JP2019131857A - Mg-BASED COMPOSITE MATERIAL, MANUFACTURING METHOD THEREFOR, AND SLIDE MEMBER - Google Patents

Mg-BASED COMPOSITE MATERIAL, MANUFACTURING METHOD THEREFOR, AND SLIDE MEMBER Download PDF

Info

Publication number
JP2019131857A
JP2019131857A JP2018014284A JP2018014284A JP2019131857A JP 2019131857 A JP2019131857 A JP 2019131857A JP 2018014284 A JP2018014284 A JP 2018014284A JP 2018014284 A JP2018014284 A JP 2018014284A JP 2019131857 A JP2019131857 A JP 2019131857A
Authority
JP
Japan
Prior art keywords
composite material
based composite
powder
oxide
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018014284A
Other languages
Japanese (ja)
Other versions
JP7266269B2 (en
Inventor
英俊 染川
Hidetoshi Somekawa
英俊 染川
真未 淺野
Mami Asano
真未 淺野
朋子 平山
Tomoko Hirayama
朋子 平山
松岡 敬
Takashi Matsuoka
敬 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Doshisha Co Ltd
Original Assignee
National Institute for Materials Science
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Doshisha Co Ltd filed Critical National Institute for Materials Science
Priority to JP2018014284A priority Critical patent/JP7266269B2/en
Publication of JP2019131857A publication Critical patent/JP2019131857A/en
Application granted granted Critical
Publication of JP7266269B2 publication Critical patent/JP7266269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a Mg-based composite material having excellent strength property by particle dispersion to a base phase, and having high frictional wear property, a manufacturing method therefor, and a slide member.SOLUTION: The Mg-based composite material is a particle dispersion type Mg-based composite material, a particle of an addition powder of oxide or nitride with average diameter of 0.05 μm or more is dispersed in a Mg base phase in a metal structure of the Mg-based composite material, and exhibiting superior frictional wear property to pure magnesium because friction coefficient of a part which receives friction wear is reduced in short time when the friction wear is added to the Mg-based composite material.SELECTED DRAWING: Figure 5

Description

本発明は、Mg基複合材とその製造方法および摺動部材に関する。   The present invention relates to an Mg-based composite material, a manufacturing method thereof, and a sliding member.

マグネシウム(Mg)は、地中埋蔵量が豊富で、実用金属材料で最軽量であることから、自動車をはじめとする移動用構造部材への適用が盛んに検討されている。一方で、部材として使用した場合、他部位と接触することは避けられず、強度および摩擦摩耗特性に優れたMgおよびMg合金の開発が必要とされている。一般的に、金属材料の高強度化は、結晶粒サイズの微細化が有効な手段であり、MgおよびMg合金に対しても同様の効果が発揮される。しかし、MgおよびMg合金の結晶粒微細化は、摩擦摩耗特性を改善させる手段としては有効でないことが知られている(非特許文献1)。Mgの大きな粒界拡散係数に起因し、容易に粒界すべりが起こるため、結晶粒サイズの微細化にともない、粒界体積率が増加し、粒界すべりが促進され、摩擦摩耗時に加工軟化が起こる。そのため、MgおよびMg合金の摩擦摩耗特性を更に向上するためには、母相の結晶粒粗大化が好ましいが、これにより強度特性の劣化が問題となる。   Magnesium (Mg) has abundant underground reserves and is the lightest practical metal material. Therefore, application to moving structural members such as automobiles has been actively studied. On the other hand, when used as a member, contact with other parts is inevitable, and development of Mg and Mg alloy having excellent strength and frictional wear characteristics is required. In general, increasing the strength of a metal material is an effective means of reducing the crystal grain size, and the same effect is exhibited for Mg and Mg alloys. However, it is known that crystal grain refinement of Mg and Mg alloys is not effective as a means for improving frictional wear characteristics (Non-patent Document 1). Due to the large grain boundary diffusion coefficient of Mg, grain boundary sliding easily occurs, and as the crystal grain size becomes finer, the grain boundary volume ratio increases, grain boundary sliding is promoted, and work softening occurs during frictional wear. Occur. Therefore, in order to further improve the friction and wear characteristics of Mg and Mg alloy, it is preferable to increase the crystal grains of the parent phase, but this causes a problem of deterioration of strength characteristics.

結晶粒サイズの微細化以外に、素材を高強度化するために、母相への粒子分散がよく用いられている。なかでも、金属材料の場合、母相から析出または晶出した金属間化合物を分散させることが、高強度化に有効である。また、粒子分散は、粒界すべりを抑制する効果もある。本発明者らにより、球状または鋭角な角を持たない金属間化合物がMg母相内に分散し、摩擦特性に優れたMg合金が特許文献1に開示されている。Mg母相に金属間化合物を分散させることは、強度を向上させるためにも有効な手段であるが、特許文献1では、鋳造材から金属間化合物を析出および晶出させているため、Mg母相サイズが粗大であり、更なる高強度化が望まれる。   In addition to refinement of the crystal grain size, particle dispersion in the parent phase is often used to increase the strength of the material. In particular, in the case of a metal material, it is effective for increasing the strength to disperse the intermetallic compound precipitated or crystallized from the matrix phase. Particle dispersion also has the effect of suppressing grain boundary sliding. The inventors have disclosed an Mg alloy in which an intermetallic compound having no spherical or acute angle is dispersed in an Mg matrix and is excellent in friction characteristics. Dispersing the intermetallic compound in the Mg matrix is an effective means for improving the strength, but in Patent Document 1, since the intermetallic compound is precipitated and crystallized from the cast material, The phase size is coarse, and further enhancement of strength is desired.

金属材料の場合、析出や晶出した金属間化合物の分散だけではなく、金属に固溶しない物質や素材からなる粒子(例えば、黒鉛やセラミックスなど)を母相に分散させる、すなわち、複合化も強度改善に有効な手法である。しかし、Mgは、複合化を目的とする添加粒子と濡れ性が極めて乏しいため、鋳造法によって複合化素材を創製することができない。そのため、特許文献2、3に開示されているように、メカニカルアロイング法や、ひずみ付与行程を数十回以上必要とする繰返しせん断ひずみ付与法などを用いて、Mg粉末と添加粉末を固化し、Mg基複合材を創製しているが、いずれの手法も複雑で数多くの作業工程を要するため、素材コストの高騰が避けられない。   In the case of metal materials, not only the dispersion of precipitated and crystallized intermetallic compounds, but also particles (eg, graphite, ceramics, etc.) made of substances and materials that do not dissolve in metal are dispersed in the matrix, that is, composites are also formed. This is an effective technique for improving strength. However, since Mg has very poor wettability with additive particles for the purpose of compounding, it is not possible to create a compound material by a casting method. Therefore, as disclosed in Patent Documents 2 and 3, the Mg powder and the additive powder are solidified using a mechanical alloying method or a repeated shear strain applying method that requires a strain applying process of several tens of times or more. Although Mg-based composite materials have been created, since all the methods are complicated and require a large number of work steps, a rise in material costs is inevitable.

一方で、素材自身の強度特性を維持し、摩擦摩耗特性を改善するために、Mg合金の表面層の改質が知られている。特許文献4には、Mg合金の表面に陽極酸化処理によって表面改質構造を形成し、この表面改質構造に固体潤滑剤である二硫化モリブデンを含浸させることが、Mgの摩擦摩耗特性の改善に有効な手法として開示されている。Mg母相の結晶粒サイズに依存せず、表面層のみの改質であるため、強度特性を維持することが可能である。しかし、素材使用時に、追加工程として陽極酸化処理を実施する必要があるため、コストの高騰が懸念される。   On the other hand, modification of the surface layer of Mg alloy is known in order to maintain the strength characteristics of the material itself and improve the friction and wear characteristics. In Patent Document 4, it is possible to improve the frictional wear characteristics of Mg by forming a surface modified structure on the surface of the Mg alloy by anodizing and impregnating the surface modified structure with molybdenum disulfide, which is a solid lubricant. Is disclosed as an effective technique. Since it is a modification of only the surface layer without depending on the crystal grain size of the Mg matrix, it is possible to maintain strength characteristics. However, since it is necessary to perform an anodizing process as an additional step when using the material, there is a concern about an increase in cost.

本発明者らは、より簡便な創製法に着目し、SiC粉末とMg粉末を混合し、温間および熱間加工によりMg基複合材を創製している。これらの複合材では、SiC粒子がMg母相中に分散し、優れた強度特性を維持しながら、摩擦摩耗を受けた際に、この摩擦摩耗を受けた部分にSiC粒子が再凝集して自己被膜形成能を示すことが確認されている。一方で、Mg基複合材の更なる特性の改質や汎用性を指向する場合、Mg母相に分散させる粒子としてSiCのような炭化物のみに注目するだけなく、他の化合物を用いることについても検討する必要がある。   The present inventors pay attention to a simpler creation method, mix SiC powder and Mg powder, and create an Mg-based composite material by warm and hot working. In these composite materials, SiC particles are dispersed in the Mg matrix and maintain excellent strength characteristics. It has been confirmed that it exhibits a film-forming ability. On the other hand, when aiming at further property modification and versatility of Mg-based composite materials, not only attention is given to carbides such as SiC as particles to be dispersed in the Mg matrix, but also to using other compounds. It is necessary to consider.

金属基複合材の創製においては、金属母相と添加粉末との濡れ性が極めて重要である。Mg基複合材に関しては、母相のMgと濡れ性の異なる窒化物や酸化物を添加粉末として使用した場合、割れやクラックがなく、添加粉末がMg母相に偏析することなく均質に分散した健全なMg基複合材の創製が可能であるかどうか、これまで明らかになっていなかった。勿論、その摩擦摩耗特性については、言うまでもない。   In the creation of a metal matrix composite, the wettability between the metal matrix and the additive powder is extremely important. As for Mg-based composite materials, when nitrides or oxides having different wettability from Mg of the matrix phase are used as additive powders, there is no cracking or cracking, and the additive powder is uniformly dispersed without segregating in the Mg matrix phase. It has not been clarified so far whether a sound Mg-based composite material can be created. Of course, it goes without saying about the friction and wear characteristics.

特開2008−240032号公報JP 2008-240032 A 特開2008−75127号公報JP 2008-75127 A 国際公開第2003/27342号International Publication No. 2003/27342 特開2002−363679号公報JP 2002-363679 A

松岡敬他 材料 51(2002)p1154.Matsuoka Takashi et al. Material 51 (2002) p1154.

本発明は、以上の事情に鑑みてなされたものであり、母相への粒子分散による優れた強度特性を有し、かつ高い摩擦摩耗特性を有するMg基複合材とその製造方法および摺動部材を提供することを課題としている。   The present invention has been made in view of the above circumstances, and has an excellent strength characteristic due to particle dispersion in a matrix phase, and has a high frictional wear characteristic, a Mg-based composite material, a manufacturing method thereof, and a sliding member It is an issue to provide.

上記の課題を解決するために、本発明のMg基複合材は、粒子分散型のMg基複合材であって、Mg基複合材の金属組織において平均径0.05μm以上の酸化物または窒化物の粒子がMg母相中に分散し、摩擦摩耗を受けた際に、この摩擦摩耗を受けた部分の摩擦係数が短時間で低下することを特徴としている。
このMg基複合材は、Mg母相の結晶粒サイズが200μm以下であることが好ましい。
このMg基複合材は、酸化物または窒化物の粒子とMg母相の結晶粒サイズとの比が1:4〜1:10の範囲内であることが好ましい。
このMg基複合材は、酸化物または窒化物の粒子の含有率が65質量%未満であることが好ましい。
このMg基複合材は、乾式摩擦摩耗試験によって得られる試験時間800秒経過後の摩擦摩耗を受けた部分の摩擦係数が0.20未満であることが好ましい。
このMg基複合材は、酸化物または窒化物が、MnO、SiまたはSiOであることが好ましい。
In order to solve the above problems, the Mg-based composite of the present invention is a particle-dispersed Mg-based composite, and an oxide or nitride having an average diameter of 0.05 μm or more in the metal structure of the Mg-based composite When the particles are dispersed in the Mg matrix and subjected to frictional wear, the friction coefficient of the portion subjected to this frictional wear is reduced in a short time.
In this Mg-based composite material, the crystal grain size of the Mg matrix is preferably 200 μm or less.
In this Mg-based composite material, the ratio of the oxide or nitride particles to the crystal grain size of the Mg matrix is preferably in the range of 1: 4 to 1:10.
The Mg-based composite material preferably has an oxide or nitride particle content of less than 65% by mass.
This Mg-based composite material preferably has a friction coefficient of less than 0.20 in a portion subjected to frictional wear after a test time of 800 seconds obtained by a dry frictional wear test.
In this Mg-based composite material, the oxide or nitride is preferably MnO 2 , Si 3 N 4 or SiO 2 .

本発明の摺動部材は、前記Mg基複合材を含む摺動部材であって、Mg基複合材からなる摺動面を有し、摺動面が摩擦摩耗を受けた際に、この摩擦摩耗を受けた部分の摩擦係数が短時間で低下することを特徴としている。
この摺動部材は、乾式摩擦摩耗試験によって得られる試験時間800秒経過後の摺動面の摩擦摩耗を受けた部分の摩擦係数が0.20未満であることが好ましい。
The sliding member of the present invention is a sliding member containing the Mg-based composite material, and has a sliding surface made of the Mg-based composite material. This is characterized in that the coefficient of friction of the portion subjected to the reduction decreases in a short time.
This sliding member preferably has a friction coefficient of less than 0.20 at a portion subjected to frictional wear on the sliding surface after a test time of 800 seconds obtained by a dry friction wear test.

本発明のMg基複合材の製造方法は、Mg粉末と、平均径0.05μm以上の酸化物または窒化物の粉末とを含有する混合粉末をビレット内に充填、封入する工程、および、混合粉末を充填、封入したビレットに、50℃以上、550℃以下の温度で断面減少率50%以上の温間または熱間ひずみ付与加工を施す工程を含むことを特徴としている。
このMg基複合材の製造方法は、混合粉末における酸化物または窒化物の粉末の含有率が、Mg粉末と酸化物または窒化物の粉末との合計量に対して65質量%未満であることが好ましい。
このMg基複合材の製造方法は、酸化物または窒化物が、MnO、SiまたはSiOであることが好ましい。
このMg基複合材の製造方法は、温間または熱間ひずみ付与加工が、押出加工、鍛造加工、圧延加工、または引抜加工であることが好ましい。
The method for producing an Mg-based composite material according to the present invention includes a step of filling and enclosing a mixed powder containing Mg powder and an oxide or nitride powder having an average diameter of 0.05 μm or more in a billet, and a mixed powder The billet is filled and sealed with a process of applying a warm or hot strain imparting process with a cross-sectional reduction rate of 50% or more at a temperature of 50 ° C. or more and 550 ° C. or less.
In this method for producing an Mg-based composite material, the content of the oxide or nitride powder in the mixed powder is less than 65% by mass with respect to the total amount of the Mg powder and the oxide or nitride powder. preferable.
In this Mg-based composite material production method, the oxide or nitride is preferably MnO 2 , Si 3 N 4 or SiO 2 .
In this Mg-based composite material manufacturing method, the warm or hot strain imparting process is preferably an extrusion process, a forging process, a rolling process, or a drawing process.

本発明によれば、母相への粒子分散による優れた強度特性を有し、かつ高い摩擦摩耗特性を有するMg基複合材とその製造方法および摺動部材が提供される。   According to the present invention, there are provided an Mg-based composite material having excellent strength characteristics due to particle dispersion in a matrix and high friction and wear characteristics, a manufacturing method thereof, and a sliding member.

温間または熱間ひずみ付与加工に用いる代表的なビレットの形状の例を模式的に示した図。The figure which showed typically the example of the shape of the typical billet used for a warm or hot strain imparting process. 実施例におけるMg基押出複合材の(a)外観写真および(b)断面写真。The (a) external appearance photograph and (b) cross-sectional photograph of Mg group extrusion composite material in an Example. 実施例1〜3のMg基押出複合材の微細組織を光学顕微鏡により観察した写真。(a)Mg−Si(試料番号No.1)、(b)Mg−SiO(試料番号No.3)、(c)Mg−MnO(試料番号No.5)。The photograph which observed the fine structure of Mg group extrusion composite material of Examples 1-3 with the optical microscope. (A) Mg—Si 3 N 4 (Sample No. 1), (b) Mg—SiO 2 (Sample No. 3), (c) Mg—MnO 2 (Sample No. 5). 比較例1のMg基複合材(試料番号No.6)の微細組織を光学顕微鏡により観察した写真。The photograph which observed the fine structure of Mg group composite material (sample number No. 6) of comparative example 1 with the optical microscope. 試料番号No.1、No.3、No.5とNo.6のBall−on−Disk試験(乾式摩擦摩耗試験)により得られた摩擦係数と摺動距離・試験時間との関係を示す図。Sample No. 1, no. 3, no. 5 and No. The figure which shows the relationship between the friction coefficient obtained by the Ball-on-Disk test (dry friction wear test) of 6, and a sliding distance and test time. レーザー顕微鏡によって計測された摩擦摩耗試験後の測定面の二次元断面像。A two-dimensional cross-sectional image of the measurement surface after a frictional wear test measured by a laser microscope.

本発明のMg基複合材とその製造方法および摺動部材について、1.原料粉末の調製、2.ビレット準備と混合粉末の充填、3.温間または熱間ひずみ付与加工、4.Mg基複合材の微細組織および摺動部材の順に説明する。   Regarding the Mg-based composite material of the present invention, its production method and sliding member: 1. Preparation of raw material powder 2. Billet preparation and mixed powder filling 3. Warm or hot straining process The microstructure of the Mg-based composite material and the sliding member will be described in this order.

なお、本発明において、原料のMg粉末の平均径、酸化物または窒化物の粉末(以下、添加粉末とも称す)の平均径、Mg基複合材の金属組織における添加粉末粒子の平均径、Mg基複合材のMg母相の結晶粒サイズ(結晶粒径)は、次の方法で測定することができる。
<Mg粉末および添加粉末の平均径>
レーザー回折・散乱式粒度分布測定装置を用いて、レーザー回折・散乱法による粒度分布の測定値から、累積分布によるメディアン径(d50、体積基準)を平均径とする。
<添加粉末粒子の平均径>
添加粉末の個々の粒子の粒径は、SEMまたは光学顕微鏡で観察した像より、D=(L1+L2)/2(ただし、Dは粒径、L1は粒子の長径、L2は粒子の短径を示す。)の式を用いて求める。
平均径は、SEMまたは光学顕微鏡で観察した像より、100個以上の粒子を抽出して個々の粒子の粒径を上記式より求め、その平均値を算出する。
<Mg母相の結晶粒サイズ>
JIS H 0542:2008「マグネシウム合金圧延板の結晶粒度試験方法」記載の切片法により測定、算出する。
In the present invention, the average diameter of the raw material Mg powder, the average diameter of the oxide or nitride powder (hereinafter also referred to as additive powder), the average diameter of the additive powder particles in the metal structure of the Mg-based composite material, the Mg group The crystal grain size (crystal grain size) of the Mg matrix of the composite can be measured by the following method.
<Average diameter of Mg powder and additive powder>
Using a laser diffraction / scattering particle size distribution measuring apparatus, the median diameter (d50, volume basis) based on the cumulative distribution is taken as the average diameter from the measured value of the particle size distribution by the laser diffraction / scattering method.
<Average diameter of added powder particles>
The particle size of the individual particles of the additive powder is D = (L1 + L2) / 2 (where D is the particle size, L1 is the major axis of the particle, and L2 is the minor axis of the particle, based on an image observed with an SEM or an optical microscope. )).
For the average diameter, 100 or more particles are extracted from an image observed with an SEM or an optical microscope, the particle diameter of each particle is obtained from the above formula, and the average value is calculated.
<Grain size of Mg matrix>
Measured and calculated by the intercept method described in JIS H 0542: 2008 “Method for testing grain size of magnesium alloy rolled sheet”.

1.原料粉末の調製
本発明のMg基複合材の製造に使用される原料粉末は、Mg粉末と、一種以上の酸化物または窒化物の粉末(添加粉末)を含む。
Mg粉末は、純マグネシウムからなり、粉末粒子の密度が1.74である。Mg粉末の平均径は、1μm以上であることが好ましい。Mgは酸素との反応性が高いため、Mg粉末の平均径が1μm以上であると、Mg粉末と添加粉末との混合中に発熱し、発火する危険性を低減でき、作業工程の安全性を高めることができる。Mg粉末は、通常の粉末の他、フライス加工や旋盤加工に代表される機械加工によってMgバルク材から生じる切削粉であってもよく、これらも本明細書では広義にMg粉末と表現する。Mg粉末の平均径の上限は、特に限定されないが、Mg粉末同士の結合・焼結を考慮すると1000μm以下が好ましい。
1. Preparation of Raw Material Powder The raw material powder used in the production of the Mg-based composite material of the present invention includes Mg powder and one or more oxide or nitride powders (additive powder).
Mg powder consists of pure magnesium, and the density of the powder particles is 1.74. The average diameter of the Mg powder is preferably 1 μm or more. Since Mg has a high reactivity with oxygen, if the average diameter of the Mg powder is 1 μm or more, the heat generated during mixing of the Mg powder and the additive powder can reduce the risk of ignition and reduce the safety of the work process. Can be increased. The Mg powder may be a cutting powder generated from an Mg bulk material by machining represented by milling or lathe processing, in addition to normal powder, and these are also broadly expressed as Mg powder in this specification. The upper limit of the average diameter of the Mg powder is not particularly limited, but is preferably 1000 μm or less in consideration of bonding / sintering between Mg powders.

添加粉末の酸化物または窒化物としては、特に限定されないが、例えば、Al、CuO、MnO、Si、SiO、Yなどが挙げられる。
添加粉末の平均径は、0.05μm以上であり、好ましくは0.1μm以上である。平均径が0.05μm未満であると、単位体積当たりの粉末の表面積が増大することにより、添加粉末粒子の表面に接触する酸素の割合が増加する。そのため、Mg粉末と添加粉末との界面や境界に、Mgからなる酸化物の形成および酸化物の取込みにより、摩擦係数の低下が抑制されてしまう。添加粉末の平均径の上限は、特に限定されないが、Mg基複合材の高強度化を考慮すると1000μm以下が好ましく、100μm以下がより好ましい。
The oxide or nitride of the addition powder is not particularly limited, for example, Al 2 O 3, CuO, and the like MnO 2, Si 3 N 4, SiO 2, Y 2 O 3.
The average diameter of the additive powder is 0.05 μm or more, preferably 0.1 μm or more. When the average diameter is less than 0.05 μm, the surface area of the powder per unit volume increases, so that the proportion of oxygen in contact with the surface of the added powder particles increases. Therefore, the decrease in the friction coefficient is suppressed by the formation of the oxide made of Mg and the incorporation of the oxide at the interface or boundary between the Mg powder and the additive powder. The upper limit of the average diameter of the additive powder is not particularly limited, but is preferably 1000 μm or less and more preferably 100 μm or less in view of increasing the strength of the Mg-based composite material.

使用する添加粉末の質量、すなわち、Mg基複合材における添加粉末の含有率は、Mg粉末との混合粉末の合計質量に対して65質量%未満が好ましく、60質量%未満がより好ましく、50質量%未満が更に好ましい。混合粉末の合計質量に対して、添加粉末の質量が65質量%以上であると、温間または熱間ひずみ付与加工後のMg基複合材のMg母相内に、面積率として50質量%以上の添加粉末の粒子が分散することになり、Mg基材と言うことは難しい。   The mass of the additive powder to be used, that is, the content of the additive powder in the Mg-based composite material is preferably less than 65 mass%, more preferably less than 60 mass%, more preferably 50 mass%, based on the total mass of the mixed powder with Mg powder. More preferably less than%. When the mass of the additive powder is 65% by mass or more with respect to the total mass of the mixed powder, the area ratio is 50% by mass or more in the Mg matrix of the Mg-based composite material after the warm or hot strain imparting processing. Therefore, it is difficult to call the Mg base material.

Mg粉末と添加粉末の混合方法と混合粉末の状態について述べる。混合粉末は、Mg粉末と添加粉末が相互に偏析することがない状態が好ましい。混合粉末の状態で、いずれかの粉末が偏析している場合、Mg基複合材が摩耗摩擦を受けた際に、摩擦摩耗を受けた部分が応力集中のサイトになり、所望の摩耗摩擦特性を得ることが困難になる場合がある。Mg粉末と添加粉末が相互に偏析することがない状態にするためには、添加粉末を微量ずつ、すなわち、一度に追加する添加粉末の質量が50g以下となるよう混合することが好ましい。50gを超えると、混合が難しく、粉末の偏析が起こることが懸念される。   The mixing method of Mg powder and additive powder and the state of the mixed powder will be described. The mixed powder is preferably in a state where the Mg powder and the additive powder do not segregate with each other. When any powder is segregated in the mixed powder state, when the Mg-based composite material is subjected to wear friction, the portion subjected to friction wear becomes a site of stress concentration, and the desired wear friction characteristics are obtained. It may be difficult to obtain. In order to prevent the Mg powder and the additive powder from segregating from each other, it is preferable to mix the additive powder in small amounts, that is, so that the mass of the additive powder added at a time is 50 g or less. If it exceeds 50 g, mixing is difficult and there is a concern that segregation of the powder occurs.

混合時に用いる容器は、乳鉢に代表される、粉末を混合できる容器であれば、特に限定されない。Mg粉末と添加粉末の混合は、作業工程の簡略化から、大気中にて、乳鉢を用いて10分以内で混合することが好ましい。Mg粉末は酸素と反応しやすいため、10分を超えて混合すると、酸化物などが混合粉末中に取り込まれ健全な混合粉末を得ることが難しい。勿論、作業の安全性を考慮し、混合粉末をアルゴン雰囲気内や真空内で、メカニカルアロイング法のように、攪拌機を用いて混合してもよい。   The container used at the time of mixing will not be specifically limited if it is a container which can mix powder, represented by the mortar. The mixing of the Mg powder and the additive powder is preferably performed within 10 minutes using a mortar in the air in order to simplify the work process. Since Mg powder easily reacts with oxygen, when mixed for more than 10 minutes, it is difficult to obtain a sound mixed powder because oxides and the like are taken into the mixed powder. Of course, in consideration of the safety of work, the mixed powder may be mixed in an argon atmosphere or in a vacuum using a stirrer as in the mechanical alloying method.

2.ビレット準備と混合粉末の充填
混合粉末を温間または熱間ひずみ付与加工用ビレットに充填する。代表的なビレットの形状の例を図1に模式的に示す。ビレットに用いる材質(素材)は、MgやMg合金などの温間または熱間ひずみ付与加工ができる金属材料であることが好ましい。勿論、MgやMg合金以外の金属材料、例えば、AlやAl合金であってもよい。
2. Preparation of billet and filling of mixed powder The mixed powder is filled into a billet for warm or hot strain application. An example of a typical billet shape is schematically shown in FIG. The material (raw material) used for the billet is preferably a metal material that can be warmed or hot-strained, such as Mg or Mg alloy. Of course, metal materials other than Mg and Mg alloys, for example, Al and Al alloys may be used.

図1において、ビレットの大きさ:Sは、ひずみ付与加工時に用いる総断面減少率によって変化するが、総断面減少率を好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上とすることが可能な大きさとする。   In FIG. 1, the billet size S varies depending on the total cross-section reduction rate used during the straining process, but the total cross-section reduction rate is preferably 50% or more, more preferably 60% or more, and even more preferably 70% or more. And a size that can be

混合粉末を充填させるための、空隙の大きさ:Vは、ビレット総体積(図1のS×Lに対応)に対して、50%以上、95%以下であることが好ましく、50%以上、90%以下であることがより好ましく、55%以上、85%以下であることが更に好ましい。空隙の大きさ:Vが、50%未満の場合、充填できる混合粉末の量が僅かであるため、ひずみ付与加工後、得られた加工材の大部分がビレットに用いる材質となり、Mg基複合材とは言えなくなる場合がある。空隙の大きさ:Vが95%を超える場合、温間または熱間ひずみ付与加工中に、ビレットが割れてしまい、粉末が外部に漏れてしまう場合がある。   The size of the void for filling the mixed powder: V is preferably 50% or more and 95% or less, and preferably 50% or more, relative to the total volume of the billet (corresponding to S × L in FIG. 1). It is more preferably 90% or less, and further preferably 55% or more and 85% or less. Void size: When V is less than 50%, the amount of mixed powder that can be filled is small, so after the straining process, the majority of the processed material obtained is the material used for the billet, and the Mg-based composite material It may not be said. Void size: When V exceeds 95%, the billet may break during warm or hot strain imparting processing and the powder may leak to the outside.

ビレット内に混合粉末を入れる方法として、ハンドプレス機によって圧粉体を作製し、ビレット内に入れてもよい。勿論、スプーンに代表され、粉末をすくうことができる容器を用いてビレット内に入れてもよい。その際、全ての作業は、混合粉末と酸素との反応を抑制するため、アルゴン雰囲気内または真空内で実施することが好ましいが、作業上の簡便さから、大気内で行ってもよい。また、混合粉末の充填率を制御、向上させるために、ビレットに混合粉末を充填した後、ハンドプレスを用いて圧力を付与することが好ましい。ただし、Mg粉末と添加粉末を相互に偏析させないために、ビレットを過度にタッピングしたり、あるいは振動を付与したりすることは望ましくない。混合粉末をビレット内に充填した後、ビレットと同質素材からなる上蓋を用いて、混合粉末がこぼれ出ないように密閉する。   As a method of putting the mixed powder in the billet, a green compact may be produced by a hand press and placed in the billet. Of course, it may be put in the billet using a container represented by a spoon and capable of scooping powder. At that time, all the operations are preferably performed in an argon atmosphere or in a vacuum in order to suppress the reaction between the mixed powder and oxygen, but may be performed in the atmosphere for the convenience of the operation. Moreover, in order to control and improve the filling rate of mixed powder, it is preferable to apply pressure using a hand press after filling the billet with mixed powder. However, in order not to segregate the Mg powder and the additive powder from each other, it is not desirable that the billet is tapped excessively or vibration is applied. After the mixed powder is filled in the billet, it is sealed using an upper lid made of the same material as the billet so that the mixed powder does not spill out.

混合粉末の充填率は、空隙の大きさ:Vに対して、好ましくは60%以上、より好ましくは70%以上、更に好ましくは80%以上である。充填率が低いほど、本発明のMg基複合材を作製するのに要する時間は短縮される。しかし、充填率が60%未満の場合、複合材内に存在する欠陥の割合が大きくなるため、構体や部材として使用することが難しい。   The filling rate of the mixed powder is preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more with respect to the size of the gap: V. The lower the filling rate, the shorter the time required to produce the Mg-based composite of the present invention. However, when the filling rate is less than 60%, the ratio of defects existing in the composite material is increased, so that it is difficult to use as a structure or member.

3.温間または熱間ひずみ付与加工
温間または熱間ひずみ付与加工の目的は、Mg粉末を結合・焼結させ、健全なMg母相にすることと、添加粉末の粒子をMg母相内に偏析することなく均質に分散させることである。温間または熱間加工の温度は、50℃以上、550℃以下が好ましい。加工温度が50℃未満であると、加工温度が低いため、Mg粉末同士が結合・焼結しない場合がある。また、ビレットに用いた金属材料が加工中に割れてしまい健全な複合材を作製することができない場合がある。加工温度が550℃を超えると、Mg粉末が高温に曝され、局所溶融による発火の危険が懸念される。また、押出加工の場合に用いる金型寿命の低下の原因となり得る。
3. Warm or hot strain imparting process The purpose of warm or hot strain imparting process is to combine and sinter Mg powder into a healthy Mg matrix and segregate the particles of the added powder into the Mg matrix. It is to disperse | distribute uniformly, without doing. The temperature of warm or hot working is preferably 50 ° C. or higher and 550 ° C. or lower. When the processing temperature is less than 50 ° C., the processing temperature is low, and thus the Mg powders may not be bonded and sintered. In addition, the metal material used for the billet may be broken during processing, making it impossible to produce a sound composite material. When processing temperature exceeds 550 degreeC, Mg powder will be exposed to high temperature and there exists a concern about the danger of the ignition by local melting. Moreover, it may cause a decrease in the life of the mold used in the case of extrusion.

温間または熱間加工時のひずみ付与は、総断面減少率を好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上とする。総断面減少率が50%未満であると、ひずみ付与が不十分であるため、粉末同士の結合が促進されず、健全な複合材を作製することができない場合がある。温間または熱間加工の方法は、押出加工、鍛造加工、圧延加工、引抜加工などが代表的であるが、ひずみを付与できる塑性加工法であればいずれの加工法であってもよい。   For the application of strain during warm or hot working, the total area reduction rate is preferably 50% or more, more preferably 60% or more, and still more preferably 70% or more. When the total cross-section reduction rate is less than 50%, the strain application is insufficient, and thus the bonding between the powders is not promoted and a healthy composite material may not be produced. The warm or hot working method is typically extrusion, forging, rolling, or drawing, but any working method may be used as long as it is a plastic working method capable of imparting strain.

4.Mg基複合材の微細組織および摺動部材
本発明のMg基複合材の微細組織について説明する。Mg粉末は、温間または熱間ひずみ付与加工中に結合・焼結し、Mg母相を形成するが、Mg基複合材の強度特性を維持し、かつ優れた摩擦摩耗特性を得るために、Mg母相の大きさ、すなわち結晶粒サイズは、200μm以下であることが好ましく、100μm以下であることがより好ましく、50μm以下であることが更に好ましい。Mg母相の結晶粒サイズが200μmより粗大な場合、複合材に占める結晶粒界の割合が少ないため、転位運動が結晶粒界によって阻害されず、強度特性を維持することが難しい。
4). Microstructure of Mg-based composite material and sliding member The microstructure of the Mg-based composite material of the present invention will be described. Mg powder is bonded and sintered during warm or hot straining to form a Mg matrix, but to maintain the strength characteristics of the Mg-based composite and to obtain excellent friction and wear characteristics, The size of the Mg matrix, that is, the crystal grain size is preferably 200 μm or less, more preferably 100 μm or less, and even more preferably 50 μm or less. When the crystal grain size of the Mg parent phase is larger than 200 μm, the proportion of crystal grain boundaries in the composite material is small, so that the dislocation motion is not hindered by the crystal grain boundaries and it is difficult to maintain strength characteristics.

また、酸化物または窒化物の添加粉末は、各々、当該酸化物または窒化物からなる粒子としてMg母相に偏析することなく均質に分散していることが好ましい。Mg基複合材の金属組織における添加粉末粒子の平均径は、0.05μm以上であり、好ましくは0.1μm以上である。添加粉末粒子の平均径が0.05μm以上であると、高い強度特性を有しながらも優れた摩擦摩耗特性を有するMg基複合材となる。   In addition, it is preferable that the oxide or nitride additive powder is uniformly dispersed without segregation in the Mg matrix as particles of the oxide or nitride. The average diameter of the added powder particles in the metal structure of the Mg-based composite material is 0.05 μm or more, preferably 0.1 μm or more. When the average diameter of the additive powder particles is 0.05 μm or more, an Mg-based composite material having excellent frictional wear characteristics while having high strength characteristics is obtained.

また、酸化物または窒化物の粒子とMg母相の結晶粒サイズとの比は、1:4〜1:10の範囲内であることが好ましく、1:4〜1:9の範囲内であることがより好ましい。酸化物または窒化物の粒子とMg母相の結晶粒サイズとの比が上記の範囲内であると、高い強度特性を有しながらも優れた摩擦摩耗特性を有するMg基複合材となる。   The ratio of the oxide or nitride particles to the crystal grain size of the Mg matrix is preferably in the range of 1: 4 to 1:10, and preferably in the range of 1: 4 to 1: 9. It is more preferable. When the ratio between the oxide or nitride particles and the crystal grain size of the Mg matrix is within the above range, an Mg-based composite material having excellent frictional wear characteristics while having high strength characteristics is obtained.

また、酸化物または窒化物の粒子は、Mg母相と良好でない濡れ性を有することが好ましく考慮される。濡れ性は、接触角と両物質の表面エネルギー差の関数として表現でき、表面エネルギー差が大きい程、接触角が大きくなり、濡れ性が悪い傾向にある。すなわち、マグネシウムと粒子との表面エネルギー差が大きい程、濡れ性が悪いため、摩擦摩耗試験中に、母相と粒子間で剥離が起こりやすく、本発明の効果が得られやすい。例えば、SiやSiCの表面エネルギーは、2500、2300dyn/cmで、マグネシウム(=560dyn/cm)に対して大きい値を示す。一方、Alの表面エネルギーは、1000dyn/cmと、マグネシウムと近い値を示す(例えば、小原嗣郎, 複合材料の界面と金属のぬれ性, 日本金属学会会報, Vol. 14, No. 8 (1975), pp.581-587;上垣外修己, 表面エネルギーから見たナノメータ複合材料組織の臨界寸法, 粉体粉末冶金協会, Vol. 37, No. 7 (1990) 等参照)。 It is also preferably considered that the oxide or nitride particles have poor wettability with the Mg matrix. The wettability can be expressed as a function of the contact angle and the surface energy difference between the two substances. The larger the surface energy difference, the larger the contact angle and the worse the wettability. That is, the greater the surface energy difference between magnesium and particles, the worse the wettability, so that during the frictional wear test, separation between the parent phase and the particles is likely to occur, and the effects of the present invention are easily obtained. For example, the surface energy of Si 3 N 4 or SiC is 2500, 2300 dyn / cm, which is a large value with respect to magnesium (= 560 dyn / cm). On the other hand, the surface energy of Al 2 O 3 is 1000 dyn / cm, which is close to that of magnesium (for example, Goro Ohara, Wetability of composite interface and metal, Japan Institute of Metals, Vol. 14, No. 8 (1975), pp.581-587; see Ueaki Ogai, critical dimension of nanometer composite structure as seen from surface energy, Japan Society for Powder Metallurgy, Vol. 37, No. 7 (1990)).

本発明によれば、Mg基複合材の金属組織において、酸化物または窒化物の粒子がMg母相に偏析することなく均質に分散したMg基複合材を作製できる。そして、本発明のMg基複合材は、摩擦摩耗を受けた際に、この摩擦摩耗を受けた部分の摩擦係数が短時間で低下する。すなわち、本発明のMg基複合材は、後述するような乾式摩擦摩耗試験において、試験開始から一定時間経過後に、急激な摩擦係数の低下が起こり、その後は一定の摩擦係数を示すことにより、優れた摩耗摩擦特性を発揮する。摩擦係数の低下の程度は試験条件によって変動し得るが、例えば、試験開始後150秒〜1000秒の間に、60秒間に半分以上の摩擦係数の低下が起こり、試験時間1000秒経過後の摩擦係数は0.20未満の値で安定する。例えば、本発明の一実施形態では、酸化物または窒化物の粒子がSiの場合、乾式摩擦摩耗試験開始時の摩擦係数が0.4であり、試験開始後250秒から急激に摩擦係数の低下が始まり、50秒後(すなわち、試験時間300秒経過後)には、摩擦係数が0.15を示す。 According to the present invention, it is possible to produce an Mg-based composite material in which oxide or nitride particles are uniformly dispersed in the metal structure of the Mg-based composite material without segregating in the Mg matrix. And when the Mg-based composite material of the present invention is subjected to frictional wear, the friction coefficient of the portion subjected to this frictional wear decreases in a short time. That is, the Mg-based composite material of the present invention is excellent in a dry friction and wear test as described later, after a certain period of time has elapsed since the start of the test, a sharp decrease in the coefficient of friction occurs, and thereafter a constant coefficient of friction is exhibited. Demonstrate wear friction characteristics. The degree of reduction in the friction coefficient may vary depending on the test conditions. For example, the friction coefficient decreases by more than half in 60 seconds between 150 seconds and 1000 seconds after the start of the test, and the friction after the test time of 1000 seconds elapses. The coefficient is stable at a value of less than 0.20. For example, in one embodiment of the present invention, when the oxide or nitride particles are Si 3 N 4 , the friction coefficient at the start of the dry friction wear test is 0.4, and the friction is rapidly increased from 250 seconds after the test starts. The coefficient starts to decrease, and after 50 seconds (that is, after a test time of 300 seconds), the coefficient of friction is 0.15.

このように、本発明によれば、摩擦摩耗特性に優れた材料を提供することができ、本発明のMg基複合材は、摺動部材として好適に用いることができる。この摺動部材は、本発明のMg基複合材を含み、Mg基複合材からなる摺動面を有し、摺動面が摩擦摩耗を受けた際に、この摩擦摩耗を受けた部分の摩擦係数が短時間で低下する。このように、定常的に摩擦摩耗を受ける摺動面の特性を改善できることから、本発明の摺動部材は、摺動を受ける部分がマグネシウム製の機械部品に好適であり、自動車部品、宇宙機器部品、航空機部品など各種の分野での適用が期待できる。   Thus, according to the present invention, a material excellent in friction and wear characteristics can be provided, and the Mg-based composite material of the present invention can be suitably used as a sliding member. This sliding member includes the Mg-based composite material of the present invention, and has a sliding surface made of the Mg-based composite material. When the sliding surface is subjected to frictional wear, the friction of the portion subjected to this frictional wear The coefficient decreases in a short time. As described above, since the characteristics of the sliding surface that is constantly subjected to frictional wear can be improved, the sliding member of the present invention is suitable for a mechanical part made of magnesium, such as an automobile part or a space device. Applications in various fields such as parts and aircraft parts can be expected.

また、押出をはじめとするMgおよびMg合金展伸材は、Mgの結晶構造(六方晶)に起因し、底面が加工方向に揃う。そのため、引張変形と圧縮変形では、降伏応力に大きな違いが生じ、三次元等方変形が難しいことで知られている。この降伏異方性は、低い変形応力で発生する変形応力が原因である。一方で、微細な粒子をMg母相に分散させることで、変形双晶の形成が抑制される、または、双晶変形の形成する応力が高くなる。そのため、本発明によれば、降伏異方性が低減し、三次元等方変形可能なMgおよびMg合金を提供することが可能である。   In addition, Mg and Mg alloy wrought materials including extrusion have a bottom surface aligned in the processing direction due to the Mg crystal structure (hexagonal crystal). Therefore, it is known that there is a great difference in yield stress between tensile deformation and compression deformation, and three-dimensional isotropic deformation is difficult. This yield anisotropy is caused by deformation stress generated at low deformation stress. On the other hand, by dispersing fine particles in the Mg matrix, the formation of deformation twins is suppressed, or the stress formed by twin deformation increases. Therefore, according to the present invention, it is possible to provide Mg and an Mg alloy that have a reduced yield anisotropy and are capable of three-dimensional isotropic deformation.

以下に、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<実施例1>
市販の純Mg粉末(粉末径180μm)と、市販のSi粉末(粉末径2〜3μm)を用いた。Mg基複合材のMg母相に分散するSi粒子の含有率が10%となるように秤量し、乳鉢内にて、Mg粉末とSi粉末を乾式混合した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<Example 1>
Commercially available pure Mg powder (powder diameter 180 μm) and commercially available Si 3 N 4 powder (powder diameter 2 to 3 μm) were used. The Si 3 N 4 particles dispersed in the Mg matrix of the Mg-based composite material were weighed so that the content was 10%, and the Mg powder and the Si 3 N 4 powder were dry mixed in a mortar.

MgとSiの混合粉末を充填するために、外径40mm、長さ70mmからなる市販のMg合金(Mg−3Al−1Zn;AZ31)材を使用し、機械加工にて内径20mm、深さ55mmの穴を開け、図1に示すコップ型形状からなる押出ビレットを作製した。前記混合粉末を押出ビレット内に充填した後、直径20mm、厚さ5mmからなるMg合金(AZ31)材を用いて密閉した。その際、充填率を制御するため、図1の空隙;V(=内径20mm×深さ55mmの体積)に対して、混合粉末の体積が、95%または85%となるように充填した。その後、250℃に設定したコンテナ内で30分間以上保持した後、押出比16:1にて押出による熱間ひずみ付与加工を行い、直径10mmで、長さ500mm以上の形状からなる押出材(以下、Mg基押出複合材と称する)を作製した。 In order to fill the mixed powder of Mg and Si 3 N 4, a commercially available Mg alloy (Mg-3Al-1Zn; AZ31) material having an outer diameter of 40 mm and a length of 70 mm is used. A hole having a length of 55 mm was formed, and an extruded billet having a cup shape shown in FIG. 1 was produced. After the mixed powder was filled into the extruded billet, it was sealed using an Mg alloy (AZ31) material having a diameter of 20 mm and a thickness of 5 mm. At that time, in order to control the filling rate, the mixed powder was filled such that the volume of the mixed powder became 95% or 85% with respect to the void in FIG. 1; V (= volume of inner diameter 20 mm × depth 55 mm). Thereafter, after being held in a container set at 250 ° C. for 30 minutes or more, hot straining by extrusion is performed at an extrusion ratio of 16: 1, and an extruded material having a diameter of 10 mm and a length of 500 mm or more (hereinafter referred to as “extruded material”) , Referred to as an Mg-based extruded composite).

<実施例2>
Si粉末を、市販のSiO粉末に代えたこと以外は実施例1と全く同じ手順で、混合粉末を作製し、混合粉末の体積が95%または85%となるように押出ビレット内に充填した後、実施例1と同様に押出加工を行ってMg基押出複合材を作製した。
<Example 2>
A mixed powder was prepared in exactly the same procedure as in Example 1 except that the Si 3 N 4 powder was replaced with a commercially available SiO 2 powder, and the volume of the mixed powder was 95% or 85% in the extruded billet. Then, extrusion was performed in the same manner as in Example 1 to produce an Mg-based extruded composite material.

<実施例3>
Si粉末を、市販のMnO粉末に代えたこと以外は実施例1と全く同じ手順で、混合粉末を作製し、混合粉末の体積が95%となるように押出ビレット内に充填した後、実施例1と同様に押出加工を行ってMg基押出複合材を作製した。
<Example 3>
A mixed powder was prepared in exactly the same procedure as in Example 1 except that the Si 3 N 4 powder was replaced with a commercially available MnO 2 powder, and filled in an extruded billet so that the volume of the mixed powder was 95%. Thereafter, extrusion was performed in the same manner as in Example 1 to produce an Mg-based extruded composite material.

<比較例1>
添加粉末を用いなかったこと以外は実施例1と全く同じ手順で、Mg粉末の体積が90%となるように押出ビレット内に充填した後、実施例1と同様に押出加工を行ってMg基押出材を作製した。
<Comparative Example 1>
Except that the additive powder was not used, the same procedure as in Example 1 was used, and after filling the extruded billet so that the volume of the Mg powder was 90%, the extrusion process was performed in the same manner as in Example 1 to obtain an Mg group. An extruded material was produced.

表1に、各Mg基押出複合材の創製条件をまとめている。図2に、押出ビレットへの混合粉末の充填率を95%として作製した典型的なMg基押出複合材の外観(a)および断面写真(b)を示す。図2(a)の外観写真から、Mg基押出複合材の表面にはき裂や欠陥などがなく、健全な長尺材の創製が確認できる。また、図2(b)の断面観察から、Mg基押出複合材の外周部は、Mg合金(AZ31)からなり、内部は、Mg粉末と添加粉末との混合粉末からなる複合材によって作製されていることが分かる。   Table 1 summarizes the creation conditions of each Mg-based extruded composite material. FIG. 2 shows an external appearance (a) and a cross-sectional photograph (b) of a typical Mg-based extruded composite material prepared with a filling rate of the mixed powder in the extruded billet of 95%. From the appearance photograph of FIG. 2A, there is no crack or defect on the surface of the Mg-based extruded composite material, and the creation of a healthy long material can be confirmed. Further, from the cross-sectional observation of FIG. 2B, the outer peripheral portion of the Mg-based extruded composite material is made of Mg alloy (AZ31), and the inside is made of a composite material made of mixed powder of Mg powder and additive powder. I understand that.

アルキメデスの法則によって計測されたMg基押出複合材の充填率を表1に示す。試料番号No.1〜No.5の混合粉末の充填率は、それぞれ、95%、86%、96%、85%、93%であった。押出ビレットへの充填時の制御により、混合粉末の充填率を調整することが可能である。   Table 1 shows the filling rate of the Mg-based extruded composite material measured by Archimedes' law. Sample No. 1-No. The filling ratio of the mixed powder No. 5 was 95%, 86%, 96%, 85%, and 93%, respectively. It is possible to adjust the filling rate of the mixed powder by controlling the filling into the extruded billet.

Mg母相の平均結晶粒径(結晶粒サイズ)を求めるため、光学顕微鏡を用いて、作製したMg基押出複合材の微細組織観察を行った。図3に、各Mg基押出複合材の典型的な微細組織例を示す。図3(a)〜図3(c)において、明るい領域がMg母相で、暗い領域がSi粒子、SiO粒子、またはMnO粒子である。切片法によって求めた各Mg基押出複合材のMg母相の平均結晶粒径を表1にまとめている。Mg粉末との混合時の添加粉末径や、押出ビレットへの混合粉末の充填率に関係なく、Mg母相の平均結晶粒径は、約13.0μm〜約18.0μmであった。また、添加粉末径とMg母相の平均結晶粒径との比は、1:4.37〜1:8.95の範囲であった。 In order to obtain the average crystal grain size (crystal grain size) of the Mg matrix, the microstructure of the produced Mg-based extruded composite material was observed using an optical microscope. FIG. 3 shows a typical microstructure of each Mg-based extruded composite material. In FIG. 3A to FIG. 3C, the bright region is Mg matrix and the dark region is Si 3 N 4 particles, SiO 2 particles, or MnO 2 particles. Table 1 summarizes the average crystal grain size of the Mg matrix of each Mg-based extruded composite obtained by the intercept method. The average crystal grain size of the Mg parent phase was about 13.0 μm to about 18.0 μm, regardless of the added powder size at the time of mixing with the Mg powder and the filling rate of the mixed powder into the extruded billet. The ratio of the added powder diameter to the average crystal grain diameter of the Mg matrix was in the range of 1: 4.37 to 1: 8.95.

図4は、光学顕微鏡を用いて観察した、比較例1のMg基押出材(試料番号No.6)の典型的な微細組織例である。切片法によって求めたMg母相の平均結晶粒径は、14.7μmであった。   4 is a typical microstructure example of the Mg-based extruded material of Comparative Example 1 (Sample No. 6), which was observed using an optical microscope. The average crystal grain size of the Mg matrix obtained by the intercept method was 14.7 μm.

ビッカース硬さ試験機を用いて、Mg基押出複合材の切断面(図2(b))に対する硬さを測定した。得られた結果を表1にまとめている。混合粉末の充填率に関係なく、硬さは約48.0〜53.0(Hv)であった。複合材料の硬さは、一般的に、複合則で表記することができる。すなわち、母材金属と添加材の硬さ、および、含有率の和である。試料番号No.1〜No.5のMg母相の平均結晶粒径が約13.0μm〜約18.0μmであり、添加粉末の含有率が10%であったことから、充填率は、硬さに影響を及ぼしにくいことが分かる。なお、比較例1のMg基押出材の硬さは35.2(Hv)であり、実施例1〜3のMg基押出複合材よりも低かった。   Using a Vickers hardness tester, the hardness of the Mg-based extruded composite material with respect to the cut surface (FIG. 2B) was measured. The results obtained are summarized in Table 1. Regardless of the filling rate of the mixed powder, the hardness was about 48.0 to 53.0 (Hv). In general, the hardness of a composite material can be expressed by a composite rule. That is, it is the sum of the hardness and content of the base metal and additive. Sample No. 1-No. 5 has an average crystal grain size of about 13.0 μm to about 18.0 μm, and the content of the additive powder was 10%, the filling rate may hardly affect the hardness. I understand. The hardness of the Mg-based extruded material of Comparative Example 1 was 35.2 (Hv), which was lower than the Mg-based extruded composite materials of Examples 1 to 3.

Ball−on−Disk型摩擦摩耗試験機を用いて、Mg基押出複合材の乾式摩擦摩耗特性を調査した。Mg基押出複合材を押出方向に対して垂直方向に切断した面(図2(b))を測定面とし、高炭素クロム軸受鋼(SUJ2)からなる直径4.7mmのボールを用いて、ディスク中心からの距離、すなわち回転半径1mm、付加加重0.49N、回転速度9.5rpm、試験時間5000秒の条件にて、乾式摩擦摩耗試験を実施した。乾式摩擦摩耗試験によって得られた、実施例1(試料番号No.1)、実施例2(試料番号No.3)、実施例3(試料番号No.5)の摩擦係数と摺動距離・試験時間との関係を図5に示す。なお、試験時間;1000秒〜5000秒では摩擦係数は一定の値であったため、図5では、試験時間;1000秒までの結果を示す。   Using a Ball-on-Disk type friction and wear tester, the dry friction and wear characteristics of the Mg-based extruded composite were investigated. The surface of the Mg-based extruded composite material cut in the direction perpendicular to the extrusion direction (FIG. 2 (b)) was used as the measurement surface, and a disk having a diameter of 4.7 mm made of high carbon chrome bearing steel (SUJ2) was used. A dry friction and wear test was performed under the conditions of a distance from the center, that is, a rotation radius of 1 mm, an additional load of 0.49 N, a rotation speed of 9.5 rpm, and a test time of 5000 seconds. Friction coefficient and sliding distance / test of Example 1 (Sample No. 1), Example 2 (Sample No. 3), and Example 3 (Sample No. 5) obtained by the dry friction wear test The relationship with time is shown in FIG. In addition, since the friction coefficient was a fixed value in test time; 1000 second-5000 second, in FIG. 5, the result to test time; 1000 second is shown.

図5より、試料番号No.1、試料番号No.3、試料番号No.5では、試験開始時から試験時間;約150秒までの摩擦係数は、いずれも0.25〜0.40程度の値を示すが、試験時間;約180秒〜約400秒において、摩擦係数が0.20未満(約0.03〜約0.18程度)まで急激な低下が起こり、その後、一定の値を示すことが確認できる(図5(c)、(e)、(d))。特に、試料番号No.3(Mg−SiO)、試料番号No.5(Mg−MnO)では、試験時間;約180秒〜約230秒の短い時間で、摩擦係数が0.07未満(約0.03〜約0.06程度)まで非常に急激な低下が起こり、その後、安定して一定の値を示すことが確認できる(図5(e)、(d))。一方、添加粉末を含有していないMg基押出材(試料番号No.6)では、試験開始時から摩擦係数の減少は見られず、試験時間が1000秒を経過後も摩擦係数の減少は確認されなかった(図5(a))。これらの結果より、添加粉末の有無によって、Mg基複合材の摩擦係数の減少に大きく影響を及ぼすことが分かる。なお、図5には、参考例として、純Mg粉末とAl粉末の混合粉末を用いて作製したMg基押出複合材の試験結果も示す。試験時間;約600秒において摩擦係数が約0.1まで急激に低下し、その後、実施例1〜3の試料と同様に、一定の値を示すことが確認できる(図5(b))。 From FIG. 1, sample number no. 3. Sample No. 5, the friction coefficient from the start of the test to the test time; about 150 seconds shows a value of about 0.25 to 0.40, but in the test time: about 180 seconds to about 400 seconds, the friction coefficient is It can be confirmed that a rapid drop occurs to less than 0.20 (about 0.03 to about 0.18), and thereafter a constant value is shown (FIGS. 5C, 5E, and 5D). In particular, sample no. 3 (Mg—SiO 2 ), Sample No. 5 (Mg—MnO 2 ), the test time; in a short time of about 180 seconds to about 230 seconds, the coefficient of friction decreases very rapidly to less than 0.07 (about 0.03 to about 0.06). After that, it can be confirmed that it shows a stable and constant value (FIGS. 5E and 5D). On the other hand, in the Mg-based extruded material (sample No. 6) containing no additive powder, no decrease in the friction coefficient was observed from the start of the test, and a decrease in the friction coefficient was confirmed after the test time of 1000 seconds. (FIG. 5 (a)). From these results, it can be seen that the presence or absence of the added powder greatly affects the reduction of the friction coefficient of the Mg-based composite material. In FIG. 5, as a reference example also shows test results of the Mg based extruded composite material produced using a mixed powder of pure Mg powder and the Al 2 O 3 powder. Test time: It can be confirmed that the friction coefficient rapidly decreases to about 0.1 at about 600 seconds, and then shows a constant value as in the samples of Examples 1 to 3 (FIG. 5B).

摩擦摩耗試験後、測定面の表面粗さをレーザー顕微鏡によって計測し、以下の式(1)によって摩耗量を求めた。ただし、摩耗量は、付与加重Pや、すべり距離Dなどによって変化するため、本実施例では、比摩耗量Kを用いて摩耗特性を評価した。   After the frictional wear test, the surface roughness of the measurement surface was measured with a laser microscope, and the amount of wear was determined by the following equation (1). However, since the wear amount varies depending on the applied load P, the sliding distance D, and the like, in this example, the wear characteristics were evaluated using the specific wear amount K.

(数1)
K=A・b/P/D (1)
(Equation 1)
K = A ・ b / P / D (1)

式(1)のAは、レーザー顕微鏡などから計測される断面積で、bは、Ball−on−Disk試験時のボールの回転円周(本実施例では6.2mm)である。レーザー顕微鏡によって計測された摩擦摩耗試験後の測定面の典型的な二次元断面像を図6に示す。図内中心部に矢印で示した部分が、摩擦摩耗試験によって形成され、式(1)のAに該当する。表1に、各Mg基押出複合材の比摩耗量をまとめている。Mg基押出複合材の比摩耗量はいずれも、添加粉末を含有していないMg基押出材(比較例1)と比べて小さい値を示し、摩耗特性に優れていることが分かる。このようなMg基押出複合材の優れた摩耗特性は、押出材の硬さと関連付けることができる。すなわち、押出材の硬さが大きい程、比摩耗量が小さく、摩擦特性に優れていることが分かる。これは、摩耗時のメカニズムに起因するもので、高硬度材であるほど、相手材(今回の実施例であればボール)への攻撃が盛んである。この様な状況下では、平滑な表面状態を形成するアブレシブ摩耗機構を誘発しやすく、摩耗の抑制が可能となるためである。   A in the formula (1) is a cross-sectional area measured from a laser microscope or the like, and b is a rotation circumference (6.2 mm in this embodiment) of the ball at the Ball-on-Disk test. FIG. 6 shows a typical two-dimensional cross-sectional image of the measurement surface after the frictional wear test measured by a laser microscope. A portion indicated by an arrow in the center of the figure is formed by a frictional wear test and corresponds to A in formula (1). Table 1 summarizes the specific wear amount of each Mg-based extruded composite material. It can be seen that the specific wear amount of the Mg-based extruded composite material is smaller than that of the Mg-based extruded material containing no additive powder (Comparative Example 1) and is excellent in wear characteristics. The excellent wear characteristics of such Mg-based extruded composites can be related to the hardness of the extruded material. That is, it can be seen that the greater the hardness of the extruded material, the smaller the specific wear amount and the better the friction characteristics. This is due to the mechanism at the time of wear. The higher the hardness of the material, the more aggressive the opponent material (in this example, the ball). This is because, under such a situation, it is easy to induce an abrasive wear mechanism that forms a smooth surface state, and wear can be suppressed.

Claims (12)

粒子分散型のMg基複合材であって、
前記Mg基複合材の金属組織において平均径0.05μm以上の酸化物または窒化物の粒子がMg母相中に分散し、摩擦摩耗を受けた際に、この摩擦摩耗を受けた部分の摩擦係数が短時間で低下するMg基複合材。
A particle-dispersed Mg-based composite material,
In the metal structure of the Mg-based composite material, when the oxide or nitride particles having an average diameter of 0.05 μm or more are dispersed in the Mg matrix and subjected to frictional wear, the friction coefficient of the portion subjected to this frictional wear Mg-based composite material that decreases in a short time.
前記Mg母相の結晶粒サイズが200μm以下である請求項1に記載のMg基複合材。   The Mg-based composite material according to claim 1, wherein a crystal grain size of the Mg matrix is 200 μm or less. 前記酸化物または窒化物の粒子と前記Mg母相の結晶粒サイズとの比が1:4〜1:10の範囲内である請求項1または2に記載のMg基複合材。   3. The Mg-based composite material according to claim 1, wherein a ratio between the oxide or nitride particles and the crystal grain size of the Mg matrix is in the range of 1: 4 to 1:10. 前記酸化物または窒化物の粒子の含有率が65質量%未満である請求項1〜3のいずれか一項に記載のMg基複合材。   The Mg-based composite material according to any one of claims 1 to 3, wherein a content ratio of the oxide or nitride particles is less than 65 mass%. 乾式摩擦摩耗試験によって得られる試験時間800秒経過後の前記摩擦摩耗を受けた部分の摩擦係数が0.20未満である請求項1〜4のいずれか一項に記載のMg基複合材。   The Mg-based composite material according to any one of claims 1 to 4, wherein a friction coefficient of a portion subjected to the friction wear after a test time of 800 seconds obtained by a dry friction wear test is less than 0.20. 前記酸化物または窒化物が、MnO、SiまたはSiOである請求項1〜5のいずれか一項に記載のMg基複合材。 The oxide or nitride, MnO 2, Si 3 N 4 or Mg based composite material according to any one of claims 1 to 5 is SiO 2. 請求項1〜6のいずれか一項に記載のMg基複合材を含む摺動部材であって、
前記Mg基複合材からなる摺動面を有し、
前記摺動面が摩擦摩耗を受けた際に、この摩擦摩耗を受けた部分の摩擦係数が短時間で低下する摺動部材。
A sliding member comprising the Mg-based composite material according to any one of claims 1 to 6,
Having a sliding surface made of the Mg-based composite material;
A sliding member in which, when the sliding surface is subjected to frictional wear, the friction coefficient of the portion subjected to the frictional wear decreases in a short time.
乾式摩擦摩耗試験によって得られる試験時間800秒経過後の前記摺動面の摩擦摩耗を受けた部分の摩擦係数が0.20未満である請求項7に記載の摺動部材。   The sliding member according to claim 7, wherein a friction coefficient of a portion subjected to frictional wear on the sliding surface after a test time of 800 seconds obtained by a dry frictional wear test is less than 0.20. 請求項1〜6のいずれか一項に記載のMg基複合材の製造方法であって、
Mg粉末と、平均径0.05μm以上の酸化物または窒化物の粉末とを含有する混合粉末をビレット内に充填、封入する工程、および
前記混合粉末を充填、封入した前記ビレットに、50℃以上、550℃以下の温度で断面減少率50%以上の温間または熱間ひずみ付与加工を施す工程を含む、Mg基複合材の製造方法。
A method for producing an Mg-based composite material according to any one of claims 1 to 6,
Filling and enclosing a mixed powder containing Mg powder and an oxide or nitride powder having an average diameter of 0.05 μm or more in a billet, and filling and enclosing the mixed powder in the billet at 50 ° C. or higher A method for producing an Mg-based composite material, comprising a step of performing a warm or hot strain imparting process with a cross-section reduction rate of 50% or more at a temperature of 550 ° C or lower.
前記混合粉末における前記酸化物または窒化物の粉末の含有率が、前記Mg粉末と前記酸化物または窒化物の粉末との合計量に対して65質量%未満である請求項9に記載のMg基複合材の製造方法。   10. The Mg group according to claim 9, wherein a content of the oxide or nitride powder in the mixed powder is less than 65 mass% with respect to a total amount of the Mg powder and the oxide or nitride powder. A method of manufacturing a composite material. 前記酸化物または窒化物が、MnO、SiまたはSiOである請求項9または10に記載のMg基複合材の製造方法。 The oxide or nitride, MnO 2, Si 3 N 4 or the method of manufacturing the Mg based composite material according to claim 9 or 10 is a SiO 2. 前記温間または熱間ひずみ付与加工が、押出加工、鍛造加工、圧延加工、または引抜加工である請求項9〜11のいずれか一項に記載のMg基複合材の製造方法。   The method for producing an Mg-based composite material according to any one of claims 9 to 11, wherein the warm or hot strain imparting process is an extrusion process, a forging process, a rolling process, or a drawing process.
JP2018014284A 2018-01-31 2018-01-31 Mg-based sintered composite material, manufacturing method thereof, and sliding member Active JP7266269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018014284A JP7266269B2 (en) 2018-01-31 2018-01-31 Mg-based sintered composite material, manufacturing method thereof, and sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018014284A JP7266269B2 (en) 2018-01-31 2018-01-31 Mg-based sintered composite material, manufacturing method thereof, and sliding member

Publications (2)

Publication Number Publication Date
JP2019131857A true JP2019131857A (en) 2019-08-08
JP7266269B2 JP7266269B2 (en) 2023-04-28

Family

ID=67545715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014284A Active JP7266269B2 (en) 2018-01-31 2018-01-31 Mg-based sintered composite material, manufacturing method thereof, and sliding member

Country Status (1)

Country Link
JP (1) JP7266269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022109070A1 (en) 2022-04-13 2023-10-19 Soluterials Verwaltungs und Verwertungs UG (haftungsbeschränkt) Light metal matrix composite material based on magnesium and process for its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194134A (en) * 1989-01-20 1990-07-31 Toshiba Corp Metal matrix composite excellent in characteristic of low friction and wear resistance
WO2003069001A1 (en) * 2002-02-15 2003-08-21 Toudai Tlo, Ltd. Magnesium base composite material and method for production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194134A (en) * 1989-01-20 1990-07-31 Toshiba Corp Metal matrix composite excellent in characteristic of low friction and wear resistance
WO2003069001A1 (en) * 2002-02-15 2003-08-21 Toudai Tlo, Ltd. Magnesium base composite material and method for production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022109070A1 (en) 2022-04-13 2023-10-19 Soluterials Verwaltungs und Verwertungs UG (haftungsbeschränkt) Light metal matrix composite material based on magnesium and process for its production

Also Published As

Publication number Publication date
JP7266269B2 (en) 2023-04-28

Similar Documents

Publication Publication Date Title
Devaraju et al. Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing
Alhawari et al. Wear properties of A356/Al2O3 metal matrix composites produced by semisolid processing
Shanmughasundaram et al. Wear behaviour of eutectic Al-Si alloy-graphite composites fabricated by combined modified two-stage stir casting and squeeze casting methods
JP6831093B2 (en) Mg-based composite material and its manufacturing method and sliding members
Bazarnik et al. Effect of spark plasma sintering and high-pressure torsion on the microstructural and mechanical properties of a Cu–SiC composite
Manjunatha et al. Effect of mechanical and thermal loading on boron carbide particles reinforced Al-6061 alloy
Srivastava et al. A review on fabrication & characterization of hybrid aluminium metal matrix composite
Nourouzi et al. Microstructural and mechanical properties of Al-Al2O3 composites focus on experimental techniques
JP4451913B2 (en) Method for producing Ti particle-dispersed magnesium-based composite material
Kaviyarasan et al. Experimental investigation of dry sliding wear behaviour on ceramic reinforced magnesium composite by powder metallurgy technique
Padmanaban et al. Rheo-Die-Casting of Al-Si-Mg Alloy and Al-Si-Mg/SiC p Composites: Microstructure and Wear Behavior
CN1633512A (en) Magnesium base composite material and method for production thereof
JP2007100200A (en) Aluminum alloy for bearing
Suśniak et al. An experimental study of aluminum alloy matrix composite reinforced sic made by hot pressing method
JP6360270B1 (en) Sintered friction material for brake
JP7266269B2 (en) Mg-based sintered composite material, manufacturing method thereof, and sliding member
JP4686690B2 (en) Magnesium-based composite powder, magnesium-based alloy material, and production method thereof
JP6315761B2 (en) Self-lubricating metal composite material and self-lubricating metal matrix composite material excellent in strength, lubricity and wear resistance, and method for producing the metal composite material and metal matrix composite material
JP2008075127A (en) Method of producing magnesium alloy
US20110150694A1 (en) METHOD FOR MANUFACTURING Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL
Alrasheedi Facile synthesis and characterization of aluminum/graphene nanosheets composites
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
Ekinci et al. Effect of Al 2 O 3 content and milling time on microstructure and mechanical properties of aluminum metal matrix composites
Asif et al. Wear characteristic of Al-based metal matrix composites used for heavy duty brake pad applications
Khalil et al. Application of Al-Si semi-solid reaction for fabricating harmonic structured Al based alloy

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220126

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220202

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220208

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220506

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220510

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220517

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220823

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20221004

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230307

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230411

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230411

R150 Certificate of patent or registration of utility model

Ref document number: 7266269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150