US20110150694A1 - METHOD FOR MANUFACTURING Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL - Google Patents
METHOD FOR MANUFACTURING Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL Download PDFInfo
- Publication number
- US20110150694A1 US20110150694A1 US13/060,078 US200913060078A US2011150694A1 US 20110150694 A1 US20110150694 A1 US 20110150694A1 US 200913060078 A US200913060078 A US 200913060078A US 2011150694 A1 US2011150694 A1 US 2011150694A1
- Authority
- US
- United States
- Prior art keywords
- magnesium
- particles
- powder
- pure
- dispersed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000011777 magnesium Substances 0.000 claims abstract description 179
- 239000010936 titanium Substances 0.000 claims abstract description 174
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 173
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 160
- 239000002245 particle Substances 0.000 claims abstract description 118
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 86
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 81
- 239000011159 matrix material Substances 0.000 claims abstract description 34
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000000843 powder Substances 0.000 claims description 48
- 230000008569 process Effects 0.000 claims description 28
- 238000003756 stirring Methods 0.000 claims description 9
- 238000000889 atomisation Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 42
- 229910000861 Mg alloy Inorganic materials 0.000 description 12
- 239000011812 mixed powder Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 9
- 238000005204 segregation Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 8
- 238000001192 hot extrusion Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000007790 solid phase Substances 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 238000009736 wetting Methods 0.000 description 6
- 229910001069 Ti alloy Inorganic materials 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000009692 water atomization Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000004512 die casting Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000005551 mechanical alloying Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 150000002680 magnesium Chemical class 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/02—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F2009/0804—Dispersion in or on liquid, other than with sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the present invention relates to magnesium alloys, and more particularly to titanium (Ti) particle-dispersed magnesium-based composite materials that can be used in various fields such as household electric appliances, automotive parts, and aircraft members by increasing both strength and ductility, and manufacturing methods thereof.
- magnesium Due to the lowest specific gravity of magnesium (Mg) among metal materials for industrial use, magnesium is expected to be used for parts and members of two-wheeled vehicles, automobiles, aircrafts, etc. for which reduction in weight is strongly desired.
- Mg specific gravity
- the use of magnesium alloys is limited as magnesium is not strong enough as compared to conventional industrial materials such as ferrous materials and aluminum alloys.
- Composite materials in which particles, fibers, etc. having higher strength and hardness characteristics than those of magnesium are dispersed as a second phase have been developed in order to solve this problem.
- An effective second phase to be dispersed is titanium (Ti).
- the rigidity of Mg is 45 GPa, whereas the rigidity of Ti is 105 GPa.
- the hardness of Mg is 35 to 45 Hv (Vickers hardness), whereas the hardness of Ti is 110 to 120 Hv.
- dispersing titanium particles in a magnesium matrix can be expected to increase the strength and hardness of magnesium-based composite materials.
- ceramic particles and ceramic fibers such as oxides, carbides, and nitrides are commonly dispersed. Such particles and fibers have high rigidity and high hardness, but have poor ductility. Thus, dispersing these particles and fibers in magnesium alloys reduces the ductility (e.g., breaking elongation) of the resultant composite materials.
- titanium is a metal and has high ductility, adding and dispersing titanium particles does not reduce the ductility of the resultant composite materials.
- magnesium has lower corrosion resistance.
- titanium particles as a dispersion strengthening material in magnesium matrix.
- Non-Patent Document 1 Collected Abstracts of the 2008 Spring Meeting of the Japan Institute of Metals (Mar. 26, 2008), p. 355, No. 464 (Kataoka and Kitazono: Effect of Microstructure on
- Non-Patent Document 2 Collected Abstracts of the 2008 Spring Meeting of the Japan Institute of Light Metals (May 11, 2008), p. 13, No. 7 (Kitazono, Kataoka, and Komazu: Effect of Addition of Titanium Particles on Mechanical Characteristics of Magnesium).
- Non-Patent Document 3 Abstracts of Spring Meeting of Japan Society of Powder and Powder Metallurgy, 2007 (Jun. 6, 2007), p. 148, No. 2-51A (Enami, Fujita, Ohara, and Igarashi: Development of Magnesium Composite Material by Bulk Mechanical Alloying Method).
- Non-Patent Document 4 Journal of Japan Society of Powder and Powder Metallurgy, Vol. 55, No. 4 (2008), p. 244 (Enami, Fujita, Hone, Ohara, Igarashi, and Kondo: Development of Magnesium Composite Material by Bulk Mechanical Alloying Method).
- Non-Patent Document 5 Journal of Japan Institute of Light Metals, Vol. 54, No. 11 (2004), p. 522-526 (Sato, Watanabe, Miura, and Miura: Development of Titanium Particle-Dispersed Magnesium-Based Functionally Graded Material by Centrifugal Solid-Particle Method).
- Non-Patent Documents 1 and 2 disclose production of a Ti particle-dispersed magnesium-based composite material by the following method. Pure titanium particles are applied to the surface of a pure magnesium plate, and another pure magnesium plate is placed thereon. In this state, the pure magnesium plates are heated and pressed to produce a composite material having the titanium particles interposed between the pure magnesium plates. A plurality of such composite materials are superposed on each other, and are heated and pressed to produce a Ti particle-dispersed magnesium-based composite material having the titanium particles arranged in the direction of the plane of the plates.
- Non-Patent Documents 3 and 4 disclose production of a Ti particle-dispersed magnesium-based composite material by the following method. Magnesium alloy powder is mixed with pure titanium powder, and molds are filled with the mixed powder. In this state, the mixed powder is continuously subjected to a severe plastic working process, and is then subjected to a hot extrusion process to produce a Ti particle-dispersed magnesium-based composite material.
- Non-Patent Documents 1 to 4 the heating temperature is sufficiently lower than the melting point of magnesium, and composite materials are produced in a completely solid-phase temperature range without melting.
- the tensile test result of the composite materials shows that the strength is increased by about 5 to 10% but the ductility (breaking elongation) is reduced by about 20 to 30%, as compared to materials containing no Ti particle. Since magnesium and titanium do not form a compound, the bonding interface strength therebetween is not sufficient, and thus the strength is not increased sufficiently. On the other hand, a stress concentrates on the interface, whereby the ductility is reduced.
- adhesion at the Mg-Ti interface needs to be increased in order to significantly increase both the strength and ductility of titanium particle-dispersed magnesium-based composite materials.
- Non-Patent Document 5 describes a manufacturing method in which molten magnesium or a molten magnesium alloy (AZ91D) containing titanium particles that are present as a solid phase is subjected to a centrifugal force, and a composition gradient is controlled by using the difference in traveling speed which is caused by the difference in centrifugal force due to the difference in density between the dispersed particles and the molten magnesium or the molten magnesium alloy. Since the specific gravity of titanium is at least twice that of magnesium, it is difficult to uniformly disperse titanium particles in the molten magnesium or the molten magnesium alloy by the centrifugal solid-particle method disclosed in Non-Patent Document 5.
- AZ91D molten magnesium or molten magnesium alloy
- this document describes that “it was found difficult to disperse titanium particles by this method.”
- This document also describes that, in the case of adding titanium particles to a molten magnesium alloy (AZ91D) containing aluminum, and using the centrifugal solid-particle method, the aluminum concentration is very high in a portion where the titanium particles are aggregated, and regions where aluminum is solid-solved are also present in the outer periphery of the titanium particles.
- this document describes that “there is a possibility that the initial melt having a high aluminum concentration may have penetrated the gaps between the titanium particles due to a capillary phenomenon, and may have been involved in aggregation and sintering of the titanium particles.
- the use of the centrifugal solid-particle method in the AZ91D alloy containing aluminum is problematic in view of the composition of the melt.”
- the present invention was developed to solve the above problems, and it is an object of the present invention to provide a Ti particle-dispersed magnesium-based composite material having high strength by uniformly dispersing titanium particles in a magnesium matrix, and increasing adhesion at the interface between titanium and magnesium.
- a Ti particle-dispersed magnesium-based composite material according to the present invention is a material having titanium particles uniformly dispersed in a magnesium matrix.
- the Ti particle-dispersed magnesium-based composite material is characterized in that magnesium that forms the matrix and titanium particles are bonded together with satisfactory wettability without titanium oxide at an interface between the titanium particles and the magnesium matrix, and the magnesium-based composite material has a tensile strength of 230 MPa or more.
- a magnesium-based composite material having a tensile strength as high as 230 MPa or more can be obtained.
- One embodiment of the present invention is directed to powder for manufacturing the Ti particle-dispersed magnesium-based composite material.
- This powder is produced by making a cast material, which has the titanium particles uniformly dispersed in the magnesium matrix, into powder by a machining process.
- Powder according to another embodiment of the present invention is powder for manufacturing the Ti particle-dispersed magnesium-based composite material.
- the powder is produced by solidifying molten magnesium, which has the titanium particles uniformly dispersed therein, into powder by using an atomization process.
- a method for manufacturing a Ti particle-dispersed magnesium-based composite material according to the present invention includes the steps of; placing titanium particles into molten magnesium; stirring the molten magnesium so that the titanium particles are uniformly dispersed therein; producing a composite material having the titanium particles uniformly dispersed in a magnesium matrix by solidifying the molten magnesium; and producing a magnesium-based composite material having a tensile strength of 230 MPa or more by subjecting the composite material to a hot plastic working process.
- the step of producing the composite material includes solidifying the molten magnesium to produce a cast material having the titanium particles dispersed in the magnesium matrix, machining the cast material so as to make the cast material into powder, and compacting and solidifying the powder to produce a compacted body.
- the step of producing the composite material includes solidifying the molten magnesium into powder by using an atomization process, and compacting and solidifying the powder to produce a compacted body.
- a method for manufacturing a Ti particle-dispersed magnesium-based composite material includes the steps of: mixing magnesium powder with titanium particles; holding the mixed powder at a temperature higher than a liquid phase transition temperature of the magnesium powder; sintering and solidifying the mixed powder held at the high temperature; and producing a magnesium-based composite material having a tensile strength of 230 MPa or more by subjecting the sintered solidified body to a hot plastic formation process.
- FIG. 1 shows a graph and images for evaluating the wettability between pure magnesium and pure titanium.
- FIG. 2 shows scanning electron microscope (SEM) images of the interface between pure magnesium and pure titanium.
- FIG. 3 shows an SEM image of the interface between pure magnesium and pure titanium in a composite material obtained by heating and pressing mixed powder of pure titanium powder and pure magnesium powder.
- FIG. 4 shows an example of an image of the structure of magnesium-based composite powder having titanium particles dispersed therein.
- FIG. 5 shows images of the appearance and the structure of Ti particle-dispersed magnesium base composite powder obtained by using a water atomization process.
- FIG. 6 is a graph showing a stress-distortion curve of extruded materials using pure magnesium powder containing no titanium particle, and two kinds of Ti particle-dispersed magnesium-based composite powder produced by two manufacturing methods.
- FIG. 7 is a graph showing a change in tensile strength (TS) and yield strength (YS) of protruded materials with respect to the amount of titanium added.
- FIG. 8 shows optical microscope images of protruded materials having different contents of titanium particles.
- the inventors of the present application focused on wettability between titanium and magnesium, and evaluated characteristics of the wettability and examined manufacturing methods of composite materials by using high wettability.
- the inventors of the present application examined wettability between pure titanium plates and pure magnesium droplets. Specifically, pure magnesium droplets (held at 800° C.) melted in a high vacuum state were statically discharged from the tip of a nozzle made of magnesium oxide (M g O) onto the surface of a pure titanium plate, and the wettability between pure Mg and pure Ti at 800° C. was evaluated by continuous shooting. The result is shown in FIG. 1 .
- the wetting angle decreased with time, and decreased to 13° after 6 minutes.
- the wettability increases as the wetting angle becomes closer to 0°.
- titanium carbide (TiC) which is said to have satisfactory wettability with magnesium, has a wetting angle of about 33° at 900° C. (reference: A. Contrerasa et al., Scripta Materialia, 48 (2003) 1625-1630), it is recognized that the wettability between pure Mg and pure Ti is highly satisfactory.
- the interface between the solidified pure Mg and the titanium plate of a test piece was observed by using a scanning electron microscope (SEM). The result is shown in FIG. 2 . It is recognized that the molten Mg closely contacts the titanium plate in a satisfactory manner with no gap or void therebetween, in the entire region where the molten Mg contacts the titanium plate.
- Non-Patent Documents 1 to 4 For comparison, such composite materials as reported in related art (Non-Patent Documents 1 to 4) were produced. That is, composite materials were produced by heating and pressing mixed powder of pure titanium powder and pure magnesium powder at a solid phase temperature of magnesium powder, and the bonding interface between pure magnesium and pure titanium was observed. The result is shown in FIG. 3 . In producing the composite materials, the heating temperature was 520° C., which is lower than the melting point (650° C.) of pure magnesium so as to obtain a completely solid phase state. As shown by arrows, many gaps or voids were observed at the interface between the Ti particles and the Mg matrix, which shows that adhesion is not sufficient.
- the inventors produced Ti particle-dispersed magnesium-based composite materials by the following method in order to increase adhesion between a magnesium matrix and Ti particles.
- molten magnesium was held at a temperature higher than the melting point of magnesium or a magnesium alloy that forms a matrix, and a proper amount of Ti particles was added to the molten magnesium or magnesium alloy. After sufficiently stirring the molten magnesium or magnesium alloy so that the titanium particles were uniformly dispersed therein, the molten magnesium or magnesium alloy was solidified.
- magnesium that forms the matrix and titanium particles are bonded together, with high adhesion due to satisfactory wettability, without titanium oxide at the interface between the titanium particles and the magnesium matrix.
- These magnesium-based composite materials were subjected to a hot plastic working process, whereby Ti particle-dispersed magnesium-based composite materials having a tensile strength of 230 MPa or more were able to be obtained.
- Composite materials having titanium particles uniformly dispersed in a magnesium matrix can also be manufactured by conventional methods such as a casting method and a die casting method.
- the cast materials can be made into powder by a machining process such as a cutting process or a crushing process.
- the titanium particles are uniformly dispersed in the magnesium matrix.
- FIG. 4 shows an example of an image of the structure of this magnesium-based composite powder. As can be seen from FIG. 4 , there is no void at the interface between the Ti particles and the Mg matrix, and satisfactory adhesion is obtained.
- Magnesium-based composite powder having titanium particles uniformly dispersed in a magnesium matrix can also be obtained by solidifying molten magnesium having titanium particles uniformly dispersed therein by using an atomization process.
- the inventors obtained solidified powder by the following method. Pure magnesium is melted in a carbon crucible, and 3 mass % of pure titanium powder (average particle size: 29.8 mm) is added to the molten pure magnesium. After stirring sufficiently, the melt is discharged from the bottom of the crucible as a molten flow, and high pressure water is ejected to the molten flow (a water atomization process) to obtain solidified powder.
- FIG. 5 shows an image of the appearance of the obtained powder, and the observation result of the inner structure of the powder. It is recognized that, in this water atomized powder as well, there is no void at the interface between the Ti particles and the Mg matrix, and satisfactory adhesion is obtained.
- magnesium-based composite material is produced by adding titanium particles to molten magnesium, and after sufficient uniform stirring, performing a casting method or a die casting method, or in the case where molten magnesium having titanium particles uniformly dispersed therein is directly made into powder by using an atomization process, magnesium that forms the matrix and titanium particles are bonded together, without void and with satisfactory adhesion due to high wettability.
- the Ti particle-dispersed magnesium-based composite material produced by a casting method or a die casting method may be heated to a predetermined temperature, and then the composite material may be subjected to a hot plastic working process such as a hot extrusion process, a hot rolling process, or a forging process.
- a hot plastic working process such as a hot extrusion process, a hot rolling process, or a forging process.
- the tensile strength of the composite material is 230 MPa or more.
- the Ti particle-dispersed magnesium-based composite material produced from the cast material by a machining process such as a cutting process, or the Ti particle-dispersed magnesium-based composite powder obtained by ejecting high pressure water or high pressure gas to the molten magnesium flow, may be compacted and solidified to produce a compacted body or a sintered solidified body. Subsequently, the compacted body or the sintered solidified body may be subjected to a hot plastic working process such as a hot extrusion process, a hot rolling process, or a forging process, as necessary.
- a Ti particle-dispersed magnesium-based composite material having particles of the composite powder metallurgically bonded or sintered together can be produced in this manner.
- a Ti particle-dispersed magnesium-based composite material can also be obtained by the following manufacturing method as another embodiment.
- magnesium powder is mixed with titanium particles, and the mixed powder is sintered and solidified while being held at a predetermined temperature. The important thing is to hold the mixed powder at a temperature higher than a liquid phase transition temperature of the magnesium powder. By holding the mixed powder at such a high temperature, magnesium that forms the matrix and the titanium particles are bonded together in the sintered solidified body with high adhesion due to satisfactory wettability, without titanium oxide at the interface between the titanium particles and the magnesium matrix.
- This sintered solidified body is subjected to a hot plastic working process, whereby a Ti particle-dispersed magnesium-based composite material having a tensile strength of 230 MPa or more can be obtained.
- a mass of pure magnesium having a purity of 99.8%, and titanium powder having an average particle size of 29.8 ⁇ m were prepared as starting materials.
- the pure magnesium mass was melted by heating to 750° C. in a carbon crucible, and three different amounts of the titanium particles, namely 0.5 mass %, 1.5 mass %, and 2.8 mass % in a weight percentage relative to the total weight, were added to the molten magnesium.
- a water atomization process was performed to produce Ti particle-dispersed magnesium-based composite powder.
- pure magnesium powder having a purity of 99.9% (average particle size: 162 ⁇ m) was prepared, and the pure magnesium powder and the above Ti powder was weighed so that the ratio of the Ti powder was 0.5 mass %, 1.5 mass %, and 2.8 mass %. Then, the pure magnesium powder was mixed with the Ti powder by using a dry ball mill, thereby producing Mg-Ti mixed powder.
- the two kinds of powder thus produced were placed in carbon molds, and were pressed at 550° C. for 30 minutes (pressure: 30 MPa) in a vacuum atmosphere by using a discharge plasma sintering apparatus to sinter and solidify the particles of the powder together, thereby producing extrusion billets having a diameter of 45 mm.
- These Ti particle-dispersed magnesium powder billets were held at 200° C. for 5 minutes in an argon gas atmosphere, and then immediately subjected to a hot extrusion process (extrusion ratio: 37) to produce round-bar shaped extruded materials having a diameter of 7 mm.
- round-bar shaped extruded materials were also produced from pure magnesium powder containing no Ti particle, based on the above manufacturing procedures.
- FIG. 6 shows a stress-distortion curve of the extruded materials using the pure Mg powder containing no Ti particle, and the extruded materials using the Mg powder containing 2.8 mass % of Ti particles, which were produced by the two manufacturing methods.
- the tensile strength and the yield strength of the Ti particle-dispersed magnesium-based composite powder extruded materials using the water atomization process of the present invention increased by about 35 to 40%, and the breaking elongation thereof was as high as 15% or more, which is about the same as the pure magnesium powder extruded materials containing no Ti particle.
- FIG. 7 shows a change in tensile strength (TS) and yield strength (YS) of each extruded material with respect to the amount of Ti added.
- TS tensile strength
- Yield strength yield strength
- Example 1 a mass of pure magnesium having a purity of 99.8%, and titanium powder having an average particle size of 29.8 ⁇ m were prepared as starting materials.
- the magnesium mass was melted by heating to 750° C. in a carbon crucible, and three different amounts of the titanium particles, namely 1 mass %, 3 mass %, and 5 mass % in a weight percentage relative to the total weight, were added to the molten magnesium.
- the molten magnesium was cast into cylindrical molds to produce billets having a diameter of 60 mm.
- the cast billets were machined to produce extrusion billets having a diameter of 45 mm.
- FIG. 8 shows the observation result of the extruded materials by using an optical microscope.
- the proportion of Ti particles in the extruded material increases as the amount of Ti particles added increases. Even when 5 mass % of Ti particles was added, no aggregation/segregation phenomenon of the Ti particles is observed, and the Ti particles are uniformly dispersed in the magnesium matrix.
- Example 1 in the extruded materials obtained by extruding the Ti particle-dispersed magnesium-based composite material produced by a casting method according to the present invention, the tensile strength and the yield strength increase and the breaking elongation does not significantly decrease as the content of Ti particles increases.
- the above result shows that in the Ti particle-dispersed magnesium-based composite material of the present invention, the strength of the magnesium matrix can be increased by adding the Ti particles without causing aggregation and segregation of the Ti particles.
- Example 1 a mass of pure magnesium having a purity of 99.8%, and titanium powder having an average particle size of 29.8 ⁇ m were prepared as starting materials.
- the magnesium mass was melted by heating to 750° C. in a carbon crucible, and different amounts of the titanium particles, namely 2 mass % and 4 mass % in a weight percentage relative to the total weight, were added to the molten magnesium.
- the molten magnesium was cast into cylindrical molds to produce billets having a diameter of 60 mm. Chips having a total length of about 1 to 4 mm were produced from the cast billets by a cutting process.
- the observation result of the chips shows that the Ti particles are uniformly dispersed in the Mg matrix without aggregation and segregation.
- SKD11 molds were filled with the chips, and were pressed with a pressure of 600 MPa by a hydraulic press to produce billets of a powder molded body having a diameter of 45 mm.
- the billets were held at 300° C. for 5 minutes in an argon gas atmosphere, and then immediately subjected to a hot extrusion process (extrusion ratio: 37) to produce round-bar shaped extruded materials having a diameter of 7 mm.
- the above result shows that in the Ti particle-dispersed magnesium-based composite material obtained by the manufacturing method of the present invention, the strength of the magnesium matrix can be increased by adding the Ti particles without causing aggregation and segregation of the Ti particles.
- Example 1 a mass of pure magnesium having a purity of 99.8%, and titanium alloy powder having an average particle size of 22.8 ⁇ m (Ti-6.1Al %-3.8V/mass %) were prepared as starting materials.
- the magnesium mass was melted by heating to 750° C. in a carbon crucible, and three different amounts of the Ti alloy particles, namely 1 mass %, 3 mass %, and 5 mass % in a weight percentage relative to the total weight, were added to the molten magnesium. After sufficiently uniformly stirring the resultant molten magnesium to prevent segregation of the Ti alloy particles and sedimentation thereof at the bottom, the molten magnesium was cast into cylindrical molds to produce billets having a diameter of 60 mm.
- the cast billets were machined to produce extrusion billets having a diameter of 45 mm. These billets were held at 200° C. for 5 minutes in an argon gas atmosphere, and then immediately subjected to a hot extrusion process (extrusion ratio: 37) to produce round-bar shaped extruded materials having a diameter of 7 mm. Tensile test pieces were obtained from these magnesium powder extruded materials, and a tensile strength test was performed at normal temperature.
- the Ti alloy particles are uniformly dispersed in the matrix in the Ti particle-dispersed magnesium-based composite material of the present invention, without causing aggregation and segregation of the Ti particles.
- the tensile strength increases as the amount of Ti alloy particles added increases.
- the amount of increase in tensile strength is increased as compared to the case where the pure Ti particles are added. That is, the strength of the magnesium composite material is further increased as the hardness and strength of the particles that are dispersed are further increased.
- the present invention can be advantageously used as a Ti particle-dispersed magnesium-based composite material having high strength, and a manufacturing method thereof.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
A Ti particle-dispersed magnesium-based composite material is a material having titanium particles uniformly dispersed in a magnesium matrix. Magnesium that forms the matrix and titanium particles are bonded together,) with satisfactory wettability without titanium oxide at an interface therebetween. The Ti particle-dispersed magnesium-based composite material has a tensile strength of 230 MPa or more.
Description
- The present invention relates to magnesium alloys, and more particularly to titanium (Ti) particle-dispersed magnesium-based composite materials that can be used in various fields such as household electric appliances, automotive parts, and aircraft members by increasing both strength and ductility, and manufacturing methods thereof.
- Due to the lowest specific gravity of magnesium (Mg) among metal materials for industrial use, magnesium is expected to be used for parts and members of two-wheeled vehicles, automobiles, aircrafts, etc. for which reduction in weight is strongly desired. However, the use of magnesium alloys is limited as magnesium is not strong enough as compared to conventional industrial materials such as ferrous materials and aluminum alloys.
- Composite materials in which particles, fibers, etc. having higher strength and hardness characteristics than those of magnesium are dispersed as a second phase have been developed in order to solve this problem. One example of an effective second phase to be dispersed is titanium (Ti). The rigidity of Mg is 45 GPa, whereas the rigidity of Ti is 105 GPa. The hardness of Mg is 35 to 45 Hv (Vickers hardness), whereas the hardness of Ti is 110 to 120 Hv. Thus, dispersing titanium particles in a magnesium matrix can be expected to increase the strength and hardness of magnesium-based composite materials.
- In conventional composite materials, ceramic particles and ceramic fibers such as oxides, carbides, and nitrides are commonly dispersed. Such particles and fibers have high rigidity and high hardness, but have poor ductility. Thus, dispersing these particles and fibers in magnesium alloys reduces the ductility (e.g., breaking elongation) of the resultant composite materials. On the other hand, since titanium is a metal and has high ductility, adding and dispersing titanium particles does not reduce the ductility of the resultant composite materials.
- However, magnesium has lower corrosion resistance. Magnesium has less noble characteristics (base metal), and has, e.g., a standard electrode potential Es (the standard hydrogen (H) electrode is zero volt) as low as −2.356 V. If a small amount of iron (Fe: Es=−0.44 V) or copper (Cu: Es=+0.34 V) is contained in magnesium, a galvanic corrosion phenomenon occurs due to the potential difference between Mg and Fe and between Mg and Cu. On the other hand, titanium has a standard electrode potential of −1.75 V, and the potential difference between Mg and Ti is smaller than that between Mg and aluminum (Al: Es=−1.676 V) as an element that is added to Mg. That is, dispersing titanium in magnesium does not significantly affect the corrosion phenomenon.
- Thus, it is effective to use titanium particles as a dispersion strengthening material in magnesium matrix.
- For example, the following non-patent documents have been reported as techniques related to Ti particle-dispersed magnesium composite materials. Non-Patent Document 1: Collected Abstracts of the 2008 Spring Meeting of the Japan Institute of Metals (Mar. 26, 2008), p. 355, No. 464 (Kataoka and Kitazono: Effect of Microstructure on
- Mechanical Characteristics of Ti Particle-Dispersed Mg-Based Composite Material). Non-Patent Document 2: Collected Abstracts of the 2008 Spring Meeting of the Japan Institute of Light Metals (May 11, 2008), p. 13, No. 7 (Kitazono, Kataoka, and Komazu: Effect of Addition of Titanium Particles on Mechanical Characteristics of Magnesium). Non-Patent Document 3: Abstracts of Spring Meeting of Japan Society of Powder and Powder Metallurgy, 2007 (Jun. 6, 2007), p. 148, No. 2-51A (Enami, Fujita, Ohara, and Igarashi: Development of Magnesium Composite Material by Bulk Mechanical Alloying Method). Non-Patent Document 4: Journal of Japan Society of Powder and Powder Metallurgy, Vol. 55, No. 4 (2008), p. 244 (Enami, Fujita, Hone, Ohara, Igarashi, and Kondo: Development of Magnesium Composite Material by Bulk Mechanical Alloying Method). Non-Patent Document 5: Journal of Japan Institute of Light Metals, Vol. 54, No. 11 (2004), p. 522-526 (Sato, Watanabe, Miura, and Miura: Development of Titanium Particle-Dispersed Magnesium-Based Functionally Graded Material by Centrifugal Solid-Particle Method).
-
Non-Patent Documents -
Non-Patent Documents 3 and 4 disclose production of a Ti particle-dispersed magnesium-based composite material by the following method. Magnesium alloy powder is mixed with pure titanium powder, and molds are filled with the mixed powder. In this state, the mixed powder is continuously subjected to a severe plastic working process, and is then subjected to a hot extrusion process to produce a Ti particle-dispersed magnesium-based composite material. - In each of
Non-Patent Documents 1 to 4, the heating temperature is sufficiently lower than the melting point of magnesium, and composite materials are produced in a completely solid-phase temperature range without melting. The tensile test result of the composite materials shows that the strength is increased by about 5 to 10% but the ductility (breaking elongation) is reduced by about 20 to 30%, as compared to materials containing no Ti particle. Since magnesium and titanium do not form a compound, the bonding interface strength therebetween is not sufficient, and thus the strength is not increased sufficiently. On the other hand, a stress concentrates on the interface, whereby the ductility is reduced. - Thus, adhesion at the Mg-Ti interface needs to be increased in order to significantly increase both the strength and ductility of titanium particle-dispersed magnesium-based composite materials.
- Non-Patent
Document 5 describes a manufacturing method in which molten magnesium or a molten magnesium alloy (AZ91D) containing titanium particles that are present as a solid phase is subjected to a centrifugal force, and a composition gradient is controlled by using the difference in traveling speed which is caused by the difference in centrifugal force due to the difference in density between the dispersed particles and the molten magnesium or the molten magnesium alloy. Since the specific gravity of titanium is at least twice that of magnesium, it is difficult to uniformly disperse titanium particles in the molten magnesium or the molten magnesium alloy by the centrifugal solid-particle method disclosed in Non-PatentDocument 5. In fact, this document describes that “it was found difficult to disperse titanium particles by this method.” This document also describes that, in the case of adding titanium particles to a molten magnesium alloy (AZ91D) containing aluminum, and using the centrifugal solid-particle method, the aluminum concentration is very high in a portion where the titanium particles are aggregated, and regions where aluminum is solid-solved are also present in the outer periphery of the titanium particles. As a reason for this, this document describes that “there is a possibility that the initial melt having a high aluminum concentration may have penetrated the gaps between the titanium particles due to a capillary phenomenon, and may have been involved in aggregation and sintering of the titanium particles. Thus, it was found that the use of the centrifugal solid-particle method in the AZ91D alloy containing aluminum is problematic in view of the composition of the melt.” - The present invention was developed to solve the above problems, and it is an object of the present invention to provide a Ti particle-dispersed magnesium-based composite material having high strength by uniformly dispersing titanium particles in a magnesium matrix, and increasing adhesion at the interface between titanium and magnesium.
- A Ti particle-dispersed magnesium-based composite material according to the present invention is a material having titanium particles uniformly dispersed in a magnesium matrix. The Ti particle-dispersed magnesium-based composite material is characterized in that magnesium that forms the matrix and titanium particles are bonded together with satisfactory wettability without titanium oxide at an interface between the titanium particles and the magnesium matrix, and the magnesium-based composite material has a tensile strength of 230 MPa or more.
- According to the present invention, since a proper amount of titanium particles are uniformly dispersed in the magnesium matrix with satisfactory wettability, a magnesium-based composite material having a tensile strength as high as 230 MPa or more can be obtained.
- One embodiment of the present invention is directed to powder for manufacturing the Ti particle-dispersed magnesium-based composite material. This powder is produced by making a cast material, which has the titanium particles uniformly dispersed in the magnesium matrix, into powder by a machining process.
- Powder according to another embodiment of the present invention is powder for manufacturing the Ti particle-dispersed magnesium-based composite material. The powder is produced by solidifying molten magnesium, which has the titanium particles uniformly dispersed therein, into powder by using an atomization process.
- A method for manufacturing a Ti particle-dispersed magnesium-based composite material according to the present invention includes the steps of; placing titanium particles into molten magnesium; stirring the molten magnesium so that the titanium particles are uniformly dispersed therein; producing a composite material having the titanium particles uniformly dispersed in a magnesium matrix by solidifying the molten magnesium; and producing a magnesium-based composite material having a tensile strength of 230 MPa or more by subjecting the composite material to a hot plastic working process.
- In one embodiment, the step of producing the composite material includes solidifying the molten magnesium to produce a cast material having the titanium particles dispersed in the magnesium matrix, machining the cast material so as to make the cast material into powder, and compacting and solidifying the powder to produce a compacted body.
- In another embodiment, the step of producing the composite material includes solidifying the molten magnesium into powder by using an atomization process, and compacting and solidifying the powder to produce a compacted body.
- According to another aspect of the present invention, a method for manufacturing a Ti particle-dispersed magnesium-based composite material according to the present invention includes the steps of: mixing magnesium powder with titanium particles; holding the mixed powder at a temperature higher than a liquid phase transition temperature of the magnesium powder; sintering and solidifying the mixed powder held at the high temperature; and producing a magnesium-based composite material having a tensile strength of 230 MPa or more by subjecting the sintered solidified body to a hot plastic formation process.
- The technical significance or the functions and effects of the above structures of the present invention will be described in detail in the following sections.
-
FIG. 1 shows a graph and images for evaluating the wettability between pure magnesium and pure titanium. -
FIG. 2 shows scanning electron microscope (SEM) images of the interface between pure magnesium and pure titanium. -
FIG. 3 shows an SEM image of the interface between pure magnesium and pure titanium in a composite material obtained by heating and pressing mixed powder of pure titanium powder and pure magnesium powder. -
FIG. 4 shows an example of an image of the structure of magnesium-based composite powder having titanium particles dispersed therein. -
FIG. 5 shows images of the appearance and the structure of Ti particle-dispersed magnesium base composite powder obtained by using a water atomization process. -
FIG. 6 is a graph showing a stress-distortion curve of extruded materials using pure magnesium powder containing no titanium particle, and two kinds of Ti particle-dispersed magnesium-based composite powder produced by two manufacturing methods. -
FIG. 7 is a graph showing a change in tensile strength (TS) and yield strength (YS) of protruded materials with respect to the amount of titanium added. -
FIG. 8 shows optical microscope images of protruded materials having different contents of titanium particles. - In order to develop titanium particle-dispersed magnesium composite materials capable of increasing adhesion at the interface between titanium and magnesium, the inventors of the present application focused on wettability between titanium and magnesium, and evaluated characteristics of the wettability and examined manufacturing methods of composite materials by using high wettability.
- The inventors of the present application examined wettability between pure titanium plates and pure magnesium droplets. Specifically, pure magnesium droplets (held at 800° C.) melted in a high vacuum state were statically discharged from the tip of a nozzle made of magnesium oxide (MgO) onto the surface of a pure titanium plate, and the wettability between pure Mg and pure Ti at 800° C. was evaluated by continuous shooting. The result is shown in
FIG. 1 . - As shown in
FIG. 1 , the wetting angle (contact angle) was about 50° when pure magnesium contacted the Ti plate surface (t=0 seconds). The wetting angle decreased with time, and decreased to 13° after 6 minutes. In general, it is determined that the wetting phenomenon has occurred if the wetting angle becomes smaller than 90°. The wettability increases as the wetting angle becomes closer to 0°. In view of the fact that titanium carbide (TiC), which is said to have satisfactory wettability with magnesium, has a wetting angle of about 33° at 900° C. (reference: A. Contrerasa et al., Scripta Materialia, 48 (2003) 1625-1630), it is recognized that the wettability between pure Mg and pure Ti is highly satisfactory. - After evaluating the wettability, the interface between the solidified pure Mg and the titanium plate of a test piece was observed by using a scanning electron microscope (SEM). The result is shown in
FIG. 2 . It is recognized that the molten Mg closely contacts the titanium plate in a satisfactory manner with no gap or void therebetween, in the entire region where the molten Mg contacts the titanium plate. - For comparison, such composite materials as reported in related art (
Non-Patent Documents 1 to 4) were produced. That is, composite materials were produced by heating and pressing mixed powder of pure titanium powder and pure magnesium powder at a solid phase temperature of magnesium powder, and the bonding interface between pure magnesium and pure titanium was observed. The result is shown inFIG. 3 . In producing the composite materials, the heating temperature was 520° C., which is lower than the melting point (650° C.) of pure magnesium so as to obtain a completely solid phase state. As shown by arrows, many gaps or voids were observed at the interface between the Ti particles and the Mg matrix, which shows that adhesion is not sufficient. Thus, in the manufacturing methods disclosed in related art, since heating and sintering are performed at a solid phase temperature that is lower than the melting point of Mg, adhesion between Mg and Ti is not sufficient, whereby strength and ductility of the composite materials are not increased. - Based on the above result, the inventors produced Ti particle-dispersed magnesium-based composite materials by the following method in order to increase adhesion between a magnesium matrix and Ti particles. First, molten magnesium was held at a temperature higher than the melting point of magnesium or a magnesium alloy that forms a matrix, and a proper amount of Ti particles was added to the molten magnesium or magnesium alloy. After sufficiently stirring the molten magnesium or magnesium alloy so that the titanium particles were uniformly dispersed therein, the molten magnesium or magnesium alloy was solidified. In the magnesium-based composite materials produced by this manufacturing method, magnesium that forms the matrix and titanium particles are bonded together, with high adhesion due to satisfactory wettability, without titanium oxide at the interface between the titanium particles and the magnesium matrix. These magnesium-based composite materials were subjected to a hot plastic working process, whereby Ti particle-dispersed magnesium-based composite materials having a tensile strength of 230 MPa or more were able to be obtained.
- Composite materials having titanium particles uniformly dispersed in a magnesium matrix can also be manufactured by conventional methods such as a casting method and a die casting method. The cast materials can be made into powder by a machining process such as a cutting process or a crushing process. In the magnesium-based composite powder thus obtained, the titanium particles are uniformly dispersed in the magnesium matrix.
FIG. 4 shows an example of an image of the structure of this magnesium-based composite powder. As can be seen fromFIG. 4 , there is no void at the interface between the Ti particles and the Mg matrix, and satisfactory adhesion is obtained. - Magnesium-based composite powder having titanium particles uniformly dispersed in a magnesium matrix can also be obtained by solidifying molten magnesium having titanium particles uniformly dispersed therein by using an atomization process. Specifically, the inventors obtained solidified powder by the following method. Pure magnesium is melted in a carbon crucible, and 3 mass % of pure titanium powder (average particle size: 29.8 mm) is added to the molten pure magnesium. After stirring sufficiently, the melt is discharged from the bottom of the crucible as a molten flow, and high pressure water is ejected to the molten flow (a water atomization process) to obtain solidified powder.
FIG. 5 shows an image of the appearance of the obtained powder, and the observation result of the inner structure of the powder. It is recognized that, in this water atomized powder as well, there is no void at the interface between the Ti particles and the Mg matrix, and satisfactory adhesion is obtained. - As described above, either in the case where a magnesium-based composite material is produced by adding titanium particles to molten magnesium, and after sufficient uniform stirring, performing a casting method or a die casting method, or in the case where molten magnesium having titanium particles uniformly dispersed therein is directly made into powder by using an atomization process, magnesium that forms the matrix and titanium particles are bonded together, without void and with satisfactory adhesion due to high wettability.
- The Ti particle-dispersed magnesium-based composite material produced by a casting method or a die casting method may be heated to a predetermined temperature, and then the composite material may be subjected to a hot plastic working process such as a hot extrusion process, a hot rolling process, or a forging process. This reduces the crystal grain size of the matrix, and further increases the strength of the composite material. For example, the tensile strength of the composite material is 230 MPa or more.
- The Ti particle-dispersed magnesium-based composite material produced from the cast material by a machining process such as a cutting process, or the Ti particle-dispersed magnesium-based composite powder obtained by ejecting high pressure water or high pressure gas to the molten magnesium flow, may be compacted and solidified to produce a compacted body or a sintered solidified body. Subsequently, the compacted body or the sintered solidified body may be subjected to a hot plastic working process such as a hot extrusion process, a hot rolling process, or a forging process, as necessary. A Ti particle-dispersed magnesium-based composite material having particles of the composite powder metallurgically bonded or sintered together can be produced in this manner.
- Although a proper amount of titanium particles is added to molten magnesium in the above embodiment, a Ti particle-dispersed magnesium-based composite material can also be obtained by the following manufacturing method as another embodiment. In this embodiment, magnesium powder is mixed with titanium particles, and the mixed powder is sintered and solidified while being held at a predetermined temperature. The important thing is to hold the mixed powder at a temperature higher than a liquid phase transition temperature of the magnesium powder. By holding the mixed powder at such a high temperature, magnesium that forms the matrix and the titanium particles are bonded together in the sintered solidified body with high adhesion due to satisfactory wettability, without titanium oxide at the interface between the titanium particles and the magnesium matrix. This sintered solidified body is subjected to a hot plastic working process, whereby a Ti particle-dispersed magnesium-based composite material having a tensile strength of 230 MPa or more can be obtained.
- A mass of pure magnesium having a purity of 99.8%, and titanium powder having an average particle size of 29.8 μm were prepared as starting materials. The pure magnesium mass was melted by heating to 750° C. in a carbon crucible, and three different amounts of the titanium particles, namely 0.5 mass %, 1.5 mass %, and 2.8 mass % in a weight percentage relative to the total weight, were added to the molten magnesium. After sufficiently uniformly stirring the resultant molten magnesium to prevent segregation of the Ti particles and sedimentation thereof at the bottom, a water atomization process was performed to produce Ti particle-dispersed magnesium-based composite powder.
- For comparison, pure magnesium powder having a purity of 99.9% (average particle size: 162 μm) was prepared, and the pure magnesium powder and the above Ti powder was weighed so that the ratio of the Ti powder was 0.5 mass %, 1.5 mass %, and 2.8 mass %. Then, the pure magnesium powder was mixed with the Ti powder by using a dry ball mill, thereby producing Mg-Ti mixed powder.
- The two kinds of powder thus produced were placed in carbon molds, and were pressed at 550° C. for 30 minutes (pressure: 30 MPa) in a vacuum atmosphere by using a discharge plasma sintering apparatus to sinter and solidify the particles of the powder together, thereby producing extrusion billets having a diameter of 45 mm. These Ti particle-dispersed magnesium powder billets were held at 200° C. for 5 minutes in an argon gas atmosphere, and then immediately subjected to a hot extrusion process (extrusion ratio: 37) to produce round-bar shaped extruded materials having a diameter of 7 mm.
- Note that for comparison, round-bar shaped extruded materials were also produced from pure magnesium powder containing no Ti particle, based on the above manufacturing procedures.
- Tensile test pieces were obtained from the three types of magnesium powder extruded materials thus produced, and a tensile strength test was performed at normal temperature.
FIG. 6 shows a stress-distortion curve of the extruded materials using the pure Mg powder containing no Ti particle, and the extruded materials using the Mg powder containing 2.8 mass % of Ti particles, which were produced by the two manufacturing methods. - As compared to the strength and the elongation property of the pure magnesium powder extruded materials containing no Ti particle, the tensile strength and the yield strength of the Ti particle-dispersed magnesium-based composite powder extruded materials using the water atomization process of the present invention increased by about 35 to 40%, and the breaking elongation thereof was as high as 15% or more, which is about the same as the pure magnesium powder extruded materials containing no Ti particle.
- On the other hand, in the extruded materials produced by using the mixed powder of Ti particles and Mg powder as comparative materials, the tensile strength and the yield strength increased by about 3 to 6%, but the breaking elongation reduced to less than 10%. Observation of the broken faces of the test pieces after the tensile test showed that, in the comparative materials, cracks developed at the interface between the Ti particles and the magnesium matrix. Thus, it is recognized that adding the Ti particles did not increase the strength due to insufficient adhesion therebetween.
-
FIG. 7 shows a change in tensile strength (TS) and yield strength (YS) of each extruded material with respect to the amount of Ti added. In the Ti particle-dispersed magnesium-based composite powder extruded materials using the water atomization process according to the present invention, both the tensile strength and the yield strength increase as the content of Ti particles increases, and it is verified that the strength is increased by uniform diffusion of the Ti particles. As described above, this is because adhesion between the Ti particles and magnesium in the molten magnesium is increased due to high wettability therebetween. - On the other hand, in the conventional manufacturing methods in which sintering/extrusion and solidification are performed in a solid phase temperature range by using mixed powder of Ti powder and Mg powder, the tensile strength and the yield strength of the extruded materials tend to decrease as the amount of Ti particles added increases. Thus, it is recognized that dispersion strengthening by Ti particles is not sufficient.
- As in Example 1, a mass of pure magnesium having a purity of 99.8%, and titanium powder having an average particle size of 29.8 μm were prepared as starting materials. The magnesium mass was melted by heating to 750° C. in a carbon crucible, and three different amounts of the titanium particles, namely 1 mass %, 3 mass %, and 5 mass % in a weight percentage relative to the total weight, were added to the molten magnesium. After sufficiently uniformly stirring the resultant molten magnesium to prevent segregation of the Ti particles and sedimentation thereof at the bottom, the molten magnesium was cast into cylindrical molds to produce billets having a diameter of 60 mm. The cast billets were machined to produce extrusion billets having a diameter of 45 mm. These billets were held at 200° C. for 5 minutes in an argon gas atmosphere, and then immediately subjected to a hot extrusion process (extrusion ratio: 37) to produce round-bar shaped extruded materials having a diameter of 7 mm.
-
FIG. 8 shows the observation result of the extruded materials by using an optical microscope. The proportion of Ti particles in the extruded material increases as the amount of Ti particles added increases. Even when 5 mass % of Ti particles was added, no aggregation/segregation phenomenon of the Ti particles is observed, and the Ti particles are uniformly dispersed in the magnesium matrix. - The tensile test result of the extruded materials is shown in Table 1.
-
TABLE 1 Amount of Ti Particles (mass %) 0 1 3 5 Tensile 196 237 278 302 Strength (MPa) Yield 161 228 261 289 Strength (MPa) Breaking 17.2 16.1 14.8 13.2 Elongation (%) - As in Example 1, in the extruded materials obtained by extruding the Ti particle-dispersed magnesium-based composite material produced by a casting method according to the present invention, the tensile strength and the yield strength increase and the breaking elongation does not significantly decrease as the content of Ti particles increases. The above result shows that in the Ti particle-dispersed magnesium-based composite material of the present invention, the strength of the magnesium matrix can be increased by adding the Ti particles without causing aggregation and segregation of the Ti particles.
- As in Example 1, a mass of pure magnesium having a purity of 99.8%, and titanium powder having an average particle size of 29.8 μm were prepared as starting materials. The magnesium mass was melted by heating to 750° C. in a carbon crucible, and different amounts of the titanium particles, namely 2 mass % and 4 mass % in a weight percentage relative to the total weight, were added to the molten magnesium. After sufficiently uniformly stirring the resultant molten magnesium to prevent segregation of the Ti particles and sedimentation thereof at the bottom, the molten magnesium was cast into cylindrical molds to produce billets having a diameter of 60 mm. Chips having a total length of about 1 to 4 mm were produced from the cast billets by a cutting process.
- The observation result of the chips shows that the Ti particles are uniformly dispersed in the Mg matrix without aggregation and segregation. Then, SKD11 molds were filled with the chips, and were pressed with a pressure of 600 MPa by a hydraulic press to produce billets of a powder molded body having a diameter of 45 mm. The billets were held at 300° C. for 5 minutes in an argon gas atmosphere, and then immediately subjected to a hot extrusion process (extrusion ratio: 37) to produce round-bar shaped extruded materials having a diameter of 7 mm.
- Tensile test pieces were obtained from the magnesium powder extruded materials, and a tensile strength test was performed at normal temperature. The result shows that the extruded material using the chips containing 2 mass % of Ti has a tensile strength of 264 MPa and breaking elongation of 15.4%, and the extruded material using the chips containing 4 mass % of Ti has a tensile strength of 294 MPa and breaking elongation of 13.74%. As the amount of Ti particles added increases, the tensile strength increases without causing a significant decrease in breaking elongation. As compared with the characteristics of the comparative materials described in Example 1, it is apparent that the tensile strength and the yield strength are increased even if the same amount of Ti particles is contained.
- The above result shows that in the Ti particle-dispersed magnesium-based composite material obtained by the manufacturing method of the present invention, the strength of the magnesium matrix can be increased by adding the Ti particles without causing aggregation and segregation of the Ti particles.
- As in Example 1, a mass of pure magnesium having a purity of 99.8%, and titanium alloy powder having an average particle size of 22.8 μm (Ti-6.1Al %-3.8V/mass %) were prepared as starting materials. The magnesium mass was melted by heating to 750° C. in a carbon crucible, and three different amounts of the Ti alloy particles, namely 1 mass %, 3 mass %, and 5 mass % in a weight percentage relative to the total weight, were added to the molten magnesium. After sufficiently uniformly stirring the resultant molten magnesium to prevent segregation of the Ti alloy particles and sedimentation thereof at the bottom, the molten magnesium was cast into cylindrical molds to produce billets having a diameter of 60 mm.
- The cast billets were machined to produce extrusion billets having a diameter of 45 mm. These billets were held at 200° C. for 5 minutes in an argon gas atmosphere, and then immediately subjected to a hot extrusion process (extrusion ratio: 37) to produce round-bar shaped extruded materials having a diameter of 7 mm. Tensile test pieces were obtained from these magnesium powder extruded materials, and a tensile strength test was performed at normal temperature.
- The result is shown in Table 2. Note that the tensile strength of the extruded materials using the pure Ti particles as described in Example 2 was used as comparative values.
-
TABLE 2 Amount of Ti Particles (mass %) 0 1 3 5 Ti—6A1—4V 196 248 296 327 Powder Pure Ti 196 237 278 302 Powder - Even when the Ti-6Al-4V alloy particles are used, the Ti alloy particles are uniformly dispersed in the matrix in the Ti particle-dispersed magnesium-based composite material of the present invention, without causing aggregation and segregation of the Ti particles. The tensile strength increases as the amount of Ti alloy particles added increases. Moreover, the amount of increase in tensile strength is increased as compared to the case where the pure Ti particles are added. That is, the strength of the magnesium composite material is further increased as the hardness and strength of the particles that are dispersed are further increased.
- Although the embodiments of the present invention are described above with reference to the drawings, the present invention is not limited to the illustrated embodiments. Various modifications and variations can be made to the illustrated embodiments within a scope that is the same as, or equivalent to the present invention.
- The present invention can be advantageously used as a Ti particle-dispersed magnesium-based composite material having high strength, and a manufacturing method thereof.
Claims (2)
1-7. (canceled)
8. A method for manufacturing a Ti particle-dispersed magnesium-based composite material, comprising the steps of:
placing pure titanium particles, in a range from 0.5% to 5% as a weight percentage relative to the total weight, into molten pure magnesium;
stirring the molten pure magnesium so that the titanium particles are uniformly dispersed therein;
solidifying, by using an atomization process, the molten pure magnesium having the pure titanium particles dispersed therein, thereby producing magnesium-based composite powder having the pure titanium particles uniformly dispersed in a pure magnesium matrix with satisfactory wettability without titanium oxide at an interface between the pure titanium particles and the pure magnesium matrix;
compacting and solidifying the magnesium-based composite powder having the pure titanium particles dispersed therein, thereby producing a compacted body; and
producing a magnesium-based composite material having a tensile strength of 230 MPa or more by subjecting the compacted body to a hot plastic working process.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-226260 | 2008-09-03 | ||
JP2008226260A JP4397425B1 (en) | 2008-09-03 | 2008-09-03 | Method for producing Ti particle-dispersed magnesium-based composite material |
PCT/JP2009/055026 WO2010026793A1 (en) | 2008-09-03 | 2009-03-16 | Magnesium-based composite material having ti particles dispersed therein, and method for production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110150694A1 true US20110150694A1 (en) | 2011-06-23 |
Family
ID=41591568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/060,078 Abandoned US20110150694A1 (en) | 2008-09-03 | 2009-03-16 | METHOD FOR MANUFACTURING Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110150694A1 (en) |
EP (1) | EP2327808A1 (en) |
JP (1) | JP4397425B1 (en) |
KR (1) | KR20100092055A (en) |
CN (1) | CN102016094A (en) |
WO (1) | WO2010026793A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111266592A (en) * | 2020-03-25 | 2020-06-12 | 燕山大学 | Titanium-magnesium composite material with double-communication structure and preparation method and application thereof |
CN114959391A (en) * | 2022-05-30 | 2022-08-30 | 广东省科学院新材料研究所 | Titanium particle reinforced magnesium-based composite material and preparation method thereof |
CN115074560A (en) * | 2022-06-30 | 2022-09-20 | 广东省科学院新材料研究所 | Titanium particle reinforced magnesium-based composite material and preparation method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113174519B (en) * | 2021-03-23 | 2022-04-29 | 山东科技大学 | Superfine vanadium particle reinforced fine-grain magnesium-based composite material and preparation method thereof |
CN116103521B (en) * | 2023-02-15 | 2024-02-02 | 重庆大学 | Preparation method of metal titanium particle reinforced magnesium-based composite material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4751048A (en) * | 1984-10-19 | 1988-06-14 | Martin Marietta Corporation | Process for forming metal-second phase composites and product thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617524B2 (en) * | 1988-11-08 | 1994-03-09 | 勝廣 西山 | Magnesium-titanium sintered alloy and method for producing the same |
JPH05214477A (en) * | 1992-01-31 | 1993-08-24 | Suzuki Motor Corp | Composite material and its manufacture |
JP3084512B2 (en) * | 1996-09-24 | 2000-09-04 | 広島県 | Intermetallic compound reinforced magnesium-based composite material and method for producing the same |
JP2002105575A (en) * | 2000-09-28 | 2002-04-10 | Hokkaido Technology Licence Office Co Ltd | Magnesium matrix alloy composite material for plastic working and production method for thin sheet material for plastic working |
JP2008163361A (en) * | 2006-12-27 | 2008-07-17 | Mitsubishi Alum Co Ltd | Method for producing magnesium alloy thin sheet having uniformly fine crystal grain |
JP2008195978A (en) * | 2007-02-09 | 2008-08-28 | Topy Ind Ltd | Magnesium-based composite material |
-
2008
- 2008-09-03 JP JP2008226260A patent/JP4397425B1/en not_active Expired - Fee Related
-
2009
- 2009-03-16 KR KR1020107015461A patent/KR20100092055A/en not_active Application Discontinuation
- 2009-03-16 CN CN200980114389XA patent/CN102016094A/en active Pending
- 2009-03-16 WO PCT/JP2009/055026 patent/WO2010026793A1/en active Application Filing
- 2009-03-16 EP EP09811322A patent/EP2327808A1/en active Pending
- 2009-03-16 US US13/060,078 patent/US20110150694A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4751048A (en) * | 1984-10-19 | 1988-06-14 | Martin Marietta Corporation | Process for forming metal-second phase composites and product thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111266592A (en) * | 2020-03-25 | 2020-06-12 | 燕山大学 | Titanium-magnesium composite material with double-communication structure and preparation method and application thereof |
CN114959391A (en) * | 2022-05-30 | 2022-08-30 | 广东省科学院新材料研究所 | Titanium particle reinforced magnesium-based composite material and preparation method thereof |
CN115074560A (en) * | 2022-06-30 | 2022-09-20 | 广东省科学院新材料研究所 | Titanium particle reinforced magnesium-based composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4397425B1 (en) | 2010-01-13 |
JP2010059480A (en) | 2010-03-18 |
KR20100092055A (en) | 2010-08-19 |
WO2010026793A1 (en) | 2010-03-11 |
CN102016094A (en) | 2011-04-13 |
EP2327808A1 (en) | 2011-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20190067930A (en) | Aluminum alloy product having a fine eutectic-type structure, and method of manufacturing the same | |
US20110142710A1 (en) | Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL, AND MANUFACTURING METHOD THEREOF | |
US20110150694A1 (en) | METHOD FOR MANUFACTURING Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL | |
Chen et al. | Thixocasting of hypereutectic Al–25Si–2.5 Cu–1Mg–0.5 Mn alloys using densified powder compacts | |
Raja et al. | Effects on microstructure and hardness of Al-B4C metal matrix composite fabricated through powder metallurgy | |
Miloš et al. | Aluminium-based composite materials in construction of transport means | |
Chen et al. | A novel method for net-shape forming of hypereutectic Al–Si alloys by thixocasting with powder preforms | |
Dhoria et al. | Mechanical and wear behaviour of 6351 Al/Gr/SiC composites fabricated by squeeze casting | |
Zhao et al. | A novel method for improving the microstructure and the properties of Al-Si-Cu alloys prepared using rapid solidification/powder metallurgy | |
RU2246379C1 (en) | Method for producing composition material | |
KR101110947B1 (en) | Method for producing metal matrix composite materials | |
Youseffi et al. | PM processing of elemental and prealloyed 6061 aluminium alloy with and without common lubricants and sintering aids | |
Dash et al. | Studies on synthesis of magnesium based metal matrix composites (MMCs) | |
JPH0625386B2 (en) | Method for producing aluminum alloy powder and sintered body thereof | |
Kumar et al. | A review on properties of Al-B4C composite of different routes | |
JP4008597B2 (en) | Aluminum-based composite material and manufacturing method thereof | |
Moazami-Goudarzi et al. | Effect of SiC nanoparticles addition on densification of commercially pure Al and 5252 Al powder compacts | |
Chen et al. | Squeeze casting of SiCp/Al-alloy composites with various contents of reinforcements | |
JP3388476B2 (en) | Aluminum-based composite sliding material and method for producing the same | |
JP4704720B2 (en) | Heat-resistant Al-based alloy with excellent high-temperature fatigue properties | |
CH536672A (en) | Consolidating hot-worked complex alloy - particles to from metal articles | |
JPH10137920A (en) | Production of brake disk composite material for railway vehicle | |
JP2019131857A (en) | Mg-BASED COMPOSITE MATERIAL, MANUFACTURING METHOD THEREFOR, AND SLIDE MEMBER | |
Sweet | Improving the mechanical and physical properties of an aluminum powder metallurgy metal matrix composite via hot upset forging | |
Chib | Aluminium-6061 Composites Produced Through Powder Metallurgy Method–A Critical Review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |