition amount of hard particles exceeds 10% by mass, the decrease in strength and elongation becomes remarkable. It is necessary to add 1 to 10% by mass of the hard particles. Moreover, since hard particle | grains will raise | generate a plastic flow and a wear resistance will fall when hardness is low, a thing with a hardness of 1000 Hv or more is preferable.

Sn、Bi、In:
Sn、Bi、Inは、融点が低く焼結中で液相を発生し、アルミニウム粉末の表面に濡れて、アルミニウム粉末表面の酸化被膜を除去して、アルミニウム粉末どうしの焼結の進行を促進するとともに、液相の表面張力により液相収縮して緻密化に寄与する作用を有するので、焼結助剤として上記のZn、Mg、Cuとともに用いると好ましい。この液相による緻密化作用は、液相の存在時間が長くなるとその作用がより進行するため、焼結過程の早期より液相を発生し、焼結過程のほとんどを液相のままであると、その効果が大きくなる。したがって、融点が低く、かつ主成分のAlとほとんど溶け合わないSn(融点:232℃)、Bi(融点:271℃)、In(融点:155.4℃)はこの点できわめて好適である。
Sn, Bi, In:
Sn, Bi, and In have a low melting point, generate a liquid phase during sintering, get wet on the surface of the aluminum powder, remove the oxide film on the surface of the aluminum powder, and promote the progress of sintering between the aluminum powders. At the same time, it has the effect of contributing to densification by shrinking the liquid phase due to the surface tension of the liquid phase, and therefore it is preferable to use it together with the above Zn, Mg, Cu as a sintering aid. This densification effect by the liquid phase is more advanced when the liquid phase is present for a long time, so the liquid phase is generated earlier in the sintering process, and most of the sintering process remains in the liquid phase. , The effect is greater. Therefore, Sn (melting point: 232 ° C.), Bi (melting point: 271 ° C.), and In (melting point: 155.4 ° C.), which have a low melting point and hardly dissolve with the main component Al, are very suitable in this respect.

また、これらの元素を主成分としこの主成分の共晶液相を生じるような共晶化合物とすると、融点が単体の場合より一層低くなるためさらに好ましい。この共晶液相は主成分(Sn、Bi、In)と他の元素との共晶液相でもよく、あるいは主成分と、主成分と他の元素との金属間化合物との共晶液相でもよい。また、偏晶化合物の一部にも共晶反応線を有するものがあり、このようなSn、Bi、Inの共晶液相を発生させる偏晶化合物も使用できる。Snとこのような共晶液相を形成する元素としては、Ag、Au、Ce、Cu、La、Li、Mg、Pb、Pt、Tl、Zn等があり、Biとこのような共晶液相を形成する元素としては、Ag、Au、Ca、Cd、Ce、Co、Cu、Ga、K、Li、Mg、Mn、Na、Pb、Rh、S、Se、Sn、Te、Tl、Zn等があり、Inとこのような共晶液相を形成する元素としては、Ag、Au、Ca、Cd、Cu、Ga、Sb、Te、Zn等がある。以上は、単純な二元系の場合の例であるが、三元系または四元系以上の場合であっても同様にSn、Bi、Inを主成分とし、この主成分の共晶液相を発生する組成であれば、同様の効果が得られる。ただし、これらの元素のうち、Pb、CdについてもSn、Bi、Inと共晶液相を発生するが、毒性の点から使用しないことが好ましい。   Further, it is more preferable to use an eutectic compound containing these elements as a main component and to generate a eutectic liquid phase of the main component because the melting point becomes lower than that of a simple substance. This eutectic liquid phase may be a eutectic liquid phase of a main component (Sn, Bi, In) and another element, or a eutectic liquid phase of a main component and an intermetallic compound of the main component and another element. But you can. In addition, some of the orthorhombic compounds have eutectic reaction lines, and orthorhombic compounds that generate such eutectic liquid phases of Sn, Bi, and In can also be used. Examples of elements that form such a eutectic liquid phase with Sn include Ag, Au, Ce, Cu, La, Li, Mg, Pb, Pt, Tl, and Zn, and Bi and such an eutectic liquid phase. Examples of the elements forming Ag include Ag, Au, Ca, Cd, Ce, Co, Cu, Ga, K, Li, Mg, Mn, Na, Pb, Rh, S, Se, Sn, Te, Tl, Zn, and the like. There are Ag, Au, Ca, Cd, Cu, Ga, Sb, Te, Zn, and the like as elements that form such a eutectic liquid phase with In. The above is an example of a simple binary system, but even in the case of a ternary system or a quaternary system or more, Sn, Bi, and In are similarly used as main components, and the eutectic liquid phase of this main component is used. The same effect can be obtained with a composition that generates odor. However, among these elements, Pb and Cd also generate eutectic liquid phases with Sn, Bi, and In, but it is preferable not to use them from the viewpoint of toxicity.

上記の観点を含めて、多元系のSn、Bi、Inを主成分とする共晶合金としては、近年開発が進んでいる鉛フリーはんだを用いることが好ましい。鉛フリーはんだには、Sn−Zn系、Sn−Bi系、Sn−Zn−Bi系、Sn−Ag−Bi系等があり、これらに少量のIn、Cu、Ni、Sb、Ga、Ge等の金属元素を添加したものが提案されており、その一部は実際に実用化されている。このような市販の鉛フリーはんだは、入手が容易であることからも好ましい。   Including the above viewpoints, it is preferable to use lead-free solder, which has been developed in recent years, as a eutectic alloy mainly composed of multi-element Sn, Bi, and In. Lead-free solder includes Sn-Zn, Sn-Bi, Sn-Zn-Bi, Sn-Ag-Bi, etc., and small amounts of In, Cu, Ni, Sb, Ga, Ge, etc. Some metal elements have been proposed, and some of them have been put to practical use. Such a commercially available lead-free solder is preferable because it is easily available.

これらの焼結助剤粉末は、0.01質量%以上の添加でその効果が顕著となる。一方、Sn、Bi、InはAlと溶け合わないため、多量に用いると粒界に析出し、強度低下の原因となるため、多くとも0.5質量%以下に止めるべきである。0.5質量%以上の添加は、Sn、Bi、Inの粒界析出による強度低下が、上記の液相収縮による緻密化の効果を上回り、かえって強度の低下を招くこととなる。   The effect of these sintering aid powders becomes remarkable when 0.01% by mass or more is added. On the other hand, Sn, Bi, and In do not dissolve in Al, so when used in a large amount, they precipitate at the grain boundaries and cause a decrease in strength. When 0.5% by mass or more is added, the strength reduction due to precipitation of Sn, Bi, and In grain boundaries exceeds the effect of densification due to the liquid phase shrinkage, and the strength is reduced.

1−(2) 粉末の形態
アルミニウム合金粉末とアルミニウム粉末:
上記のZnは高温で揮発しやすい元素であるため、単味粉末で与えると、Znの揮発により残留するZn量が一定せず製品によるバラツキが多くなる。このため、本発明においてはZnの全量をアルミニウムと合金化してアルミニウム合金粉末の形態で付与することでこのZnの揮発を防止する。
1- (2) Powder form Aluminum alloy powder and aluminum powder:
Since the above Zn is an element that easily volatilizes at a high temperature, when it is given as a simple powder, the amount of Zn remaining due to the volatilization of Zn is not constant, and variations due to products increase. For this reason, in this invention, volatilization of this Zn is prevented by alloying the whole quantity of Zn with aluminum, and providing with the form of aluminum alloy powder.

ただし、Znはアルミニウム粉末を硬くし、圧縮性を低下させるので、アルミニウム量の全てと合金化すると、原料粉末の圧縮性が低下するので、Znの全量を含むアルミニウム合金粉末に軟質なアルミニウム粉末を配合して圧縮性を向上させる必要がある。この場合に、アルミニウム粉末の添加量は15質量%以上が必要である。   However, Zn hardens the aluminum powder and lowers the compressibility, so when alloying with all of the aluminum content, the compressibility of the raw material powder decreases, so soft aluminum powder is added to the aluminum alloy powder containing the entire amount of Zn. It is necessary to mix and improve compressibility. In this case, the amount of aluminum powder added must be 15% by mass or more.

Znを含むアルミニウム合金粉末は、低温でAl−Zn液相が発生するような組成であると、このAl−Zn液相よりZnが揮発しやすいため、なるべく高温で、すなわち焼結過程の最終段階のみでAl−Zn液相が発生するような組成であることが望ましい。また、Znを多量に含むアルミニウム合金粉末を用いると、相対的にアルミニウム粉末の量が増加する結果、アルミニウム合金基地中でZnの分散が不均一となり易く、機械的特性のバラツキが発生する原因となる。これらのことから、アルミニウム合金粉末中のZn量は30質量%以下であることが望ましい。一方、アルミニウム合金粉末中のZn量が10質量%を下回ると、アルミニウム粉末とのZnの濃度差が少なくなり、均一に拡散しにくくなる。よって、アルミニウム合金粉末中のZn量は10〜30質量%とすることが望ましい。   If the aluminum alloy powder containing Zn has a composition such that an Al—Zn liquid phase is generated at a low temperature, Zn is more easily volatilized than the Al—Zn liquid phase, so that the temperature is as high as possible, that is, the final stage of the sintering process. It is desirable that the composition be such that an Al—Zn liquid phase is generated. In addition, when an aluminum alloy powder containing a large amount of Zn is used, the amount of aluminum powder is relatively increased. As a result, the dispersion of Zn is likely to be non-uniform in the aluminum alloy matrix, resulting in variations in mechanical properties. Become. For these reasons, the amount of Zn in the aluminum alloy powder is desirably 30% by mass or less. On the other hand, if the amount of Zn in the aluminum alloy powder is less than 10% by mass, the difference in Zn concentration from the aluminum powder is reduced, making it difficult to uniformly diffuse. Therefore, the amount of Zn in the aluminum alloy powder is desirably 10 to 30% by mass.

Mg,Cuの付与形態:
上記のような高温まで液相を発生しない組成のアルミニウム合金粉末を用いると、Znの揮発防止の点では良好であるが、成分の均一拡散の点では不利である。そこで、CuやMgを併用することで、Znの基地中への均一な拡散を図ることが可能となる。CuやMgは、焼結の昇温過程で、アルミニウム合金中のZnとCu−Zn液相またはMg−Zn液相を発生するが、これらの液相はアルミニウム粉末またはアルミニウム合金粉末に成分が吸収されることにより直ちに固化することを繰り返して成分の均一化が急速に進行する。またこの時の液相は直ちに固化されることからZnの揮発の問題は生じない。このような作用を有するCuやMgは単味粉末、両者の合金粉末、もしくはアルミニウムとの合金粉末の形態で付与しても差し支えないが、Znを含むアルミニウム合金粉末にCu:10質量%以下を同時に与えると上記の効果がより一層高まる。アルミニウム合金粉末中に与えるCu量が10質量%を超えると、Znとの液相発生温度が高温側に移ることから、成分の均一拡散の点で不利となる。
Application form of Mg and Cu:
Using an aluminum alloy powder having a composition that does not generate a liquid phase at a high temperature as described above is good in terms of preventing Zn volatilization, but is disadvantageous in terms of uniform diffusion of components. Therefore, by using Cu or Mg together, it is possible to achieve uniform diffusion of Zn into the base. Cu and Mg generate Zn and Cu-Zn liquid phase or Mg-Zn liquid phase in the aluminum alloy during the heating process of sintering, and these liquid phases are absorbed by the aluminum powder or aluminum alloy powder. As a result, the solidification is rapidly progressed by repeating the solidification immediately. Further, since the liquid phase at this time is immediately solidified, the problem of volatilization of Zn does not occur. Cu or Mg having such an action may be applied in the form of a simple powder, an alloy powder of both, or an alloy powder with aluminum, but Cu: 10 mass% or less is added to the aluminum alloy powder containing Zn. If it is given at the same time, the above effect is further enhanced. If the amount of Cu applied to the aluminum alloy powder exceeds 10% by mass, the liquid phase generation temperature with Zn moves to the high temperature side, which is disadvantageous in terms of uniform diffusion of components.

Sn,In,Biの付与形態:
Sn、Bi、Inを用いる場合には、上記のように単味粉末もしくはこれらの成分の共晶液相が発生する共晶合金粉末または偏晶合金粉末の形態で添加される。
Form of Sn, In, Bi assignment:
When Sn, Bi, or In is used, it is added in the form of a simple powder or a eutectic alloy powder or a monotectic alloy powder in which a eutectic liquid phase of these components is generated as described above.

硬質粒子粉末:
硬質粒子をアルミニウム合金基地中に分散させる手法として、硬質粒子粉末を添加して与える手法が簡便である。また、原料粉末中に添加される硬質粒子の量は上記のように1〜10質量%が適当であるが、硬質粒子が基地の主成分であるAlと反応するものであると、焼結後にアルミニウム合金基地中に分散する硬質粒子の量および粒径範囲を管理することが難しくなる。このため、アルミニウムと反応しない硬質粒子を粉末として添加して与えることが好ましい。
Hard particle powder:
As a method for dispersing the hard particles in the aluminum alloy matrix, a method of adding and giving hard particle powder is simple. In addition, the amount of hard particles added to the raw material powder is suitably 1 to 10% by mass as described above, but if the hard particles react with Al which is the main component of the matrix, after sintering, It becomes difficult to control the amount of hard particles dispersed in the aluminum alloy matrix and the particle size range. For this reason, it is preferable to add hard particles that do not react with aluminum as powder.

このような硬質粒子粉末として、炭化珪素、硼化クロム、炭化硼素等は、極めて硬い物質であり、かつアルミニウムと反応しない物質であるため好ましいものである。これらの硬質粒子粉末による、極めて硬い硬質粒子は、基地となるアルミニウム合金基地がある程度軟質であるため、摺動時にアルミニウム合金基地に埋め込まれて、摺動相手側部材の摩耗を抑制するとともに、アルミニウム合金基地の塑性流動をくい止めて、耐摩耗性の向上に寄与する。また、摺動中にアルミニウム合金基地より脱落しても、軟質なアルミニウム合金基地に直ちに埋め込まれて、上記の基地塑性流動を防止する効果が果たされる。   As such hard particle powder, silicon carbide, chromium boride, boron carbide and the like are preferable because they are extremely hard substances and do not react with aluminum. These hard particle powders, which are extremely hard hard particles, are embedded in the aluminum alloy base during sliding because the aluminum alloy base serving as a base is somewhat soft, so that the wear of the sliding counterpart member is suppressed, and aluminum Suppresses plastic flow in the alloy base and contributes to improved wear resistance. Moreover, even if it falls off from the aluminum alloy base during sliding, it is immediately embedded in the soft aluminum alloy base, and the effect of preventing the base plastic flow is achieved.

1−(3) 粉末の大きさ
上記した各成分元素の作用を基地中で均一に作用させるためには、各成分元素を基地中に均一に拡散させる必要がある。このため、これらの成分元素粉末は200メッシュ以下(200メッシュ(74μm)の篩櫛を通過する大きさ)の微細な粉末の形態で付与する必要がある。単味粉末もしくは合金粉末は、焼結の昇温時に溶融し、液相となってアルミニウム粉末の表面に濡れて表面の酸化被膜を除去し、アルミニウム基地中に拡散するとともに、アルミニウム粉末どうしの拡散による結合を促進するが、単味粉末もしくは合金粉末の大きさが200メッシュを超えると、局部的な偏析が生じて均一な成分元素の拡散が阻害されることとなる。
1- (3) Size of powder In order for the above-described action of each component element to work uniformly in the base, it is necessary to uniformly diffuse each component element in the base. For this reason, these component element powders need to be applied in the form of fine powder of 200 mesh or less (size that passes through a 200-mesh (74 μm) sieve comb). The plain powder or alloy powder melts at the time of sintering temperature rise, becomes a liquid phase, gets wet on the surface of the aluminum powder, removes the oxide film on the surface, diffuses into the aluminum matrix, and diffuses between the aluminum powders However, if the size of the simple powder or alloy powder exceeds 200 mesh, local segregation occurs and the uniform diffusion of the constituent elements is hindered.

一方、アルミニウム粉末まで微粉とすると、原料粉末の流動性が低下するため、上記の各成分元素粉末よりは大きいアルミニウム粉末を用いた方が好ましい。ただし、100メッシュを超える(100メッシュ(140μm)の篩櫛上に残留する大きさの粉末)と、各成分元素が粉末の中心まで拡散しにくくなって成分の偏析が生じるようになるため、100メッシュ以下(100メッシュ(140μm)の篩櫛を通過する大きさ)の粉末を用いる必要がある。   On the other hand, if the powder is fine up to aluminum powder, the fluidity of the raw material powder decreases, so it is preferable to use a larger aluminum powder than the above component element powders. However, when it exceeds 100 mesh (powder having a size remaining on a 100-mesh (140 μm) sieve comb), each component element is difficult to diffuse to the center of the powder, and segregation of components occurs. It is necessary to use a powder having a mesh size (size passing through a sieve mesh of 100 mesh (140 μm)).

硬質粒子粉末は基地とほとんど反応しないので、添加した粉末がそのままアルミニウム合金基地中に分散することとなる。このため、硬質粒子粉末はアルミニウム合金基地中に分散させる硬質粒子の粒径により決定すればよい。アルミニウム合金基地中に分散する硬質粒子の粒径は、平均粒径が1〜100μmであることが好ましい。これは硬質粒子が1μmより細かいと、基地が塑性流動した際に基地とともに塑性流動しやすくなって基地の塑性流動をくい止めることが難しくなる。一方、硬質粒子の平均粒径が100μmを超えると、摺動条件にもよるが、摺動時の摺動相手側部材の摩耗を引き起こしやすくなるとともに、強度の低下傾向が大きくなるため好ましくない。したがって、アルミニウム合金基地中に上記平均粒径範囲の硬質粒子を均一に分散させるため、硬質粒子粉末としては、アルミニウムと反応しないもので、125メッシュ以下(125メッシュ(113μm)の篩櫛を通過する大きさ)の粉末を用いることが好ましい。   Since the hard particle powder hardly reacts with the matrix, the added powder is dispersed as it is in the aluminum alloy matrix. For this reason, the hard particle powder may be determined by the particle size of the hard particles dispersed in the aluminum alloy matrix. The average particle size of the hard particles dispersed in the aluminum alloy matrix is preferably 1 to 100 μm. If the hard particles are finer than 1 μm, when the base is plastically flowed, it is easy to plastically flow with the base and it is difficult to stop the plastic flow of the base. On the other hand, when the average particle size of the hard particles exceeds 100 μm, although depending on the sliding conditions, it is not preferable because it tends to cause wear of the sliding counterpart member during sliding and a tendency to decrease strength. Therefore, in order to uniformly disperse the hard particles having the above average particle size range in the aluminum alloy base, the hard particle powder does not react with aluminum and passes through a sieve comb of 125 mesh or less (125 mesh (113 μm)). It is preferable to use (size) powder.

(2)成形工程:
この工程では、上記の原料粉末配合工程で得られた原料粉末を、所望の形状の金型に充填後、200MPa以上の成形圧力で圧粉成形する。これにより、密度比が90%以上の成形体が得られる。成形圧力が200MPaを下回ると成形体の密度が低くなって、後の焼結工程および鍛造工程を経ても気孔が2容量%以上残留して高い強度と伸びが得られなくなる。また、焼結中の寸法変化が大きくなることからも好ましくない。成形圧力は高い方が成形体の密度が高くなるため好ましく、400MPa以上であると密度比が95%以上の成形体が得られるため一層好ましい。ただし、500MPaを超えると金型へのアルミニウム粉末の凝着が発生しやすくなるため好ましくない。
(2) Molding process:
In this step, the raw material powder obtained in the raw material powder blending step is filled into a mold having a desired shape and then compacted with a molding pressure of 200 MPa or more. Thereby, the molded object whose density ratio is 90% or more is obtained. When the molding pressure is less than 200 MPa, the density of the molded body becomes low, and even after the subsequent sintering process and forging process, 2% by volume or more of pores remain and high strength and elongation cannot be obtained. Moreover, it is not preferable because the dimensional change during sintering becomes large. A higher molding pressure is preferable because the density of the molded body is higher, and a pressure of 400 MPa or higher is more preferable because a molded body having a density ratio of 95% or higher can be obtained. However, if it exceeds 500 MPa, adhesion of aluminum powder to the mold tends to occur, such being undesirable.

(3)焼結工程:
この工程において、成分として含まれるZnは、融点が低く、揮発しやすい元素であるが、焼結中で多量の液相が発生すると、焼結体の収縮量が大きくなって寸法精度が低下し、揮発すると、基地中に固溶するZn量が低下して所望の強度や伸びが得られなくなるとともに、焼結雰囲気を汚染して焼結炉内に堆積したりするため作業環境にも問題が生じることとなる。このような弊害を避けるため、焼結保持温度までの昇温を急速に行う必要がある。
(3) Sintering process:
In this process, Zn contained as a component is an element that has a low melting point and is likely to volatilize. However, when a large amount of liquid phase is generated during sintering, the shrinkage of the sintered body increases and the dimensional accuracy decreases. If volatilized, the amount of Zn dissolved in the base will decrease and the desired strength and elongation will not be obtained, and the sintering atmosphere will be contaminated and deposited in the sintering furnace, which will cause problems in the working environment. Will occur. In order to avoid such an adverse effect, it is necessary to rapidly raise the temperature to the sintering holding temperature.

すなわち、上記成形工程で得られた成形体を焼結するにあっては、室温より焼結保持温度までの昇温過程において、少なくとも亜鉛の融点近辺の400℃以上から焼結保持温度までの温度領域を10℃/分以上の昇温速度で急速加熱することで、成分元素の揮発を抑制するとともに、焼結保持温度:580〜610℃、焼結保持時間:10分以上で焼結することにより、液相発生による過度の寸法精度の低下を抑制しつつ、成分元素の均一な拡散を達成することができる。この焼結要件は、焼結温度までの昇温速度が10℃/分を下回ると上述したZnの揮発の問題が顕著になることと、焼結温度が610℃を超えてもZnの揮発や液相による過収縮の問題が顕著となり、さらにこの場合は結晶粒が成長して粗大化し強度を低下させるからである。一方、各成分元素をAl基地に均一に固溶させるために、焼結温度を580℃以上とし、焼結保持時間を10分以上とする必要がある。この条件を下回ると、各成分のAl基地中への拡散が不十分となり、強度が低下することとなる。   That is, in sintering the molded body obtained in the molding step, in the temperature rising process from room temperature to the sintering holding temperature, at least the temperature from 400 ° C. or more near the melting point of zinc to the sintering holding temperature. By rapidly heating the region at a heating rate of 10 ° C./min or more, the volatilization of the component elements is suppressed, and sintering holding temperature: 580 to 610 ° C., sintering holding time: sintering at 10 minutes or more Thus, uniform diffusion of the component elements can be achieved while suppressing an excessive decrease in dimensional accuracy due to the generation of the liquid phase. This sintering requirement is that if the rate of temperature rise to the sintering temperature is less than 10 ° C./min, the problem of volatilization of Zn described above becomes significant, and even if the sintering temperature exceeds 610 ° C., the volatilization of Zn This is because the problem of excessive shrinkage due to the liquid phase becomes prominent, and in this case, crystal grains grow and become coarse to reduce the strength. On the other hand, in order to uniformly dissolve each component element in the Al base, it is necessary to set the sintering temperature to 580 ° C. or more and the sintering holding time to 10 minutes or more. Below this condition, the diffusion of each component into the Al matrix becomes insufficient and the strength decreases.

上記焼結により各成分は基地に固溶した状態であるので、冷却速度は、特に限定はしないが、遅い場合、特に高温領域(450℃以上)においては結晶粒の粗大化が進行するとともに、冷却過程で過飽和成分が粒界に沿って析出し、強度や伸びを低下させたり、後の熱処理(溶体化処理)により、析出した過飽和成分の部位が基地に吸収されることにより気孔が発生して強度や伸びを低下させたりするので、高温領域はなるべく早く冷却した方が好ましく、特に450℃以上の温度領域での冷却速度は−10℃/分程度が好ましい。   Since each component is in a solid solution state due to the sintering, the cooling rate is not particularly limited. However, when slow, particularly in a high temperature region (450 ° C. or higher), coarsening of crystal grains proceeds, During the cooling process, supersaturated components are precipitated along the grain boundaries, reducing the strength and elongation, and by the subsequent heat treatment (solution treatment), the generated supersaturated components are absorbed into the base and pores are generated. Accordingly, the high temperature region is preferably cooled as soon as possible, and the cooling rate in the temperature region of 450 ° C. or higher is preferably about −10 ° C./min.

また、焼結雰囲気は、非酸化性のものが適しているが、露点を−40℃以下とした窒素ガス雰囲気が最も適している。露点は雰囲気ガス中の水分量を示す指標であり、水分すなわち酸素量が多いと、Alは酸素と結合しやすいため焼結の進行を阻害し緻密化を阻害することとなる。また、窒素ガスは他の非酸化性ガスと比較し安価かつ安全であるため好ましい。   A non-oxidizing atmosphere is suitable for the sintering atmosphere, but a nitrogen gas atmosphere with a dew point of −40 ° C. or lower is most suitable. The dew point is an index indicating the amount of moisture in the atmospheric gas. When the moisture, that is, the amount of oxygen is large, Al easily binds to oxygen, so that the progress of sintering is inhibited and densification is inhibited. Nitrogen gas is preferable because it is cheaper and safer than other non-oxidizing gases.

このようにして、液相焼結することで成分元素がAl基地中に均一に固溶するとともに密度比が95%以上で残留する気孔が閉鎖気孔となった焼結体を得ることができる。   Thus, by performing liquid phase sintering, it is possible to obtain a sintered body in which the constituent elements are uniformly dissolved in the Al matrix and the remaining pores are closed pores at a density ratio of 95% or more.

(4)熱処理(T6処理)工程:
本発明の製造方法における、熱処理(T6処理)工程は、Al基地中の析出相を460〜490℃に加熱して基地中に均一に固溶させた後、水焼き入れにより急冷して過飽和固溶体とする溶体化処理と、その後110〜200℃で2〜28時間保持して過飽和固溶体より析出相(金属間化合物)を析出分散させる時効析出処理からなる工程である。溶体化処理温度が460℃に満たないと析出成分が全てAl基地中に均一固溶されず、一方、490℃を超えてもその効果は変わらず、かつ500℃を超えると液相発生により気孔が発生する。また、時効処理は、温度が110℃に満たない場合、および時間が2時間に満たない場合は、十分な析出化合物が得られず、温度が200℃を超える場合、および時間が28時間を超える場合は、析出した化合物が成長して粗大化するため強度の低下を生じることとなる。なお、温度と時間は上記の範囲内で要求特性に対して適宜組み合わされる。このように熱処理することで、アルミニウム合金基地中にMgZn(η相)、AlMgZn(Τ相)、CuAl(θ相)等の金属間化合物が析出分散する金属組織が得られ、機械的特性の向上が果たされる。
(4) Heat treatment (T6 treatment) step:
In the production method of the present invention, the heat treatment (T6 treatment) step comprises heating the precipitated phase in the Al matrix to 460 to 490 ° C. to form a solid solution uniformly in the matrix, and then quenching by water quenching to supersaturated solid solution. And a aging precipitation treatment in which the precipitation phase (intermetallic compound) is precipitated and dispersed from the supersaturated solid solution while being kept at 110 to 200 ° C. for 2 to 28 hours. If the solution treatment temperature is less than 460 ° C., all precipitated components are not uniformly dissolved in the Al matrix. On the other hand, if the temperature exceeds 490 ° C., the effect does not change. Will occur. Also, in the aging treatment, when the temperature is less than 110 ° C. and when the time is less than 2 hours, sufficient precipitated compounds cannot be obtained, and when the temperature exceeds 200 ° C. and the time exceeds 28 hours. In this case, the precipitated compound grows and becomes coarse, resulting in a decrease in strength. The temperature and time are appropriately combined with the required characteristics within the above range. By performing the heat treatment in this way, a metal structure in which intermetallic compounds such as MgZn 2 (η phase), Al 2 Mg 3 Zn 3 (minor phase), CuAl 2 (θ phase) are precipitated and dispersed in the aluminum alloy matrix is obtained. And mechanical properties are improved.

以上により得られる高強度耐摩耗性アルミニウム焼結合金は、以下の実施例より明らかなように、密度比が95以上%であり、引張り強さが450MPa以上と高い値を示すとともに、従来材と同等の伸びと耐摩耗性を示すが、より一層の引張り強さや伸びの向上を望む場合、焼結工程と、熱処理工程の間に下記の鍛造工程を追加することができる。   The high-strength wear-resistant aluminum sintered alloy obtained as described above has a density ratio of 95% or more and a tensile strength as high as 450 MPa or more, as is clear from the following examples. Although the same elongation and wear resistance are exhibited, the following forging process can be added between the sintering process and the heat treatment process when further improvement in tensile strength and elongation is desired.

(5)鍛造工程:
この工程では、上記の焼結工程までで得られた密度比95%以上の焼結体を、室温下にて、据え込み率:3〜40%の据え込み率で冷間鍛造を行う冷間鍛造工程、もしくは100〜450℃下にて、据え込み率:3〜70%の据え込み率で熱間鍛造を施し、密度比98%以上とすることで高い引張り強さと伸びを有するアルミニウム焼結鍛造部品を得ることができる。
(5) Forging process:
In this process, cold forging a sintered body having a density ratio of 95% or more obtained up to the above-described sintering process at room temperature with an upsetting ratio of 3 to 40%. Sintered aluminum with high tensile strength and elongation by hot forging at a forging process or at an upsetting rate of 3 to 70% at 100 to 450 ° C. and a density ratio of 98% or more. Forged parts can be obtained.

ところで、一般に、鍛造工程により密度を高めることは知られているが、単に密度を上げるだけでは気孔が閉塞するのみで、金属的に結合していないため、鍛造時に素材表面に割れが生じたり、製品内部に欠陥として残留したりして強度や伸びの向上が得られない。従って高い強度や伸びを得るためには、気孔を閉塞させるだけではなく、そこに金属的な結合を形成しなくてはならない。このような金属結合を得るために、一般的には、緻密化を目的とする鍛造工程、緻密化した素材を変形させることで金属結合を得る変形工程の2工程に分けて鍛造を行うことが行われている。本願発明においては、金属結合を得るため、上記により得られた焼結体を上下方向より加圧してその高さを圧縮して気孔を閉塞させるとともに、加圧方向に対し横方向に設けられた空間部に素材を流動させることで、元の気孔部分(閉塞しているが金属結合していない部分)を強制的に結合させつつ変形させる、据え込み鍛造とすることで、従来2工程で行われる鍛造工程を1工程に統合したものである。この加圧方向の素材の変形率が据え込み率である。なお、鍛造過程において、このような据え込み変形が主であれば、局部的に押し出し状態となってもかまわず、本願鍛造は後方押し出し法も含むものである。また、押し込み鍛造や前方押し出し法の場合、素材は金型により減面されるが、このときの加圧方向は周方向で、素材の変形方向は押し出し方向すなわち加圧方向と直交する方向であるので本願発明の範囲に含まれるものである。また、このような鍛造とすることで、上記作用に加えて、焼結時に成長した結晶粒を微細化させるとともに、析出物を分断する作用も得られて強度および伸びをより一層向上させる。   By the way, in general, it is known to increase the density by the forging process, but simply increasing the density closes the pores and does not bind metallicly, so that the material surface cracks during forging, Strength and elongation cannot be improved due to residual defects inside the product. Therefore, in order to obtain high strength and elongation, not only the pores but also the metal bonds must be formed there. In order to obtain such a metal bond, forging is generally performed in two steps: a forging process for densification and a deformation process for obtaining a metal bond by deforming a densified material. Has been done. In the present invention, in order to obtain a metal bond, the sintered body obtained as described above was pressed from above and below to compress the height to close the pores, and was provided transversely to the pressing direction. By using upset forging that deforms while forcibly bonding the original pores (blocked but not metal-bonded) by flowing the material into the space, this is done in two conventional processes. The forging process is integrated into one process. The deformation rate of the material in the pressing direction is the upsetting rate. In the forging process, if such upset deformation is the main, it may be locally extruded, and the forging of the present application includes the backward extrusion method. In addition, in the case of indentation forging and forward extrusion, the material is reduced in surface by the mold, but the pressing direction at this time is the circumferential direction, and the deformation direction of the material is the extrusion direction, that is, the direction orthogonal to the pressing direction. Therefore, it is included in the scope of the present invention. Moreover, by setting it as such forging, in addition to the said effect | action, while refine | miniaturizing the crystal grain which grew at the time of sintering, the effect | action which parting a precipitate is also acquired, and an intensity | strength and elongation are improved further.

冷間鍛造の場合、据え込み率が3〜40%となるよう鍛造する必要がある。同径もしくは径を広げる鍛造では、据え込み率が3%に満たないと、局部的な変形しか起こらず、気孔の残留量が多くなり強度や伸びを高めることができない。また、押し込み鍛造のように径の小さい金型に押し込む場合も上記の理由で3%以上の据え込みを必要とする。なお、据え込み率が10%以上であると容易に鍛造体の密度比を98%以上とできるためより好ましい。一方、据え込み率が40%を超えると結晶の滑りに伴う鍛造割れが発生しやすくなる。また、冷間鍛造の場合、鍛造過程で横方向に展伸した素材端部が鍛造終了時点で金型内壁と完全接触しているように据え込み鍛造すると、製品寸法、形状の精度が安定するとともに、最表面に欠陥が残存しにくいので好ましい。   In the case of cold forging, it is necessary to forge so that the upsetting rate is 3 to 40%. In forging with the same diameter or expanding diameter, if the upsetting rate is less than 3%, only local deformation occurs, the residual amount of pores increases, and the strength and elongation cannot be increased. Also, when pushing into a mold having a small diameter, such as indentation forging, upsetting of 3% or more is required for the above reason. In addition, it is more preferable that the upsetting rate is 10% or more because the density ratio of the forged body can be easily 98% or more. On the other hand, if the upsetting rate exceeds 40%, forging cracks accompanying crystal slip are likely to occur. In the case of cold forging, if the forging process is performed so that the end of the material expanded in the transverse direction is in full contact with the inner wall of the mold at the end of forging, the accuracy of the product dimensions and shape is stabilized. At the same time, it is preferable because defects are unlikely to remain on the outermost surface.

また、熱間鍛造の場合、100〜450℃、好ましくは200〜400℃の温度範囲で素材(焼結体)を加熱すれば据え込み率を3〜70%の範囲で行うことができるようになる。素材(焼結体)の加熱温度が100℃に満たないと、冷間鍛造の場合とあまり変わらず、素材の変形能が乏しく、据え込み率を大きくすることができない。また、素材(焼結体)の加熱温度が200℃以上では、素材が軟化し、変形態が増して所望の据え込み率で熱間鍛造を行うに当たり、鍛造圧力を低くできるため好ましい。一方、450℃を超えると金型と素材(焼結体)との凝着が著しく発生するので上限は450℃に止める必要があり、好ましくは400℃である。ただし、上記温度範囲であっても据え込み率が70%を超えると、鍛造割れが発生しやすくなる。熱間鍛造の場合、鍛造過程で横方向に展伸した素材端部が鍛造終了時点で金型内壁と接触しているように据え込み鍛造すると、最表面での欠陥が生じにくくなるため好ましい。   In the case of hot forging, if the material (sintered body) is heated in the temperature range of 100 to 450 ° C., preferably 200 to 400 ° C., the upsetting rate can be in the range of 3 to 70%. Become. If the heating temperature of the material (sintered body) is less than 100 ° C., it is not much different from the case of cold forging, the deformability of the material is poor, and the upsetting rate cannot be increased. Moreover, it is preferable that the heating temperature of the material (sintered body) is 200 ° C. or higher because the material is softened and deformed to increase the forging pressure when performing hot forging at a desired upsetting rate. On the other hand, when the temperature exceeds 450 ° C., the adhesion between the mold and the material (sintered body) remarkably occurs, so the upper limit needs to be stopped at 450 ° C., preferably 400 ° C. However, forging cracks are likely to occur if the upsetting rate exceeds 70% even in the above temperature range. In the case of hot forging, it is preferable to perform upset forging so that the end of the material expanded in the transverse direction in the forging process is in contact with the inner wall of the mold at the end of forging because defects on the outermost surface are less likely to occur.

以上により得られる高強度耐摩耗性アルミニウム焼結合金は、以下の実施例より明らかなように、密度比が98以上%であり、引張り強さが500MPa以上で、かつ、伸びが改善される場合には2%以上となり、優れた耐摩耗性とともに、従来にない、高い機械的特性を具備できる。   The high-strength wear-resistant aluminum sintered alloy obtained as described above has a density ratio of 98% or more, a tensile strength of 500 MPa or more, and elongation is improved, as is apparent from the following examples. 2% or more, and it has excellent mechanical properties that are not present in the past as well as excellent wear resistance.

実施例1は、Znをアルミニウム合金粉末の形態で与える場合と、単未粉の形態で与える場合の比較を行ったものである。具体的には、原料粉末配合工程において100メッシュのアルミニウム粉末とZn含有量が12質量%のアルミニウム合金粉末、硬質粒子粉末として125メッシュの炭化硼素粉末、およびそれぞれ250メッシュの亜鉛粉末、マグネシウム粉末、銅粉末および錫粉末を用意し、表1に示す配合組成でこれらの粉末を混合し、原料粉末の成分組成が、質量比で、Zn:5.5%、Mg:2.5%、Cu:1.5%、Sn:0.1%、硬質粒子(炭化硼素):5.0%、および残部がAlおよび不可避不純物となる原料粉末を作製した。   Example 1 compares the case where Zn is given in the form of an aluminum alloy powder and the case where Zn is given in the form of a single powder. Specifically, in the raw material powder blending step, 100 mesh aluminum powder and aluminum alloy powder having a Zn content of 12% by mass, 125 mesh boron carbide powder as hard particle powder, and 250 mesh zinc powder, magnesium powder, Copper powder and tin powder were prepared, and these powders were mixed in the composition shown in Table 1. The component composition of the raw material powder was Zn: 5.5%, Mg: 2.5%, Cu: A raw material powder having 1.5%, Sn: 0.1%, hard particles (boron carbide): 5.0%, and the balance being Al and inevitable impurities was prepared.

成形工程では、前記の原料粉末を用い、成形圧力を300MPaとして、φ40×28の柱体形状に圧粉成形した。焼結工程では、これらの圧粉体を窒素ガス雰囲気中、400℃から焼結保持温度までの温度範囲を10℃/分の昇温速度で加熱し、焼結保持温度:600℃で20分保持して焼結を行った後、焼結保持温度から450℃までの温度範囲を−20℃/分の冷却速度で冷却した。鍛造工程では、このようにして得られた焼結体試料を400℃に加熱して、同じ温度に加熱した金型内に投入し、据え込み率:40%の熱間鍛造を行った。得られた鍛造体を470℃に加熱して溶体化処理を行った後、130℃で24時間保持して時効析出処理を行う熱処理工程を行った。   In the molding step, the raw material powder was used, and the molding pressure was set to 300 MPa, and compacted into a columnar shape of φ40 × 28. In the sintering process, these green compacts are heated in a nitrogen gas atmosphere in a temperature range from 400 ° C. to the sintering holding temperature at a heating rate of 10 ° C./min, and the sintering holding temperature: 600 ° C. for 20 minutes. After holding and sintering, the temperature range from the sintering holding temperature to 450 ° C. was cooled at a cooling rate of −20 ° C./min. In the forging process, the sintered body sample thus obtained was heated to 400 ° C. and placed in a mold heated to the same temperature, and hot forging with an upsetting rate of 40% was performed. After heating the obtained forged body to 470 degreeC and performing solution treatment, the heat treatment process which hold | maintains at 130 degreeC for 24 hours and performs an aging precipitation process was performed.

そして、評価では、得られた試料01および02について、φ40×28の柱体形状試料を、それぞれ5本の引っ張り試験片に加工し、引っ張り試験を行い引張り強さおよび伸びを測定した。その結果を平均値と3σとして表2に示した。また、柱体形状試料より切り出してφ7.98×20の形状に加工した摩擦試験片を2個用い、ピンオンディスク摩擦摩耗試験機で、摺動相手側部材としてS45C熱処理材を用い、ある一定荷重をかけた状態でエンジンオイルを供給しながら摺動速度5m/秒で30分間摺動試験を行い、この試験中動摩擦係数の急激な上昇が見られない場合、試験片を替えて、荷重を5MPa刻みで増加させて、動摩擦係数の急激な上昇が認められる荷重を耐面圧荷重(限界面圧)として、併せて表2に示した。さらに、上記試料作製において、成形工程後の成形体、焼結工程後の焼結体、鍛造工程後の鍛造体について、それぞれ密度比(平均値)を測定した。その結果も表2に併せて示した。   In the evaluation, for the obtained samples 01 and 02, φ40 × 28 columnar shape samples were each processed into five tensile test pieces, a tensile test was performed, and tensile strength and elongation were measured. The results are shown in Table 2 as average values and 3σ. In addition, two friction test pieces cut out from a columnar shape sample and processed into a shape of φ7.98 × 20 were used, and an S45C heat treatment material was used as a sliding mating member in a pin-on-disk friction wear tester. A sliding test is performed at a sliding speed of 5 m / sec for 30 minutes while supplying engine oil in a state where a load is applied. If no sudden increase in the dynamic friction coefficient is observed during this test, replace the test piece and change the load. Table 2 also shows the load at which the dynamic friction coefficient is increased rapidly in increments of 5 MPa as the surface pressure load (limit surface pressure). Furthermore, in the above sample preparation, the density ratio (average value) was measured for each of the molded body after the molding process, the sintered body after the sintering process, and the forged body after the forging process. The results are also shown in Table 2.

Figure 0004401326
Figure 0004401326

Figure 0004401326
Figure 0004401326

表1および表2より、Znを単味粉末の形態で付与した場合(試料番号02)より、Alとの合金粉末の形態で付与した場合(試料番号01)の方が、引張り強さが若干高くなり、かつばらつきが小さく抑えられることがわかる。また、伸びも若干向上し、かつばらつきが小さく抑えられていることがわかる。これは揮発しやすいZnを合金粉末の形態で付与したことによりZnの揮発が防止でき、試料中のZnの量が安定したことによる効果と考えられる。一方、耐面圧荷重は同等の値を示していることがわかる。この実施例より、Znを合金粉末の形態で付与することにより、耐面圧荷重の低下を招くことなく、引張り強さおよび伸びの向上およびばらつきの抑制が行えることが確認された。   From Tables 1 and 2, the tensile strength is slightly more in the case where Zn is applied in the form of an alloy powder with Al (sample number 01) than in the case where Zn is applied in the form of a simple powder (sample number 02). It can be seen that the variation is high and the variation is small. It can also be seen that the elongation is slightly improved and the variation is kept small. This is considered to be due to the fact that the volatilization of Zn can be prevented by applying easily volatile Zn in the form of alloy powder, and the amount of Zn in the sample is stabilized. On the other hand, it can be seen that the surface load resistance is equivalent. From this example, it was confirmed that by applying Zn in the form of an alloy powder, the tensile strength and elongation can be improved and variation can be suppressed without causing a reduction in the surface pressure load.

実施例2では、原料粉末配合工程として、100メッシュ以下のアルミニウム粉末、および表3に示す組成のアルミニウム合金粉末と、それぞれ250メッシュ以下の、マグネシウム粉末、銅粉末、および低融点金属粉末として錫粉末と、硬質粒子粉末として125メッシュ以下の炭化硼素粉末とを用意し、表3に示す配合割合で混合して原料粉末を作製し、実施例1と同じ条件で、成形工程、焼結工程、鍛造工程および熱処理工程を経て、表4に示す全体組成の試料を作製した。   In Example 2, as the raw material powder blending step, aluminum powder of 100 mesh or less, and aluminum alloy powder having the composition shown in Table 3, magnesium powder, copper powder, and tin powder as low melting point metal powder of 250 mesh or less, respectively. And boron carbide powder of 125 mesh or less as hard particle powder, and mixed at a blending ratio shown in Table 3 to produce a raw material powder. Under the same conditions as in Example 1, the molding process, sintering process, forging Through the steps and the heat treatment step, samples having the overall composition shown in Table 4 were produced.

上記試料作製において実施例1と同様に、成形工程後の成形体、焼結工程後の焼結体、鍛造工程後の鍛造体について、それぞれ密度比を測定するとともに、引張り強さおよび伸びの測定、耐面圧荷重(限界面圧)の測定を行い、これらの試験結果を表5に示した。なお、表3〜5においては、調査項目毎に罫線を太く表示するとともに、各調査項目に共通の試料番号01の試料(実施例1)について、各項目毎に再録して標記してある。   In the above sample preparation, as in Example 1, the density ratio is measured and the tensile strength and the elongation are measured for the molded body after the molding process, the sintered body after the sintering process, and the forged body after the forging process. The surface pressure load (limit surface pressure) was measured, and the test results are shown in Table 5. In Tables 3 to 5, the ruled line is displayed thickly for each survey item, and the sample number 01 common to each survey item (Example 1) is reprinted and marked for each item. .

Figure 0004401326
Figure 0004401326

Figure 0004401326
Figure 0004401326

Figure 0004401326
Figure 0004401326

表3〜5の試料番号01、03〜08の試料の比較により、アルミニウム粉末の添加量の影響を調べた。アルミニウム粉末の添加量が15質量%に満たない試料番号03および04の試料では、原料粉末の全体組成中のZn量が10質量%を超えて多くなり過ぎた結果、アルミニウム合金粉末より発生する液相により焼結体の変形が大きく、以降の工程を中止せざるを得なかった。一方、アルミニウム粉末の添加量が15質量%以上では、焼結体の変形を生じさせずに焼結することが可能となり、高い引張り強さ、伸びおよび耐面圧荷重を示している。このことより、Znの全量をアルミニウム合金粉末の形態で付与する場合、同時にアルミニウム粉末を15質量%以上用いる必要があることが確認された。さらに、15質量%を超えてアルミニウム粉末を添加していくと、アルミニウム粉末の添加量が増加するにしたがい、引張り強さおよび伸びがともに向上する傾向を示すが、原料粉末の全体組成中のZn量が5.5質量%(試料番号01)を超えると引張り強さが逆に低下する傾向を示し、原料粉末の全体組成中のZn量が3質量%を下回る試料番号08の試料では、Zn量が乏しくなる結果、引張り強さおよび耐面圧荷重の低下が認められた。   By comparing the samples Nos. 01 and 03 to 08 in Tables 3 to 5, the influence of the addition amount of the aluminum powder was examined. In the samples of sample numbers 03 and 04 where the amount of aluminum powder added is less than 15% by mass, the amount of Zn in the total composition of the raw material powder exceeds 10% by mass, resulting in a liquid generated from the aluminum alloy powder. The deformation of the sintered body was large due to the phase, and the subsequent processes had to be stopped. On the other hand, when the addition amount of aluminum powder is 15% by mass or more, sintering can be performed without causing deformation of the sintered body, and high tensile strength, elongation, and surface pressure load are exhibited. From this, it was confirmed that when applying the total amount of Zn in the form of aluminum alloy powder, it is necessary to simultaneously use 15% by mass or more of aluminum powder. Further, when aluminum powder is added in excess of 15% by mass, the tensile strength and elongation tend to improve as the amount of aluminum powder added increases. When the amount exceeds 5.5% by mass (Sample No. 01), the tensile strength tends to decrease on the contrary, and in the sample No. 08 whose Zn content in the entire composition of the raw material powder is less than 3% by mass, As a result of the poor amount, a decrease in tensile strength and surface load resistance was observed.

表3〜5の試料番号01、09〜14の試料の比較により、アルミニウム合金粉末中のZn量の影響を調べた。なお、これらの比較において、原料粉末の全体組成におけるZn量は一定(5.5質量%)に調整して行った。これらの試料より、アルミニウム合金粉末中のZn量が10質量%に満たない試料番号09の試料では引張り強さは高い値を示すものの、伸びの値が0.7%と低い値を示している。一方、アルミニウム合金粉末中のZn量が10質量%以上では高い引張り強さを示すとともに、伸びの値も向上していることがわかる。ただし、アルミニウム合金粉末中のZn量が30質量%を超える(試料番号14)と、引張り強さの低下および伸びの低下が認められる。また、耐面圧荷重は、アルミニウム合金粉末中のZn量が10〜30質量%の範囲では良好な耐面圧荷重を示すが、30質量%を超えると耐面圧荷重の低下が認められる。よって、アルミニウム合金粉末中のZn量は10〜30質量%の範囲で、引張り強さ、伸びおよび耐面圧荷重が高い値を示すことが確認された。   By comparing the samples Nos. 01 and 09 to 14 in Tables 3 to 5, the influence of the Zn content in the aluminum alloy powder was examined. In these comparisons, the Zn content in the overall composition of the raw material powder was adjusted to be constant (5.5% by mass). From these samples, the sample No. 09 whose Zn content in the aluminum alloy powder is less than 10% by mass shows a high tensile strength but a low elongation value of 0.7%. . On the other hand, it can be seen that when the Zn content in the aluminum alloy powder is 10% by mass or more, the tensile strength is high and the elongation value is also improved. However, when the amount of Zn in the aluminum alloy powder exceeds 30% by mass (Sample No. 14), a decrease in tensile strength and a decrease in elongation are observed. Moreover, although the surface pressure load shows a favorable surface pressure load when the Zn content in the aluminum alloy powder is in the range of 10 to 30% by mass, a decrease in the surface pressure load is recognized when the amount exceeds 30% by mass. Therefore, it was confirmed that the amount of Zn in the aluminum alloy powder is in the range of 10 to 30% by mass, and the tensile strength, elongation, and surface load resistance are high.

上記により確認された、アルミニウム合金粉末中のZn量の最適範囲において、原料粉末の全体組成中のZnの下限値を試料番号15、上限値を試料番号16の試料により確認したところ、上記の結果と併せて原料粉末の全体組成中のZnが3〜10質量%の範囲で高い引張り強さ、伸びおよび耐面圧荷重を示すことが確認された。   In the optimum range of the amount of Zn in the aluminum alloy powder confirmed as described above, the lower limit value of Zn in the entire composition of the raw material powder was confirmed by the sample number 15 and the upper limit value was confirmed by the sample of the sample number 16. In addition, it was confirmed that Zn in the entire composition of the raw material powder exhibited high tensile strength, elongation and surface pressure load in the range of 3 to 10% by mass.

実施例3は、MgおよびCuの添加量および添加形態について調査したもので、実施例1のアルミニウム粉末、アルミニウム合金粉末、マグネシウム粉末、銅粉末、錫粉末炭化硼素粉末とともに、各々100メッシュの表6に示す組成のアルミニウム合金粉末、250メッシュのMg量が50質量%で残部がAlおよび不可避不純物からなるアルミニウム−マグネシウム合金粉末を用いて、表6に示す配合割合で、これらの粉末を混合し、表7に示す全体組成の原料粉末を準備した。これらの原料粉末を用いて、実施例1と同じ条件で成形工程、焼結工程、鍛造工程、熱処理工程、試験片加工工程を行い、得られた試料についてそれぞれの工程における密度比および引張り強さ、伸びおよび耐面圧荷重を測定した。その結果を実施例1の試料番号01の試料の結果(平均値)とともに表8に示す。   Example 3 investigated the addition amount and the addition form of Mg and Cu, and together with the aluminum powder, aluminum alloy powder, magnesium powder, copper powder, tin powder boron carbide powder of Example 1, 100 mesh each of Table 6 Using the aluminum alloy powder having the composition shown in the following, and the aluminum-magnesium alloy powder consisting of Al and inevitable impurities with the remaining amount of Mg in the 250 mesh being 50% by mass, these powders are mixed at the blending ratio shown in Table 6, Raw material powders having the overall composition shown in Table 7 were prepared. Using these raw material powders, the molding step, sintering step, forging step, heat treatment step, test piece processing step are performed under the same conditions as in Example 1, and the obtained sample has a density ratio and tensile strength in each step. The elongation and the surface pressure load were measured. The results are shown in Table 8 together with the result (average value) of the sample No. 01 of Example 1.

Figure 0004401326
Figure 0004401326

Figure 0004401326
Figure 0004401326

Figure 0004401326
Figure 0004401326

表6〜8の試料番号01、17〜19および21、22の試料の比較により、Mgを単未粉末として与えた場合のMg量の影響を調べた。これらよりMg未添加の場合(試料番号17)は、Mgが関与する液相が発生せず、引張り強さ、伸びおよび耐面加重の値が低下するが、Mgを単味粉末の形態で付与する場合、Mg量が0.5質量%以上で引張り強さ、伸びおよび耐面圧荷重が向上することがわかる。ただし、Mg量が5質量%を超える試料番号22の試料では液相発生量が過多となって焼結体の変形が生じている。これらより、原料粉末の組成中のMg量は0.5〜5質量%の範囲で引張り強さ、伸びおよび耐面圧荷重の向上の効果があることが確認された。   By comparing the samples Nos. 01, 17-19 and 21, 22 in Tables 6 to 8, the influence of the amount of Mg when Mg was given as a single unpowder was examined. When Mg is not added (Sample No. 17), a liquid phase involving Mg does not occur, and the tensile strength, elongation, and surface load resistance decrease, but Mg is provided in the form of a simple powder. When the amount of Mg is 0.5% by mass or more, it can be seen that the tensile strength, the elongation, and the surface pressure load are improved. However, in the sample of Sample No. 22 in which the Mg amount exceeds 5% by mass, the liquid phase generation amount is excessive, and the sintered body is deformed. From these, it was confirmed that the amount of Mg in the composition of the raw material powder has an effect of improving tensile strength, elongation, and load resistance against surface pressure in the range of 0.5 to 5% by mass.

また、試料番号20の試料はMgをアルミニウム−マグネシウム合金粉末の形態で付与した例であるが、試料番号01の試料と比較すると、原料粉末の全体組成におけるMg量が等しい場合、Mgをアルミニウム−マグネシウム合金粉末の形態で付与しても同等の引張り強さ、伸びおよび耐面圧荷重が得られることがわかる。   Sample No. 20 is an example in which Mg is applied in the form of an aluminum-magnesium alloy powder. Compared with the sample No. 01, when the amount of Mg in the entire composition of the raw material powder is equal, Mg is aluminum- It can be seen that even when applied in the form of magnesium alloy powder, the same tensile strength, elongation, and surface pressure load can be obtained.

表6〜8の試料番号01、23〜27の試料の比較により、Cuを単未粉末として与えた場合のCu量の影響を調べた。これらよりCu未添加の場合(試料番号23)は、Cuが関与する液相が発生せず、引張り強さおよび耐面圧荷重はともに低い値を示すが、Cuを単味粉末の形態で付与する場合、Cu量が0.5質量%以上で引張り強さおよび耐面圧荷重が向上することがわかる。ただし、Cu量が5質量%を超える試料番号27の試料では液相発生量が過多となって焼結体の変形が生じている。一方、伸びはCu量が増加するにつれて低下する傾向を示すが、Cu量が5質量%までの範囲では、1.0%以上の十分な伸びを示している。これらより、原料粉末の組成中のCu量は0.5〜5質量%の範囲で引張り強さおよび耐面圧荷重の向上の効果があり、この範囲で伸びは十分な値を示すことが確認された。   By comparing the samples Nos. 01 and 23 to 27 in Tables 6 to 8, the influence of the amount of Cu when Cu was given as a single powder was examined. When Cu is not added (Sample No. 23), a liquid phase involving Cu does not occur, and both the tensile strength and the surface pressure load are low, but Cu is applied in the form of a simple powder. In this case, it is understood that the tensile strength and the surface pressure resistance are improved when the amount of Cu is 0.5% by mass or more. However, in the sample of Sample No. 27 in which the amount of Cu exceeds 5% by mass, the liquid phase generation amount is excessive and the sintered body is deformed. On the other hand, the elongation tends to decrease as the amount of Cu increases. However, when the amount of Cu is up to 5% by mass, sufficient elongation of 1.0% or more is exhibited. From these, it is confirmed that the amount of Cu in the composition of the raw material powder has an effect of improving the tensile strength and the surface pressure load in the range of 0.5 to 5% by mass, and the elongation shows a sufficient value in this range. It was done.

表6〜8の試料番号28〜32の試料の比較により、CuをZnを含有するアルミニウム合金粉末の形態で付与した場合のCu量の影響を調べた。この場合、Cuを単未粉末の形態で付与した場合と同様、Cu未添加の試料(試料番号23)より引張り強さおよび耐面圧荷重の向上が認められるが、原料粉末の組成中のCu量は上記により確認された0.5〜5質量%にあっても、アルミニウム合金粉末中のCu量が10質量%を超える(試料番号32)と、却って引張り強さおよび伸びが低下することがわかる。このことから、CuをZnを含有するアルミニウム合金粉末に合金化して与える場合、その上限は10質量%とする必要があることが確認された。   By comparing the samples of Sample Nos. 28 to 32 in Tables 6 to 8, the influence of the amount of Cu when Cu was applied in the form of an aluminum alloy powder containing Zn was examined. In this case, as in the case where Cu is applied in the form of a single powder, improvement in tensile strength and surface load resistance is observed from the sample without addition of Cu (Sample No. 23). Even if the amount is 0.5 to 5% by mass as confirmed above, if the amount of Cu in the aluminum alloy powder exceeds 10% by mass (Sample No. 32), the tensile strength and elongation may decrease instead. Recognize. From this, when Cu was alloyed and given to the aluminum alloy powder containing Zn, it was confirmed that the upper limit needs to be 10 mass%.

実施例4は、硬質粒子粉末の添加量および種類について調査したもので、実施例1のアルミニウム粉末、アルミニウム合金粉末、マグネシウム粉末、銅粉末、錫粉末、炭化硼素粉末とともに、各々125メッシュの炭化珪素粉末および硼化クロム粉末を用いて、表9に示す配合割合で、これらの粉末を混合し、表10に示す全体組成の原料粉末を準備した。これらの原料粉末を用いて、実施例1と同じ条件で成形工程、焼結工程、鍛造工程、熱処理工程、試験片加工工程を行い、得られた試料についてそれぞれの工程における密度比および引張り強さ、伸びおよび耐面圧荷重を測定した。その結果を実施例1の試料番号01の試料の結果(平均値)とともに表11に示す。   In Example 4, the amount and type of hard particle powder added were investigated. 125 mesh silicon carbide each together with the aluminum powder, aluminum alloy powder, magnesium powder, copper powder, tin powder, and boron carbide powder of Example 1 was investigated. Using powder and chromium boride powder, these powders were mixed at the blending ratio shown in Table 9 to prepare raw material powder having the overall composition shown in Table 10. Using these raw material powders, the molding step, sintering step, forging step, heat treatment step, test piece processing step are performed under the same conditions as in Example 1, and the obtained sample has a density ratio and tensile strength in each step. The elongation and the surface pressure load were measured. The results are shown in Table 11 together with the result (average value) of the sample No. 01 of Example 1.

また、従来例として、それぞれ100メッシュ以下のアルミニウム粉、およびSi:20質量%を含み残部がAlのアルミニウム−珪素合金粉末、それぞれ250メッシュ以下のNi:4質量%を含み残部がCuの銅−ニッケル合金粉末、およびMg:50質量%を含み残部がAlのアルミニウム−マグネシウム合金粉末を用意し、表1に示す配合割合で混合し、成形工程では成形圧力を200MPa、焼結工程では、窒素ガス雰囲気中、400℃から焼結保持温度までの昇温速度:10℃/分、焼結保持温度:550℃、焼結保持時間:60分、焼結保持温度から450℃までの冷却速度:−20℃/分、鍛造工程では焼結体試料および鍛造金型の加熱温度:450℃、据え込み率:40%、熱処理工程では、溶体化処理温度:470℃、時効析出処理:130℃×24時間として、特許文献4(特開平7−224341号公報)で開示の合金を作製した。この試料(試料番号42)についてもそれぞれの工程における密度比および引張り強さ、伸びの機械的特性を測定するとともに、結果を表11に併せて示す。   Also, as conventional examples, aluminum powder of 100 mesh or less, and aluminum: Si: 20% by mass and the balance of Al-silicon alloy powder, each of Ni: 250 mesh or less of Ni: 4% by mass and the balance of copper of Cu— Nickel alloy powder and Mg: Aluminum-magnesium alloy powder containing 50% by mass and the balance being Al are prepared and mixed at a blending ratio shown in Table 1. The molding pressure is 200 MPa in the molding process, and nitrogen gas is used in the sintering process. In atmosphere, temperature rising rate from 400 ° C. to sintering holding temperature: 10 ° C./min, sintering holding temperature: 550 ° C., sintering holding time: 60 minutes, cooling rate from sintering holding temperature to 450 ° C .: − 20 ° C./minute, heating temperature of sintered body sample and forging mold: 450 ° C., upsetting rate: 40% in forging process, solution treatment temperature: 470 ° C. in heat treatment process, Effective precipitation treatment: as 130 ° C. × 24 hours to prepare the disclosed alloys in Patent Document 4 (JP-A-7-224341). For this sample (sample number 42), the density ratio, tensile strength, and mechanical properties of elongation in each step were measured, and the results are also shown in Table 11.

Figure 0004401326
Figure 0004401326

Figure 0004401326
Figure 0004401326

Figure 0004401326
Figure 0004401326

表9〜11の試料番号01,33〜40の試料を比較することで硬質粒子の添加量の効果を調べることができる。これらより硬質粒子が無添加の試料番号33の試料は、高い引張り強さと伸びを示すものの、耐面圧荷重が低く耐摩耗性が低い材料であることがわかる。このような材料であっても硬質粒子の量を0.1質量%以上とすることにより、引張り強さの低下が僅かでありながら、耐摩耗性が改善され、特に1.0質量%以上の添加で高い耐摩耗性が得られることがわかる。一方、伸びは硬質粒子の量が増加するにしたがい若干低下する傾向を示すが、硬質粒子の量が10質量%までは伸びの値が1%以上であり、十分な伸びを示すことがわかる。ただし、硬質粒子の量が10質量%を超える(試料番号40)と、伸びの値が1%を下回るとともに、摺動相手側部材の摩耗量が増大していることが観察された。以上より、硬質粒子の量は0.1〜10質量%の範囲で、高い引張り強さと伸びを示すとともに、耐摩耗性が改善されるとともに、従来のアルミニウム−珪素系耐摩耗性アルミニウム焼結合金(試料番号43)のものよりも、高い引張り強さを示す耐摩耗性アルミニウム焼結合金が得られることが確認された。特に、硬質粒子の量が1.0〜10質量%の範囲で耐摩耗性改善の効果が大きいこともわかった。   By comparing the samples Nos. 01 and 33 to 40 in Tables 9 to 11, the effect of the addition amount of the hard particles can be examined. From these, it can be seen that the sample No. 33 to which no hard particles are added shows a high tensile strength and elongation, but is a material having a low surface pressure load and a low wear resistance. Even with such a material, by setting the amount of hard particles to 0.1% by mass or more, the wear resistance is improved while the decrease in tensile strength is slight, particularly 1.0% by mass or more. It can be seen that high wear resistance can be obtained by addition. On the other hand, the elongation tends to decrease slightly as the amount of hard particles increases, but it can be seen that the elongation value is 1% or more up to 10% by mass of the hard particles, indicating sufficient elongation. However, when the amount of hard particles exceeded 10% by mass (sample number 40), it was observed that the elongation value was less than 1% and the wear amount of the sliding counterpart member was increased. As described above, the amount of hard particles is in the range of 0.1 to 10% by mass, exhibits high tensile strength and elongation, improves wear resistance, and is a conventional aluminum-silicon wear resistant aluminum sintered alloy. It was confirmed that a wear-resistant aluminum sintered alloy having a higher tensile strength than that of (Sample No. 43) can be obtained. In particular, it was also found that the effect of improving the wear resistance is large when the amount of hard particles is in the range of 1.0 to 10% by mass.

表9〜11の試料番号01、41、42の試料を比較することで硬質粒子の種類の影響を調べることができる。これらより、硬質粒子の種類を炭化硼素より、炭化珪素あるいは硼化クロムに替えても十分な耐摩耗性(耐面圧荷重)が得られることが確認された。特に、硼化クロムを用いた場合、従来のアルミニウム−珪素系耐摩耗性アルミニウム焼結合金(試料番号43)のものよりも、高い引張り強さを示すだけでなく、耐面圧荷重も同等の優れた耐摩耗性アルミニウム焼結合金が得られることがわかった。   By comparing the samples Nos. 01, 41, and 42 in Tables 9 to 11, the influence of the type of hard particles can be examined. From these, it was confirmed that sufficient wear resistance (surface pressure load) can be obtained even if the kind of hard particles is changed from boron carbide to silicon carbide or chromium boride. In particular, when chromium boride is used, not only the tensile strength is higher than that of the conventional aluminum-silicon wear-resistant aluminum sintered alloy (Sample No. 43), but also the surface pressure load is equivalent. It has been found that an excellent wear-resistant aluminum sintered alloy can be obtained.

実施例5は、焼結助剤粉末の添加量および種類について調査したもので、実施例1のアルミニウム粉末、アルミニウム合金粉末、マグネシウム粉末、銅粉末、炭化硼素粉末、錫粉末とともに、各々250メッシュのビスマス粉末、インジウム粉末およびZn:8質量%、Bi:3質量%および残部がSnおよび不可避不純物よりなる鉛フリーはんだ粉末を用いて、表12に示す配合割合で、これらの粉末を混合し、表13に示す全体組成の原料粉末を準備した。これらの原料粉末を用いて、実施例1と同じ条件で成形工程、焼結工程、鍛造工程、熱処理工程、試験片加工工程を行い、得られた試料についてそれぞれの工程における密度比および引張り強さ、伸びおよび耐面圧荷重を測定した。その結果を実施例1の試料番号01の試料の結果(平均値)とともに表14に示す。   In Example 5, the amount and type of the sintering aid powder were investigated, and together with the aluminum powder, aluminum alloy powder, magnesium powder, copper powder, boron carbide powder, and tin powder of Example 1, 250 mesh each. Bismuth powder, indium powder and Zn: 8% by mass, Bi: 3% by mass, and the remainder using lead-free solder powder composed of Sn and inevitable impurities, these powders were mixed at the blending ratio shown in Table 12, The raw material powder of the whole composition shown in 13 was prepared. Using these raw material powders, the molding step, sintering step, forging step, heat treatment step, test piece processing step are performed under the same conditions as in Example 1, and the obtained sample has a density ratio and tensile strength in each step. The elongation and the surface pressure load were measured. The results are shown in Table 14 together with the result (average value) of the sample No. 01 of Example 1.

Figure 0004401326
Figure 0004401326

Figure 0004401326
Figure 0004401326

Figure 0004401326
Figure 0004401326

ここでは、表12〜14の試料番号01、44〜48の試料により、低融点金属粉末の添加量の影響を調べた。その結果、低融点金属を添加すると、未添加のもの(試料番号44)に比べて引張り強さ、伸びおよび耐面圧荷重が改善されることがわかる。また、その添加量は0.01〜0.5質量%の添加で効果が認められ、添加量が0.05〜0.1質量%で最も効果が高いが、0.5質量%を超える(試料番号48)と、伸びの低下が著しく、また耐面圧荷重も低下することがわかる。よって、低融点金属粉末の添加は0.01〜0.5質量%の範囲で機械的特性向上の効果があることが確認された。   Here, the influence of the addition amount of the low melting point metal powder was examined using the samples Nos. 01 and 44 to 48 in Tables 12 to 14. As a result, it can be seen that when the low melting point metal is added, the tensile strength, the elongation and the surface pressure load are improved as compared with the case where the low melting point metal is not added (Sample No. 44). Moreover, the effect is recognized by the addition amount of 0.01-0.5 mass%, and although the effect is the highest when the addition amount is 0.05-0.1 mass%, it exceeds 0.5 mass% ( It can be seen from Sample No. 48) that the elongation is remarkably reduced and the surface pressure load is also reduced. Therefore, it was confirmed that the addition of the low melting point metal powder has an effect of improving the mechanical characteristics in the range of 0.01 to 0.5% by mass.

また、表12〜14の試料番号01、49〜51の試料により、低融点金属粉末の種類を替えて、低融点金属粉末の種類の影響を調べた。その結果、錫粉末を、ビスマス粉末、インジウム粉末または鉛フリーはんだ粉末に替えても同様の効果が得られることが確認された。   In addition, the types of the low melting point metal powders were changed using the samples Nos. 01 and 49 to 51 in Tables 12 to 14, and the influence of the type of the low melting point metal powder was examined. As a result, it was confirmed that the same effect can be obtained even if the tin powder is replaced with bismuth powder, indium powder or lead-free solder powder.

実施例6は、成形条件として成形圧力、焼結条件として焼結温度と焼結時間を変化させた場合について調査したもので、実施例1の試料番号01で用いたアルミニウム粉末、アルミニウム合金粉末、マグネシウム粉末、銅粉末、錫粉末を、実施例1と同じ成分組成に調整した原料粉末を用いて、表15に示す成形圧力、焼結温度、焼結時間で成形工程および焼結工程を行った後、実施例1と同じ条件で、鍛造工程、熱処理工程、試験片加工工程を行った。このようにして得られた試料についてそれぞれの工程における密度比および引張り強さ、伸びおよび耐面圧荷重を測定した。その結果を実施例1の試料番号01の試料の結果(平均値)とともに表16に示す。   Example 6 investigated the case where the molding pressure was changed as the molding condition and the sintering temperature and the sintering time were changed as the sintering condition. The aluminum powder, the aluminum alloy powder used in the sample number 01 of Example 1, Using the raw material powder prepared by adjusting the magnesium powder, copper powder, and tin powder to the same component composition as in Example 1, the molding process and the sintering process were performed at the molding pressure, sintering temperature, and sintering time shown in Table 15. Thereafter, under the same conditions as in Example 1, a forging process, a heat treatment process, and a test piece processing process were performed. The samples thus obtained were measured for density ratio, tensile strength, elongation, and surface pressure load in each step. The results are shown in Table 16 together with the result (average value) of the sample No. 01 of Example 1.

Figure 0004401326
Figure 0004401326

Figure 0004401326
Figure 0004401326

表15および16の試料番号01、52〜55の試料より、成形圧力が200〜400MPaの範囲で、成形体の密度比が90%以上の成形体試料が得られ、これにより、焼結−鍛造−熱処理の工程を経ることで、高い引張り強さ、伸びおよび耐面圧荷重を示すことがわかる。一方、成形圧力が200MPaに満たない試料番号52の試料では、成形体密度が低いため、液相発生による収縮量が大きく、型くずれが発生したことにより、後の鍛造および熱処理工程を中止し、試験を中止した。また、成形圧力が400MPaを超える(試料番号55)と、型カジリが発生し後の焼結工程以降を中止し、試験を中止した。   From the samples of sample numbers 01 and 52 to 55 in Tables 15 and 16, a molded body sample having a molding pressure in the range of 200 to 400 MPa and a density ratio of the molded body of 90% or more was obtained. -It turns out that high tensile strength, elongation, and surface load resistance are exhibited through the heat treatment step. On the other hand, in the sample of Sample No. 52 whose molding pressure is less than 200 MPa, since the density of the molded body is low, the amount of shrinkage due to the liquid phase generation is large, and the die forging is discontinued. Canceled. Further, when the molding pressure exceeded 400 MPa (Sample No. 55), mold galling occurred and the subsequent sintering process was stopped and the test was stopped.

表15および表16の試料番号01、56〜59の試料により、焼結保持温度の影響を調べた。その結果、焼結保持温度が580〜610℃の範囲の試料番号01、57および58の試料は、高い引張り強さと伸びを示すことがわかる。一方、焼結保持温度が580℃に満たない試料番号56の試料では引張り強さおよび伸びがいずれも低くなる。これは、成分元素がAl基地中に完全に固溶できず、局部的に偏析して残留した結果、機械的特性が低い値になるものと推察される。また、逆に焼結保持温度が610℃を超える試料番号59の試料では、液相量が過多に発生した結果、焼結体の溶融変形が生じ、以降の試験を中止した。   The influence of the sintering holding temperature was examined using samples Nos. 01 and 56 to 59 in Table 15 and Table 16. As a result, it can be seen that the samples Nos. 01, 57 and 58 having a sintering holding temperature in the range of 580 to 610 ° C. exhibit high tensile strength and elongation. On the other hand, in the sample of sample number 56 whose sintering holding temperature is less than 580 ° C., the tensile strength and the elongation are both low. It is presumed that this is because the component elements cannot be completely dissolved in the Al matrix, but are segregated locally and remain, resulting in low mechanical properties. On the other hand, in the sample of sample No. 59 having a sintering holding temperature exceeding 610 ° C., the liquid phase amount was excessively generated. As a result, the sintered body melted and deformed, and the subsequent tests were stopped.

また、表15および表16の試料番号01と60〜63の試料により、焼結保持時間の影響を調べた。その結果、焼結時間が10分に満たない試料番号60の試料では、張り強さおよび伸びがいずれも低くなる。これは、成分が焼結時間が短いとAl基地中に十分に固溶できず、局部的に偏析して残留した結果、機械的特性が低い値になるものと推察される。一方、焼結時間が10分以上の試料番号01、61〜63の試料は、成分がAl基地中に均一に固溶され、引張り強さが500MPa以上で、伸びが3%を超える、高い機械的特性を示している。ただし、焼結保持時間が30分を超えても、機械的特性は変わらないため、30分以下の焼結保持時間で十分である。   Further, the influence of the sintering holding time was examined using the sample numbers 01 and 60 to 63 in Table 15 and Table 16. As a result, in the sample of sample number 60 whose sintering time is less than 10 minutes, both the tensile strength and the elongation are low. This is presumed that when the sintering time of the component is short, it cannot be sufficiently dissolved in the Al matrix and segregates and remains locally, resulting in low mechanical properties. On the other hand, the samples Nos. 01 and 61 to 63 having a sintering time of 10 minutes or more are high machines in which the components are uniformly dissolved in the Al matrix, the tensile strength is 500 MPa or more, and the elongation exceeds 3%. Characteristics. However, even if the sintering holding time exceeds 30 minutes, the mechanical properties do not change, so a sintering holding time of 30 minutes or less is sufficient.

実施例7では、実施例6と同じく実施例1の試料番号01のアルミニウム粉末、アルミニウム合金粉末、マグネシウム粉末、銅粉末、錫粉末を用い、実施例1と同じ成分組成に調整した原料粉末を用い、鍛造条件を表17に示す条件に変更した以外は実施例1と同じ試料作成条件で試料を作製した。これらの試料について、各工程後の密度比および引張り強さと伸びおよび耐面圧荷重を測定した結果を実施例1の試料番号01の試料の測定結果とともに表18に示す。なお、表17において、「鍛造温度」の欄は、冷間鍛造の場合は「室温」と標記し、熱間鍛造の場合は、素材となる焼結体試料の加熱温度を標記した。また、試料番号64の試料は鍛造を施さない、特許文献1と同様の従来例である。   In Example 7, as in Example 6, the raw material powder adjusted to the same component composition as in Example 1 was used using the aluminum powder, aluminum alloy powder, magnesium powder, copper powder, and tin powder of sample number 01 of Example 1. A sample was prepared under the same sample preparation conditions as in Example 1 except that the forging conditions were changed to the conditions shown in Table 17. Table 18 shows the results of measuring the density ratio, tensile strength, elongation, and surface pressure resistance load of these samples, together with the measurement results of the sample No. 01 of Example 1. In Table 17, the “forging temperature” column is labeled “room temperature” in the case of cold forging, and the heating temperature of the sintered body sample as the material in the case of hot forging. Moreover, the sample of the sample number 64 is a conventional example similar to Patent Document 1 in which forging is not performed.

Figure 0004401326
Figure 0004401326

Figure 0004401326
Figure 0004401326

ここでは、表17および18の試料番号64〜69の試料により、室温で冷間鍛造を行った場合の、据え込み率の影響を調べた。その結果、冷間鍛造の場合、据え込み率が3〜40%の範囲であれば、高い引張り強さ、伸びおよび耐面圧荷重が得られることがわかる。一方、据え込み率が40%を超える(試料番号69)と、鍛造により試料に割れが発生し、試験を中止した。   Here, the influence of the upsetting rate in the case of cold forging at room temperature was examined using samples Nos. 64-69 in Tables 17 and 18. As a result, in the case of cold forging, when the upsetting rate is in the range of 3 to 40%, it can be seen that high tensile strength, elongation, and surface load resistance can be obtained. On the other hand, when the upsetting rate exceeded 40% (Sample No. 69), the sample was cracked by forging, and the test was stopped.

また、表17および18の試料番号68(冷間鍛造)、01と70〜75の試料により、焼結体の加熱温度を変えて熱間鍛造した場合の加熱温度の影響を調べた。その結果、引張り強さ、伸びおよび耐面圧荷重の値は、熱間鍛造とすることで改善されることがわかる。これは、冷間鍛造の場合、試料の内部にごく僅かヘアクラックが残留して伸びが低下するが、素材加熱温度が100℃以上の熱間鍛造とすることでヘアクラックが皆無となることに起因している。一方、鍛造温度が400℃を超える(試料番号75)と、金型への焼結体の凝着(型カジリ)が発生したため、試験を中止した。   Moreover, the influence of the heating temperature at the time of carrying out hot forging by changing the heating temperature of a sintered compact with the sample number 68 (cold forging) of Table 17 and 18 and the samples of 01 and 70-75 was investigated. As a result, it can be seen that the values of tensile strength, elongation, and surface load resistance are improved by hot forging. This is because, in the case of cold forging, there are very few hair cracks inside the sample and the elongation is lowered, but there is no hair cracking by hot forging with a material heating temperature of 100 ° C. or higher. Is attributed. On the other hand, when the forging temperature exceeded 400 ° C. (sample number 75), adhesion of the sintered body to the mold (mold galling) occurred, so the test was stopped.

また、表17および18の試料番号01、76〜80の試料により、熱間鍛造を行った場合の、据え込み率の影響を調べた。その結果、熱間鍛造の場合、据え込み率を3〜70%の範囲まで拡張しても、高い引張り強さ、伸びおよび耐面圧荷重が得られることがわかる。一方、据え込み率が70%を超える(試料番号80)と、鍛造により試料に割れが発生し、試験を中止した。



Moreover, the influence of the upsetting rate in the case of performing hot forging was examined using samples Nos. 01 and 76 to 80 in Tables 17 and 18. As a result, in the case of hot forging, it can be seen that even if the upsetting rate is expanded to a range of 3 to 70%, high tensile strength, elongation, and surface pressure load can be obtained. On the other hand, when the upsetting rate exceeded 70% (sample number 80), the sample was cracked by forging, and the test was stopped.



Claims (9)

原料粉末全体の成分組成が、質量比で、Zn:3.0〜10%、Mg:0.5〜5.0%、Cu:0.5〜5.0%、硬質粒子:0.1〜10%、並びに残部が不可避不純物およびAlからなり、かつ、原料として15質量%以上のアルミニウム粉末と、Znの全量を含むアルミニウム合金粉末と、0.1〜10質量%の硬質粒子粉末とを少なくとも用い、それらの原料粉末を混合する原料粉末配合工程と、
前記原料粉末配合工程により得られた原料粉末を用いて、所望の形状の金型に充填した後、200MPa以上の成形圧力で圧粉成形する成形工程と、
前記成形工程で得られた成形体を、非酸化性雰囲気中で、焼結保持温度:580〜610℃、焼結保持時間:10分以上で焼結した後、常温まで冷却する焼結工程と、
前記焼結工程で得られた焼結体を、460〜490℃に加熱して水焼き入れして溶体化した後、110〜200℃で2〜28時間保持して時効析出させる熱処理工程、
を順に行うことを特徴とする高強度耐摩耗性アルミニウム焼結合金の製造方法。
The component composition of the entire raw material powder is, by mass ratio, Zn: 3.0 to 10%, Mg: 0.5 to 5.0%, Cu: 0.5 to 5.0%, hard particles: 0.1 10% and the balance consisting of inevitable impurities and Al, and 15 wt% or more aluminum powder as a raw material, aluminum alloy powder containing the total amount of Zn, and 0.1 to 10 wt% hard particle powder at least Raw material powder blending step of using and mixing those raw material powders;
Using the raw material powder obtained by the raw material powder blending step, after filling a mold of a desired shape, a molding step of compacting at a molding pressure of 200 MPa or more,
A sintering step of sintering the molded body obtained in the molding step in a non-oxidizing atmosphere at a sintering holding temperature of 580 to 610 ° C. and a sintering holding time of 10 minutes or more, and then cooling to a normal temperature; ,
The sintered body obtained in the sintering step is heated to 460 to 490 ° C. and water-quenched to form a solution, and then held at 110 to 200 ° C. for 2 to 28 hours for aging precipitation,
A method for producing a high-strength, wear-resistant aluminum sintered alloy characterized in that
前記焼結工程を経た焼結体を、室温で据え込み率:3〜40%の据え込み率で冷間鍛造を行う冷間鍛造工程、もしくは100〜450℃で据え込み率:3〜70%の据え込み率で熱間鍛造を行う熱間鍛造工程のいずれかによる鍛造工程を行った後、前記熱処理工程を行うことを特徴とする請求項1に記載の高強度耐摩耗性アルミニウム焼結合金の製造方法。   The sintered body that has undergone the sintering step is cold forged at a room temperature upsetting ratio of 3 to 40%, or cold forging at an upsetting ratio of 3 to 40%, or at 100 to 450 ° C. upsetting ratio of 3 to 70%. 2. The high-strength wear-resistant aluminum sintered alloy according to claim 1, wherein the heat treatment step is performed after the forging step according to any one of the hot forging steps in which hot forging is performed at an upsetting rate of 2%. Manufacturing method. 前記アルミニウム合金粉末が、Zn:10〜30質量%で、残部がAlおよび不可避不純物よりなることを特徴とする請求項1または2に記載の高強度耐摩耗性アルミニウム焼結合金の製造方法。   3. The method for producing a high-strength wear-resistant aluminum sintered alloy according to claim 1, wherein the aluminum alloy powder is Zn: 10 to 30% by mass, and the balance is made of Al and inevitable impurities. 前記アルミニウム合金粉末が、Cu:10質量%以下をさらに含むことを特徴とする請求項1から3のいずれかに記載の高強度耐摩耗性アルミニウム焼結合金の製造方法。   The said aluminum alloy powder further contains Cu: 10 mass% or less, The manufacturing method of the high intensity | strength wear-resistant aluminum sintered alloy in any one of Claim 1 to 3 characterized by the above-mentioned. 前記硬質粒子粉末として、硬さが1000Hv以上で、アルミニウムと反応しないものを用いることを特徴とする請求項1から4のいずれかに記載の高強度耐摩耗性アルミニウム焼結合金の製造方法。   The method for producing a high-strength wear-resistant aluminum sintered alloy according to any one of claims 1 to 4, wherein the hard particle powder has a hardness of 1000 Hv or more and does not react with aluminum. 前記硬質粒子粉末が、炭化珪素粉末、硼化クロム粉末、炭化硼素粉末の少なくとも1種であることを特徴とする請求項5に記載の高強度耐摩耗性アルミニウム焼結合金の製造方法。   The method for producing a high-strength wear-resistant aluminum sintered alloy according to claim 5, wherein the hard particle powder is at least one of silicon carbide powder, chromium boride powder, and boron carbide powder. 前記原料粉末中に、原料粉末の全体組成に対して0.01〜0.5質量%のSn単味粉末、Bi単味粉末、In単味粉末、および、Sn、Bi、Inのいずれかを主成分とし前記主成分の共晶液相を生じる共晶化合物粉末および偏晶化合物粉末、の少なくとも1種の粉末をさらに添加、混合したことを特徴とする請求項1から6のいずれかに記載の高強度耐摩耗性アルミニウム焼結合金の製造方法。   In the raw material powder, 0.01 to 0.5 mass% of Sn simple powder, Bi simple powder, In simple powder, and any of Sn, Bi, and In with respect to the total composition of the raw material powder 7. The powder according to claim 1, wherein at least one powder of a eutectic compound powder and a monotectic compound powder, which are main components and generate a eutectic liquid phase of the main component, is further added and mixed. Manufacturing method of high-strength wear-resistant aluminum sintered alloy. 上記アルミニウム粉末およびアルミニウム合金粉末の大きさがそれぞれ100メッシュ以下、硬質粒子粉末の大きさが125メッシュ以下、その他の粉末の大きさが200メッシュ以下であることを特徴とする請求項1から7のいずれかに記載の高強度耐摩耗性アルミニウム焼結合金の製造方法。   The size of the aluminum powder and the aluminum alloy powder is 100 mesh or less, the size of the hard particle powder is 125 mesh or less, and the size of the other powders is 200 mesh or less. The manufacturing method of the high intensity | strength wear-resistant aluminum sintered alloy in any one. 前記焼結工程おける非酸化性雰囲気が、露点が−40℃以下の窒素ガス雰囲気であることを特徴とする請求項1から8のいずれかに記載の高強度耐摩耗性アルミニウム焼結合金の製造方法。
9. The production of a high-strength wear-resistant aluminum sintered alloy according to claim 1, wherein the non-oxidizing atmosphere in the sintering step is a nitrogen gas atmosphere having a dew point of −40 ° C. or less. Method.
JP2005139397A 2004-07-14 2005-05-12 Method for producing high-strength wear-resistant aluminum sintered alloy Expired - Fee Related JP4401326B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005139397A JP4401326B2 (en) 2005-05-12 2005-05-12 Method for producing high-strength wear-resistant aluminum sintered alloy
DE102005032544A DE102005032544B4 (en) 2004-07-14 2005-07-12 Abrasion-resistant sintered aluminum alloy with high strength and Herstellungsugsverfahren this
AT0117705A AT500508B1 (en) 2004-07-14 2005-07-13 HIGH-STRENGTH ABRASIVELY SINTERED ALUMINUM ALLOYING AND PRODUCTION METHOD THEREFOR
US11/182,653 US20060013719A1 (en) 2004-07-14 2005-07-14 Wear-resistant sintered aluminum alloy with high strength and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005139397A JP4401326B2 (en) 2005-05-12 2005-05-12 Method for producing high-strength wear-resistant aluminum sintered alloy

Publications (2)

Publication Number Publication Date
JP2006316312A JP2006316312A (en) 2006-11-24
JP4401326B2 true JP4401326B2 (en) 2010-01-20

Family

ID=37537240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005139397A Expired - Fee Related JP4401326B2 (en) 2004-07-14 2005-05-12 Method for producing high-strength wear-resistant aluminum sintered alloy

Country Status (1)

Country Link
JP (1) JP4401326B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772731B2 (en) 2012-06-08 2015-09-02 株式会社豊田中央研究所 Aluminum alloy powder forming method and aluminum alloy member
JP6132100B2 (en) * 2013-09-27 2017-05-24 住友電工焼結合金株式会社 Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member
KR101635792B1 (en) * 2014-05-23 2016-07-05 한국기계연구원 The preparing method of aluminum/silicon carbide metal matrix composites and the aluminum/silicon carbide metal matrix composites thereby
CN105256186A (en) * 2015-11-16 2016-01-20 利辛县江淮扬天汽车有限公司 Powder metallurgy bearing material and preparation method thereof
JP6380864B2 (en) * 2017-01-20 2018-08-29 住友電工焼結合金株式会社 Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member
KR102257374B1 (en) * 2020-02-07 2021-06-01 부산대학교 산학협력단 Aluminum composite material for brake disk having improved hardness and wear resistance, and method for manufacturing the same
CN113369456B (en) * 2021-06-03 2023-04-07 兰州理工大学 Preparation method of high-performance aluminum alloy
CN116970844A (en) * 2022-04-14 2023-10-31 比亚迪股份有限公司 Reticular aluminum-based composite material and preparation method thereof

Also Published As

Publication number Publication date
JP2006316312A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4401326B2 (en) Method for producing high-strength wear-resistant aluminum sintered alloy
JP4190570B2 (en) Lead-free free-cutting copper alloy extruded material
US20060013719A1 (en) Wear-resistant sintered aluminum alloy with high strength and manufacturing method thereof
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
EP4083244A1 (en) Heat-resistant powdered aluminium material
US11273489B2 (en) Aluminum alloy powder formulations with silicon additions for mechanical property improvements
GB2185041A (en) Aluminium base bearing alloy and method of producing same
JP2761085B2 (en) Raw material powder for Al-Si based alloy powder sintered parts and method for producing sintered parts
JP4451913B2 (en) Method for producing Ti particle-dispersed magnesium-based composite material
JP3940022B2 (en) Method for producing sintered aluminum alloy
US7651659B2 (en) Manufacturing method of sinter forged aluminum parts with high strength
US20110150694A1 (en) METHOD FOR MANUFACTURING Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL
JP5951636B2 (en) Improved aluminum alloy powder metal with transition elements
JPH029099B2 (en)
JP4326417B2 (en) Manufacturing method of high strength aluminum sintered forged parts
JP4349521B2 (en) Method for producing high-strength wear-resistant aluminum sintered alloy
JP4301450B2 (en) Manufacturing method of high strength aluminum sintered forged parts
RU2789324C1 (en) Wear-resistant antifriction material based on a two-phase al-sn alloy alloyed with iron, and a method for its production
JP2695289B2 (en) Method for producing Al alloy mixed powder and Al alloy sintered body
CH536672A (en) Consolidating hot-worked complex alloy - particles to from metal articles
JPH05302101A (en) Mixed powder for powder metallurgy/and its sintered compact
WO2023287981A1 (en) Powder metal composition with aluminum nitride mmc
CN118451208A (en) Desolventizing hardened powder metal compositions
Goel et al. Development and characterization of Al-Mg-V2O5 (Ni) by powder metallurgy route: A major project report
JPH08209274A (en) Wear resistant aluminum-base sintered alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091027

R150 Certificate of patent or registration of utility model

Ref document number: 4401326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees