JP4686690B2 - Magnesium-based composite powder, magnesium-based alloy material, and production method thereof - Google Patents

Magnesium-based composite powder, magnesium-based alloy material, and production method thereof Download PDF

Info

Publication number
JP4686690B2
JP4686690B2 JP2004202181A JP2004202181A JP4686690B2 JP 4686690 B2 JP4686690 B2 JP 4686690B2 JP 2004202181 A JP2004202181 A JP 2004202181A JP 2004202181 A JP2004202181 A JP 2004202181A JP 4686690 B2 JP4686690 B2 JP 4686690B2
Authority
JP
Japan
Prior art keywords
magnesium
particles
powder
composite powder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004202181A
Other languages
Japanese (ja)
Other versions
JP2006022380A (en
Inventor
勝義 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Todai TLO Ltd
Original Assignee
Todai TLO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Todai TLO Ltd filed Critical Todai TLO Ltd
Priority to JP2004202181A priority Critical patent/JP4686690B2/en
Priority to US11/631,633 priority patent/US20080019857A1/en
Priority to CNA2005800225841A priority patent/CN1980760A/en
Priority to PCT/JP2005/011744 priority patent/WO2006006379A1/en
Priority to EP05765162A priority patent/EP1772213A1/en
Publication of JP2006022380A publication Critical patent/JP2006022380A/en
Application granted granted Critical
Publication of JP4686690B2 publication Critical patent/JP4686690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、高剛性を有するMgSiを含むマグネシウム基複合粉末およびマグネシウム基合金素材ならびにそれらの製造方法に関するものである。 The present invention relates to a magnesium-based composite powder and magnesium-based alloy material containing Mg 2 Si having high rigidity, and methods for producing them.

マグネシウム合金は、その低比重による軽量化効果を特徴とし、主に携帯電話や携帯音響機器の筐体において広く製品化・実用化されている。製品や部材の設計においては、素材の強度や硬さといった機械的特性の他に、剛性が重要な材料因子となる。   Magnesium alloys are characterized by a light weight reduction effect due to their low specific gravity, and are widely commercialized and put into practical use mainly in the case of mobile phones and portable audio equipment. In the design of products and members, rigidity is an important material factor in addition to mechanical properties such as strength and hardness of the material.

例えば、オートマチックトランスミッション(AT)用ハウジング(ケース)にマグネシウム合金を適用する際、現在用いられているアルミニウム合金(例えば、ADC12)と同等の引張強さやクリープ強度を有する場合であっても、既存のマグネシウム合金の剛性(ヤング率)はアルミニウム合金の約60%前後であるため、同じ寸法・肉厚では荷重が付与された場合に撓み・変形が生じる。それゆえに、これまでマグネシウム合金の実用化においては、適用する製品・部材によっては厚肉化設計が必要となり、軽量化効果が得られないという問題があった。   For example, when a magnesium alloy is applied to a housing (case) for an automatic transmission (AT), even if it has a tensile strength and a creep strength equivalent to those of an aluminum alloy currently used (for example, ADC12), Since the rigidity (Young's modulus) of the magnesium alloy is about 60% of that of the aluminum alloy, the same size and thickness cause bending and deformation when a load is applied. Therefore, until now, in the practical use of magnesium alloys, there has been a problem that a thickening design is required depending on the products and members to be applied, and a weight reduction effect cannot be obtained.

マグネシウム合金をはじめ、金属材料の剛性向上には、その金属材料よりも高い剛性を有する化合物粒子を分散させる方法、いわゆる複合材料の利用が一般に有効である。例えば、マグネシウムシリサイド(MgSi)はヤング率が120GPaであり、一般のマグネシウム合金のヤング率(43〜44GPa)に比べて顕著に大きいことから、その粒子を合金中に分散した複合材料においては剛性向上が期待できる。 In order to improve the rigidity of a metal material such as a magnesium alloy, it is generally effective to use a so-called composite material by dispersing compound particles having rigidity higher than that of the metal material. For example, magnesium silicide (Mg 2 Si) has a Young's modulus of 120 GPa and is significantly larger than that of a general magnesium alloy (43 to 44 GPa). Therefore, in a composite material in which the particles are dispersed in the alloy. Increased rigidity can be expected.

しかしながら、溶解・鋳造法によりMg−Si系合金を製造する場合、Si含有量が重量基準で約1%付近に共晶点が存在するため、1重量%を遥かに超えるSiを添加した場合、Mgとの反応によって生成するMgSiは粗大成長する。このような粗大なMgSi粒子を含むマグネシウム合金では、その粒子での応力集中による強度・靭性の低下が生じることや、MgとSiとの反応による発熱を伴うことで溶解過程での爆発などの危険性がある。また粗大なMgSi粒子が存在することで金型内への鋳込み性能(鋳造性)が低下し、鋳造合金素材内部に多数の欠陥や空孔が存在するといった問題が生じる。それゆえに、AS21合金(Mg−2%Al−1%Si)やAS41合金(Mg−4%Al−1%Si)などが溶解・鋳造法によって製造可能なMgSi含有マグネシウム合金である。しかしながら、1重量%程度のSiを添加した場合、生成するMgSi粒子の体積分率が全体の1%程度にも満たないため、マグネシウム合金の剛性を著しく向上させることは困難である。 However, when producing an Mg-Si based alloy by the melting / casting method, since the eutectic point exists in the vicinity of about 1% by weight based on the Si content, when adding Si far exceeding 1% by weight, Mg 2 Si produced by reaction with Mg grows coarsely. In such a magnesium alloy containing coarse Mg 2 Si particles, the strength and toughness are reduced due to stress concentration in the particles, and the explosion in the melting process is accompanied by heat generation due to the reaction between Mg and Si. There is a danger of. In addition, the presence of coarse Mg 2 Si particles deteriorates the casting performance (castability) into the mold and causes a problem that a large number of defects and voids exist in the cast alloy material. Therefore, an AS21 alloy (Mg-2% Al-1% Si), an AS41 alloy (Mg-4% Al-1% Si), and the like are Mg 2 Si-containing magnesium alloys that can be manufactured by a melting and casting method. However, when about 1% by weight of Si is added, the volume fraction of the generated Mg 2 Si particles is less than about 1% of the whole, so that it is difficult to remarkably improve the rigidity of the magnesium alloy.

他方、S.K.THAKURら(出典:Metallurgical and Materials Transactions A, Vol. 35A, March 2004, p.1167-1176)は、Si粉末を含む3種類の混合粉末を固化したプリフォームを事前に形成し、ここに溶解したマグネシウム合金を加圧しながら浸透させる溶浸(infiltration)法によってMgSi粒子を含むマグネシウム合金を製造する方法を提案している。しかしながら、この方法では、溶解したMg合金とSiとの反応によって合成するMgSiは、その反応過程で粒成長を伴い、結果として70〜100μm程度の粗大なMgSi粒子としてマグネシウム合金中に存在する。その結果、上述したような種々の性能上の問題を生じる。
Metallurgical and Materials Transactions A, Vol. 35A, March 2004, p.1167-1176
On the other hand, S.M. K. THAKUR et al. (Source: Metallurgical and Materials Transactions A, Vol. 35A, March 2004, p.1167-1176) formed a preform that was solidified from three types of mixed powder containing Si powder, and dissolved it here. A method for producing a magnesium alloy containing Mg 2 Si particles by an infiltration method in which the magnesium alloy is infiltrated while being pressurized is proposed. However, in this method, Mg 2 Si synthesized by the reaction between the dissolved Mg alloy and Si is accompanied by grain growth in the reaction process, and as a result, coarse Mg 2 Si particles of about 70 to 100 μm are contained in the magnesium alloy. Exists. As a result, various performance problems as described above occur.
Metallurgical and Materials Transactions A, Vol. 35A, March 2004, p.1167-1176

本願発明者は、特願2003−2602号(2003年1月8日出願)において、粉末冶金法を用いて、MgSi粒子が分散するマグネシウム基複合材料を製造する技術を開示した。ここでは、機械的結合法あるいはバインダを用いた接着法によって微細なSi粉末またはSiO粉末をマグネシウム基合金粉末の表面に付着したマグネシウム複合粉末およびその製造方法を提案している。さらに、このような複合粉末に対して温間塑性加工を施し、その過程でMgと、SiまたはSiOとの固相反応を利用してMgSi粒子を生成し、最終的に内部にこのMgSi粒子を均一に分散させたマグネシウム基複合材料を得ることを提案している。 Inventor of the present application disclosed, in Japanese Patent Application No. 2003-2602 (filed on Jan. 8, 2003), a technique for producing a magnesium-based composite material in which Mg 2 Si particles are dispersed using powder metallurgy. Here, a magnesium composite powder in which a fine Si powder or SiO 2 powder is adhered to the surface of a magnesium-based alloy powder by a mechanical bonding method or a bonding method using a binder and a method for manufacturing the same are proposed. Further, the composite powder is subjected to warm plastic working, and in the process, Mg 2 Si particles are generated using a solid phase reaction between Mg and Si or SiO 2. It has been proposed to obtain a magnesium-based composite material in which Mg 2 Si particles are uniformly dispersed.

特願2003−2602号に開示された技術により得られるマグネシウム基複合材料は、高い引張強さを示すが、Mgと、SiまたはSiOとの反応に必要な高温加熱(例えば、400〜550℃程度)が必要である。その際にマグネシウム結晶粒の粗大化を伴う。言い換えると、更なる高強度化を実現するには加熱温度の低温化が有効であるが、上記の固相反応の関係から、例えば、300℃前後といった低温加熱化は困難である。 The magnesium-based composite material obtained by the technique disclosed in Japanese Patent Application No. 2003-2602 exhibits high tensile strength, but high-temperature heating (for example, 400 to 550 ° C.) necessary for the reaction between Mg and Si or SiO 2. Degree) is required. In that case, it accompanies the coarsening of a magnesium crystal grain. In other words, it is effective to lower the heating temperature to achieve higher strength, but it is difficult to lower the temperature to about 300 ° C., for example, because of the solid-phase reaction.

本発明の目的は、高温加熱を施さなくても、微細なMgSi粒子を多量に含有する高剛性および高強度のマグネシウム合金を得ることである。 An object of the present invention is to obtain a magnesium alloy having high rigidity and high strength containing a large amount of fine Mg 2 Si particles without performing high-temperature heating.

本願発明者は、MgSi粒子を分散させているマグネシウム基複合材料を製造するには、Mg基粉末の表面および/または素地内部にMgSi粒子が存在するマグネシウム基複合粉末を用いることが有効であることを見出した。特願2003−2602号に開示されたようなSi粒子を用いて、Mg粉体との固相反応によりMgSi粒子を合成する方法ではなく、MgSi粒子を用いることにより、以下の利点が得られることを見出した。 In order to produce a magnesium-based composite material in which Mg 2 Si particles are dispersed, the inventor of the present application uses a magnesium-based composite powder in which Mg 2 Si particles are present on the surface of the Mg-based powder and / or inside the substrate. I found it effective. Using Si particles as disclosed in Japanese Patent Application No. 2003-2602, rather than the method of synthesizing the Mg 2 Si particles by solid-phase reaction with Mg powder, the use of Mg 2 Si particles, the following advantages It was found that can be obtained.

(1)上記のSi−Mg反応を促進させるために要する、400〜550℃付近までの高温加熱が不要となり、その結果、素地のMg結晶粒の粗大・成長を抑えることでMg基合金の強度低下を抑制できる。   (1) The high-temperature heating up to about 400 to 550 ° C. required to promote the Si—Mg reaction is not necessary, and as a result, the strength of the Mg-based alloy is suppressed by suppressing the coarseness and growth of Mg crystal grains in the base. Reduction can be suppressed.

(2)Si−Mg反応過程における発熱現象を回避することでMgSi粒子およびMg結晶粒の粗大化を抑制できる。 (2) By avoiding the exothermic phenomenon in the Si-Mg reaction process, the coarsening of Mg 2 Si particles and Mg crystal grains can be suppressed.

要するに、上述したようなMgとSiとの固相反応に必要な高温加熱を施さなくとも、200〜400℃程度での温間押出加工によってマグネシウム基合金の製造が可能となる。その結果、微細なMgSi粒子を多量に含有する高剛性かつ高強度のマグネシウム基合金を得ることができる。 In short, a magnesium-based alloy can be produced by warm extrusion at about 200 to 400 ° C. without performing the high-temperature heating necessary for the solid-state reaction between Mg and Si as described above. As a result, a highly rigid and high strength magnesium-based alloy containing a large amount of fine Mg 2 Si particles can be obtained.

本発明に従ったマグネシウム基複合粉末は、マグネシウム基粉末と、マグネシウム基粉末の表面にバインダを介して付着しているマグネシウムシリサイド(MgSi)粒子とを備える。 The magnesium-based composite powder according to the present invention includes a magnesium-based powder and magnesium silicide (Mg 2 Si) particles attached to the surface of the magnesium-based powder via a binder .

上記のマグネシウム基複合粉末において、MgSiの最大粒子径は、50μm以下、好ましくは20μm以下、より好ましくは5μm以下である。また、当該マグネシウム基複合粉末に対するMgSiの含有量は、好ましくは、体積基準で5〜60%である。 In the magnesium-based composite powder, the maximum particle size of Mg 2 Si is 50 μm or less, preferably 20 μm or less, more preferably 5 μm or less. The content of Mg 2 Si in the magnesium-based composite powder is preferably 5 to 60% on a volume basis.

本発明に従ったマグネシウム基合金素材は、上記のマグネシウム基複合粉末を圧粉成形して焼結したものであり、素地中にMgSi粒子を分散させている。 The magnesium-based alloy material according to the present invention is obtained by compacting and sintering the above-mentioned magnesium-based composite powder, and Mg 2 Si particles are dispersed in the substrate.

一つの実施形態では、本発明に従ったマグネシウム基複合粉末の製造方法は、次の工程を備える。
a) マグネシウム(Mg)基粉末およびマグネシウムシリサイド(MgSi)粒子を準備する工程。
b) Mg基粉末の表面にバインダを塗布する工程。
c) バインダを塗布したMg基粉末とMgSi粒子とを混合・攪拌して、Mg基粉末の表面にMgSi粒子を結合させる工程。
In one embodiment, the manufacturing method of the magnesium group composite powder according to the present invention includes the following steps.
a) A step of preparing magnesium (Mg) based powder and magnesium silicide (Mg 2 Si) particles.
b) A step of applying a binder to the surface of the Mg-based powder.
mixing the c) Mg based powder coated with binder and Mg 2 Si particles and stirring to, the step of coupling the Mg 2 Si particles to the surface of the Mg based powder.

本発明に従ったマグネシウム基合金素材の製造方法は、上述したマグネシウム基複合粉末を圧粉成形する工程と、この圧粉成形体を200〜400℃の不活性ガス雰囲気または非酸化性ガス雰囲気で加熱する工程と、加熱後直ちに圧粉成形体を押出加工して緻密化する工程とを備える。   The method for producing a magnesium-based alloy material according to the present invention includes a step of compacting the above-mentioned magnesium-based composite powder, and the compacted body in an inert gas atmosphere or a non-oxidizing gas atmosphere at 200 to 400 ° C. A step of heating, and a step of extruding and densifying the green compact immediately after the heating.

本発明の特徴および作用効果については、以下の項に記載する。   Features and effects of the present invention will be described in the following section.

(1)マグネシウム基複合粉末
(A)MgSiの含有量
マグネシウム基複合粉末全体を100%とした場合、体積基準で5〜60%のMgSiを含有する。また本複合粉末を固化して得られるマグネシウム基合金の機械加工性(切削性)の観点から、より好ましいMgSiの含有量は体積基準で20〜40%である。MgSi粒子の含有量が5%未満の場合、十分な剛性を有するマグネシウム合金が得られない。他方、MgSi粒子の含有量が60%を超える場合、MgSi粒子を含むマグネシウム基複合粉末においてMgSi粒子の偏析・凝集が生じ、このような粉末を固化して得られるマグネシウム基合金において強度や靭性の低下が生じる。アルミニウム合金と同等レベルの剛性を有し、しかも優れた強度と被削性を確保するためのより好ましいMgSi粒子の含有量は体積基準で20〜40%である。
(1) Magnesium-based composite powder (A) Content of Mg 2 Si When the entire magnesium-based composite powder is taken as 100%, it contains 5 to 60% Mg 2 Si on a volume basis. Further, from the viewpoint of machinability (cutting property) of the magnesium-based alloy obtained by solidifying the composite powder, a more preferable content of Mg 2 Si is 20 to 40% on a volume basis. When the content of Mg 2 Si particles is less than 5%, a magnesium alloy having sufficient rigidity cannot be obtained. On the other hand, if the content of Mg 2 Si particles exceeds 60%, Mg 2 in the magnesium based composite powder containing Si particles occur segregation and aggregation of the Mg 2 Si particles, magnesium group obtained by solidifying such powder In alloys, strength and toughness are reduced. A more preferable content of Mg 2 Si particles having a rigidity equivalent to that of an aluminum alloy and ensuring excellent strength and machinability is 20 to 40% on a volume basis.

(B)MgSiの最大粒子径
マグネシウム基複合粉末に含まれるMgSiの最大粒子径は50μm以下、好ましくは20μm以下、さらに好ましくは5μm以下である。MgSi粒子の最大粒子径が50μmを超えると、得られるマグネシウム基合金の機械的特性や被削性が低下するといった問題が生じる。その値が20μm以下の場合、40体積%を超えるMgSi粒子を含む場合であっても良好な被削性が維持できる。さらにMgSi粒子の最大粒子径が5μm以下の場合には、マグネシウム基合金の被削性が向上すると同時に、微細なMgSi粒子の分散によって本合金の引張強さが向上する。
(B) a maximum particle size of Mg 2 Si which is contained in a maximum particle size of the magnesium based composite powder of Mg 2 Si is 50μm or less, preferably 20μm or less, more preferably 5μm or less. When the maximum particle diameter of the Mg 2 Si particles exceeds 50 μm, there arises a problem that mechanical properties and machinability of the obtained magnesium-based alloy are deteriorated. When the value is 20 μm or less, good machinability can be maintained even when Mg 2 Si particles exceeding 40% by volume are included. Furthermore, when the maximum particle diameter of Mg 2 Si particles is 5 μm or less, the machinability of the magnesium-based alloy is improved, and at the same time, the tensile strength of the alloy is improved by the dispersion of fine Mg 2 Si particles.

(C)剛性(ヤング率)
マグネシウム基合金のヤング率は48〜90GPaである。ヤング率が48GPa未満であれば、既存のマグネシウム合金のヤング率に対する増加率が10%以下となり、自動車用カバー・ケース関連部品やパソコン・携帯機器などの筐体部品などに適用することは困難である。他方、前記の通り、ヤング率が90GPaを超える場合には、MgSiの含有量が体積基準で60%を超えることとなるために合金素材の靭性や被削性が低下する。
(C) Rigidity (Young's modulus)
The Young's modulus of the magnesium-based alloy is 48 to 90 GPa. If the Young's modulus is less than 48 GPa, the rate of increase of the existing magnesium alloy with respect to the Young's modulus is 10% or less, and it is difficult to apply it to automobile cover / case-related parts and housing parts such as personal computers and portable devices. is there. On the other hand, as described above, when the Young's modulus exceeds 90 GPa, the Mg 2 Si content exceeds 60% on a volume basis, so that the toughness and machinability of the alloy material are lowered.

(2)マグネシウム基複合粉末の製造方法
(A)バインダによる接着を用いたマグネシウム基複合粉末
図1および図2は、バインダ溶液を用いたMg基複合粉末の製造方法を示し、図3は、これらの方法によって得られたMg基複合粉末の断面構造を模式的に示している。
(2) Manufacturing method of magnesium-based composite powder (A) Magnesium-based composite powder using adhesion by binder FIGS. 1 and 2 show a manufacturing method of Mg-based composite powder using a binder solution, and FIG. The cross-sectional structure of the Mg-based composite powder obtained by the method is schematically shown.

本方法では、湿式造粒機やスプレードライヤーを用いて複合粉末を製造する。図1に示す方法では、容器1内にMg基粉末とMgSi粒子との混合物2を投入し、温風3を容器1の下部から供給してこの混合物2を浮遊させる。その状態で、バインダ溶液4を上部から混合物2に噴霧して各粒子の表面にバインダを塗布しながら、同時に高温乾燥させる。その結果、図3に示すように、Mg基粉末7の表面にバインダ9を介してMgSi粒子8が付着・結合する。 In this method, a composite powder is produced using a wet granulator or a spray dryer. In the method shown in FIG. 1, a mixture 2 of Mg-based powder and Mg 2 Si particles is put into a container 1, and hot air 3 is supplied from the lower part of the container 1 to float this mixture 2. In this state, the binder solution 4 is sprayed onto the mixture 2 from above to apply the binder to the surface of each particle and simultaneously dry at a high temperature. As a result, as shown in FIG. 3, Mg 2 Si particles 8 adhere to and bind to the surface of the Mg-based powder 7 via the binder 9.

図2に示す方法では、容器1内に比較的低風量でMg基粉末とMgSi粒子との混合物2を浮遊させた状態で、バインダ溶液4を風流方向に対して垂直に下部から噴霧している。 In the method shown in FIG. 2, the binder solution 4 is sprayed from the lower part perpendicular to the air flow direction in a state where the mixture 2 of Mg-based powder and Mg 2 Si particles is suspended in the container 1 with a relatively low air volume. ing.

また、図示していないが、バインダ溶液中にMgSi粒子を混合・攪拌し、このバインダ溶液を、温風によって浮遊したMg基粉末に対して噴霧して塗布することにより、同様にMg基粉末表面にバインダを介してMgSi粒子を付着・結合させることができる。 Although not shown in the figure, Mg 2 Si particles are mixed and stirred in the binder solution, and this binder solution is sprayed onto the Mg-based powder suspended by hot air and applied in the same manner. Mg 2 Si particles can be adhered and bonded to the powder surface via a binder.

また別の方法として、所定量のMg基粉末を容器に投入し、その中にバインダとなるオレイン酸をMg基粉末に対して重量比率で0.2〜0.5%添加した後、容器全体を振動あるいは回転させることで容器内のMg基粉末表面にオレイン酸を塗布する。その後、容器にMgSi粒子を添加し、再度容器を振動あるいは回転させて、オレイン酸が塗布されたMg基粉末表面にMgSi粒子を付着させる。このようにして、図3に示すようなMg基複合粉末が得られる。 As another method, a predetermined amount of Mg-based powder is put into a container, and oleic acid serving as a binder is added in an amount of 0.2 to 0.5% by weight with respect to the Mg-based powder. Is oscillated or rotated to apply oleic acid to the Mg-based powder surface in the container. Thereafter, Mg 2 Si particles are added to the container, and the container is vibrated or rotated again to adhere the Mg 2 Si particles to the surface of the Mg-based powder coated with oleic acid. In this way, an Mg-based composite powder as shown in FIG. 3 is obtained.

(B)機械的結合によるマグネシウム基複合粉末(本発明例ではない参考例)
一方、機械的に結合させる方法としては、Mg基粉末とMgSi粒子とを混合した状態でボールミルや混合粉砕ミル、ローラーコンパクタ、圧延機などに投入し、圧縮・せん断加工などを混合粉体に付与することで、Mg基粉末表面にMgSi粒子が機械的に結合・付着したMg基造粒物が得られる。必要に応じて、この造粒物から粉砕・篩粉機によって図4に示すような断面構造を有する所定の寸法・形状を有するMg基複合粉末を得ることができる。図4に示すMg基複合粉末15では、Mg基粉末7の表面にMgSi粒子8が機械的に結合して付着している。
(B) Magnesium-based composite powder by mechanical bonding (reference example which is not an example of the present invention)
On the other hand, as a mechanical bonding method, Mg-based powder and Mg 2 Si particles are mixed and put into a ball mill, mixed grinding mill, roller compactor, rolling mill, etc., and mixed powder is subjected to compression / shear processing, etc. To give an Mg-based granulated product in which Mg 2 Si particles are mechanically bonded and adhered to the surface of the Mg-based powder. If necessary, an Mg-based composite powder having a predetermined size and shape having a cross-sectional structure as shown in FIG. 4 can be obtained from this granulated product by a pulverizing / sieving machine. In the Mg-based composite powder 15 shown in FIG. 4, Mg 2 Si particles 8 are mechanically bonded and attached to the surface of the Mg-based powder 7.

(C)MgSi粒子分散Mg基焼結合金を用いたマグネシウム基複合粉末(本発明例ではない参考例)
(a)図5に示す方法
出発原料としてMg基粉末とMgSi粒子とを準備し、両者を所定の配合比率で混合・攪拌した後、金型内に充填し、加圧固化することでMgSi粒子が分散したMg基圧粉成形体を作製する。
(C) Magnesium-based composite powder using Mg 2 Si particle-dispersed Mg-based sintered alloy (reference example that is not an example of the present invention)
(A) Method shown in FIG. 5 By preparing Mg-based powder and Mg 2 Si particles as starting materials, mixing and stirring both at a predetermined blending ratio, filling in a mold and solidifying under pressure An Mg-based green compact in which Mg 2 Si particles are dispersed is prepared.

上記の圧粉成形体を不活性ガスあるいは非酸化性ガスあるいは真空中でMg基粉末の融点未満で加熱することで、Mg基粉末間での固相拡散によってMgSi粒子分散型Mg基焼結合金が得られる。 By heating the above compacted body in an inert gas or non-oxidizing gas or in a vacuum at a temperature lower than the melting point of the Mg-based powder, Mg 2 Si particle-dispersed Mg-based sintering is performed by solid-phase diffusion between the Mg-based powders. Bonds are obtained.

上記のMgSi粒子分散型Mg基焼結合金をボールミルやクラッシャーミルなどの粉砕機あるいは切削等の機械加工によって粉体化することにより、図6に示すような断面構造で所定の寸法・形状を有するMg基複合粉末16が得られる。図6に示すMg基複合粉末16では、主としてMg基粉末7の素地の内部にMgSi粒子が分散している。 The above-mentioned Mg 2 Si particle-dispersed Mg-based sintered alloy is pulverized by a pulverizer such as a ball mill or a crusher mill or by machining such as cutting to obtain a predetermined size and shape with a sectional structure as shown in FIG. Mg-based composite powder 16 having the following is obtained. In the Mg-based composite powder 16 shown in FIG. 6, Mg 2 Si particles are mainly dispersed inside the base of the Mg-based powder 7.

なお、上記のMgSi粒子分散型Mg基焼結合金において、体積基準でMgSi粒子の含有量が60%を超える場合、MgSi粒子の偏析・凝集が生じ、また切削加工における工具寿命の低下といった被削性の問題が生じる。かかる観点から、MgSi粒子の含有量は60%以下が望ましい。 In the above Mg 2 Si particle-dispersed Mg-based sintered alloy, when the content of Mg 2 Si particles exceeds 60% on a volume basis, segregation / aggregation of Mg 2 Si particles occurs, and a tool in cutting work There is a problem of machinability such as a reduction in life. From this viewpoint, the content of Mg 2 Si particles is desirably 60% or less.

(b)図7に示す方法
出発原料としてMg基粉末とSi粒子とを準備し、両者を所定の配合比率で混合・攪拌した後、金型内に充填し、加圧固化することでSi粒子が分散したMg基圧粉成形体を作製する。
(B) Method shown in FIG. 7 Mg base powder and Si particles are prepared as starting materials, mixed and stirred at a predetermined blending ratio, filled into a mold, and solidified under pressure to form Si particles. An Mg-based green compact with dispersed therein is prepared.

上記の圧粉成形体を不活性ガスあるいは非酸化性ガスあるいは真空中でMg基粉末の融点未満で加熱することにより、Si−Mg間での固相反応によるMgSi合成と同時に、Mg基粉末間での固相拡散によってMgSi粒子分散型Mg基焼結合金を得る。 By heating the above compacted body in an inert gas or non-oxidizing gas or in a vacuum below the melting point of the Mg-based powder, simultaneously with the synthesis of Mg 2 Si by solid-phase reaction between Si and Mg, Mg-based An Mg 2 Si particle-dispersed Mg-based sintered alloy is obtained by solid phase diffusion between powders.

上記のMgSi粒子分散型Mg基焼結合金をボールミルやクラッシャーミルなどの粉砕機あるいは切削等の機械加工によって粉体化することにより、図6に示すような構造で所定の寸法・形状を有するMgSi粒子を含むMg基複合粉末が得られる。 The above-mentioned Mg 2 Si particle-dispersed Mg-based sintered alloy is pulverized by a pulverizer such as a ball mill or a crusher mill or by machining such as cutting, so that a predetermined size and shape can be obtained with the structure shown in FIG. An Mg-based composite powder containing Mg 2 Si particles having is obtained.

(D)MgSi粒子分散Mg基鋳造合金を用いたマグネシウム基複合粉末(本発明例ではない参考例)
(a)図8に示す方法
出発原料として準備したMgSi粒子をMg基合金溶湯に投入して攪拌した後に、型内に鋳込む。型から取り出したMg基鋳造合金中には、添加したMgSi粒子が均一に分散している。
(D) Magnesium-based composite powder using Mg 2 Si particle-dispersed Mg-based cast alloy (reference example which is not an example of the present invention)
(A) Method shown in FIG. 8 Mg 2 Si particles prepared as a starting material are put into a molten Mg-based alloy and stirred, and then cast into a mold. The added Mg 2 Si particles are uniformly dispersed in the Mg-based cast alloy taken out from the mold.

上記の鋳造合金をボールミルやクラッシャーミルなどの粉砕機あるいは切削等の機械加工によって粉体化することにより、図6に示すような断面構造で所定の寸法・形状を有するMgSi粒子を含むMg基複合粉末が得られる。なお、MgSi粒子を投入した後のMg基合金溶湯の溶解温度は、Mg−Si平衡状態図においてMgとMgSiとの固相線温度未満とする。逆に固相線温度以上に加熱すると、MgSiがMg基合金溶湯中に固溶し、鋳込んだ後の凝固過程でMgSiが粗大・成長するといった問題が生じる。 The above cast alloy is pulverized by a pulverizer such as a ball mill or a crusher mill or by machining such as cutting, whereby Mg containing Si 2 Si particles having a predetermined size and shape as shown in FIG. A matrix composite powder is obtained. Note that the melting temperature of the molten Mg-based alloy after the Mg 2 Si particles are added is lower than the solidus temperature of Mg and Mg 2 Si in the Mg-Si equilibrium diagram. Conversely, when heated to a temperature higher than the solidus temperature, Mg 2 Si is dissolved in the molten Mg-based alloy, and the problem arises that Mg 2 Si is coarsened and grows in the solidification process after casting.

(b)図9に示す方法
出発原料としてMg基粉末とMgSi粒子とを準備し、両者を所定の配合比率で混合・攪拌した後、金型内に充填し、加圧固化してMgSi粒子が分散したMg基圧粉成形体を作製する。この圧粉成形体をるつぼ内に投入して加熱し、MgSi粒子が分散するMg基合金溶湯を作製する。十分に溶湯を攪拌した後に型内に鋳込む。
(B) Method shown in FIG. 9 Mg-based powder and Mg 2 Si particles are prepared as starting materials, and both are mixed and stirred at a predetermined blending ratio, then filled in a mold, and solidified under pressure to form Mg. 2 An Mg-based green compact with Si particles dispersed therein is prepared. This green compact is put into a crucible and heated to produce a molten Mg-based alloy in which Mg 2 Si particles are dispersed. After the molten metal is sufficiently stirred, it is cast into a mold.

型から取り出したMg基鋳造合金中には、添加したMgSi粒子が均一に分散しており、この合金をボールミルやクラッシャーミルなどの粉砕機あるいは切削等の機械加工によって粉体化することにより、図6に示すような断面構造で所定の寸法・形状を有するMgSi粒子を含むMg基複合粉末が得られる。 In the Mg-based casting alloy taken out from the mold, the added Mg 2 Si particles are uniformly dispersed, and this alloy is pulverized by a grinding machine such as a ball mill or a crusher mill or by machining such as cutting. A Mg-based composite powder containing Mg 2 Si particles having a predetermined size and shape with a cross-sectional structure as shown in FIG. 6 is obtained.

(c)図10に示す方法
出発原料としてMg基粉末とSi粒子とを準備し、両者を所定の配合比率で混合・攪拌した後、金型内に充填し、加圧固化することにより、Si粒子が分散したMg基圧粉成形体を作製する。
(C) Method shown in FIG. 10 Mg-based powder and Si particles are prepared as starting materials, mixed and stirred at a predetermined blending ratio, filled in a mold, and solidified under pressure to obtain Si. An Mg-based green compact with dispersed particles is prepared.

上記の圧粉成形体を不活性ガスあるいは非酸化性ガスあるいは真空中でMg基粉末の融点未満で加熱することにより、Si−Mg間での固相反応によるMgSi合成と同時に、Mg基粉末間での固相拡散によってMgSi粒子分散型Mg基焼結合金が得られる。 By heating the above compacted body in an inert gas or non-oxidizing gas or in a vacuum below the melting point of the Mg-based powder, simultaneously with the synthesis of Mg 2 Si by solid-phase reaction between Si and Mg, Mg-based A Mg 2 Si particle-dispersed Mg-based sintered alloy is obtained by solid phase diffusion between powders.

上記の焼結合金をるつぼ内に投入して加熱し、MgSi粒子が分散するMg基合金溶湯を作製する。十分に溶湯を攪拌した後に型内に鋳込む。型から取り出したMg基鋳造合金中には、添加したMgSi粒子が均一に分散しており、この合金をボールミルやクラッシャーミルなどの粉砕機あるいは切削等の機械加工によって粉体化することにより、図6に示すような断面構造で所定の寸法・形状を有するMgSi粒子を含むMg基複合粉末が得られる。 The above sintered alloy is put into a crucible and heated to produce a molten Mg-based alloy in which Mg 2 Si particles are dispersed. After the molten metal is sufficiently stirred, it is cast into a mold. In the Mg-based casting alloy taken out from the mold, the added Mg 2 Si particles are uniformly dispersed, and this alloy is pulverized by a grinding machine such as a ball mill or a crusher mill or by machining such as cutting. A Mg-based composite powder containing Mg 2 Si particles having a predetermined size and shape with a cross-sectional structure as shown in FIG. 6 is obtained.

なお、切削加工の際に用いた切削油はMg基複合粉末に付着するため、洗浄処理により切削油成分を除去した上で原料として用いる。   In addition, since the cutting oil used in the cutting process adheres to the Mg-based composite powder, it is used as a raw material after the cutting oil component is removed by a cleaning process.

(3)マグネシウム基合金素材
上記のMgSi粒子を含むMg基複合粉末を出発原料とし、これを成形固化することでMgSi粒子が分散するMg基合金が得られる。
(3) Magnesium-based alloy material An Mg-based alloy in which Mg 2 Si particles are dispersed can be obtained by using the Mg-based composite powder containing the above Mg 2 Si particles as a starting material and molding and solidifying this.

Mg基複合粉末を圧粉成形した後、これを加熱して押出加工あるいは鍛造加工あるいは圧延加工を施すが、その際の成形体の加熱温度は200〜400℃程度が好ましい。200℃を下回ると、押出加工が困難となる場合が生じる。他方、400℃を超えると、押出加工速度の高速化に伴い、押出加工後の素材の温度が上昇し、結晶粒の粗大化による強度低下を招く場合もある。   After compacting the Mg-based composite powder, it is heated and subjected to extrusion, forging, or rolling. The heating temperature of the molded body at that time is preferably about 200 to 400 ° C. When the temperature is lower than 200 ° C., extrusion may become difficult. On the other hand, when the temperature exceeds 400 ° C., the temperature of the material after extrusion increases with an increase in the extrusion speed, which may cause a decrease in strength due to coarsening of crystal grains.

上記のようにして得られたMg基合金の素地中には、微細なMgSi粒子が均一に分散している。合金中に分散するMgSi粒子の粒子径は、Mg基複合粉末中の粒子径と同じであることから、Mg基合金中のMgSi粒子の最大粒子径は50μm以下、好ましくは20μm以下、さらに好ましくは5μm以下である。またMg基合金におけるMgSiの含有量は、体積基準で5〜60%である。その結果、高剛性かつ高強度を有するMg基合金の製造が可能となる。 Fine Mg 2 Si particles are uniformly dispersed in the base of the Mg-based alloy obtained as described above. Since the particle diameter of the Mg 2 Si particles dispersed in the alloy is the same as the particle diameter in the Mg-based composite powder, the maximum particle diameter of the Mg 2 Si particles in the Mg-based alloy is 50 μm or less, preferably 20 μm or less. More preferably, it is 5 μm or less. The content of Mg 2 Si in the Mg-based alloy is 5 to 60% on a volume basis. As a result, it is possible to produce an Mg-based alloy having high rigidity and high strength.

純Mg粉末(純度99.9%,平均粒子径350μm)とSi粉末(純度99.9%,平均粒子径22μm)を準備し、両粉末をMg:Si=2:1(モル比)で配合した後、ボールミルを用いて30分間混合処理を行った。その混合粉末をカーボン製型(内径35mmφ)に充填した状態で放電プラズマ焼結装置にセットして、真空中で圧力100MPa,試料温度600℃となるように調整して15分間の焼結を施した。その結果、MgSiからなる外径35mmφ,厚み12mmの円盤状試料を得た。 Prepare pure Mg powder (purity 99.9%, average particle diameter 350 μm) and Si powder (purity 99.9%, average particle diameter 22 μm), and blend both powders with Mg: Si = 2: 1 (molar ratio) Then, a mixing process was performed for 30 minutes using a ball mill. The mixed powder is set in a discharge plasma sintering apparatus filled in a carbon mold (inner diameter: 35 mmφ), adjusted to a pressure of 100 MPa and a sample temperature of 600 ° C. in a vacuum, and sintered for 15 minutes. did. As a result, a disk-shaped sample made of Mg 2 Si and having an outer diameter of 35 mmφ and a thickness of 12 mm was obtained.

上記の円盤状試料をジェットミル加工機によって粉砕し、最大粒子径が15μm以下となるように微細粉砕・篩粉処理を行うことで出発原料であるMgSi粒子を作製した。他方、Mg基粉末として直径2mm程度のAZ31(公称組成Mg−3Al−1Zn/mass%)合金粉末を出発原料として準備した。 The above disk-shaped sample was pulverized with a jet mill and finely pulverized and sieved so that the maximum particle size was 15 μm or less, thereby preparing Mg 2 Si particles as a starting material. On the other hand, an AZ31 (nominal composition Mg-3Al-1Zn / mass%) alloy powder having a diameter of about 2 mm was prepared as a Mg-based powder as a starting material.

図5に示す方法に基づき、先ずAZ31粉末とMgSi粒子とを所定の比率で混合し、直径60mmφの金型に充填して400MPaの圧力を付与して圧粉成形体を作製した。この圧粉成形体に対して窒素ガス雰囲気中で550℃×1時間の焼結を施すことにより、MgSi粒子が分散したAZ31焼結合金を得た。そして切削加工によって、この焼結合金から直径0.5〜3mm程度のMg基複合粉末を作製した。 Based on the method shown in FIG. 5, AZ31 powder and Mg 2 Si particles were first mixed at a predetermined ratio, filled in a metal mold having a diameter of 60 mmφ, and a pressure of 400 MPa was applied to produce a compacted body. By sintering this compacted body in a nitrogen gas atmosphere at 550 ° C. for 1 hour, an AZ31 sintered alloy in which Mg 2 Si particles were dispersed was obtained. Then, an Mg based composite powder having a diameter of about 0.5 to 3 mm was produced from this sintered alloy by cutting.

Mg基複合粉末全体に対してMgSi粒子の含有量が体積基準で16%とした場合における複合粉末の断面組識観察結果を図11に示す。粒子径が15μm以下のMgSi粒子は偏析や凝集することなくAZ31素地中に均一に分散しており、本発明によるMg基複合粉末が得られた。 FIG. 11 shows a cross-sectional organization observation result of the composite powder when the content of Mg 2 Si particles is 16% on a volume basis with respect to the entire Mg-based composite powder. Mg 2 Si particles having a particle size of 15 μm or less were uniformly dispersed in the AZ31 substrate without segregation or aggregation, and the Mg-based composite powder according to the present invention was obtained.

図7に示す方法に基づき、先ず純Mg粉末(純度99.9%,平均粒子径350μm)とSi粉末(純度99.9%,平均粒子径22μm)を準備し、両粉末を所定の比率で配合した後、ボールミルを用いて30分間混合処理を行った。その混合粉末を直径60mmφの金型に充填して400MPaの圧力を付与して圧粉成形体を作製した。   First, pure Mg powder (purity 99.9%, average particle size 350 μm) and Si powder (purity 99.9%, average particle size 22 μm) are prepared based on the method shown in FIG. After blending, the mixture was mixed for 30 minutes using a ball mill. The mixed powder was filled in a mold having a diameter of 60 mmφ, and a pressure of 400 MPa was applied to produce a green compact.

上記の圧粉成形体を真空中で590℃×1時間の加熱処理を施すことにより、SiとMgとの固相反応によるMgSi粒子を合成し、同時にMg粉末間での焼結を促進させることでMgSi粒子分散Mg焼結材を得た。そしてボールミルによってこの焼結素材を粉砕して直径0.3〜1mm程度のMg基複合粉末を作製した。 By heat-treating the above green compact in a vacuum at 590 ° C for 1 hour, Mg 2 Si particles are synthesized by solid-phase reaction between Si and Mg, and at the same time, sintering between Mg powders is promoted. Thus, an Mg 2 Si particle-dispersed Mg sintered material was obtained. The sintered material was pulverized by a ball mill to produce a Mg-based composite powder having a diameter of about 0.3 to 1 mm.

Mg基複合粉末全体に対してMgSi粒子の含有量が体積基準で7%とした場合におけるMg基複合粉末のX線回折結果を図12に示す。MgとMgSiのピークのみが検出されており、出発原料に用いたSiのピークはないことから、Mgと完全に反応してMgSiの合成に消費された。またMgOのピークもないことから焼結過程における酸化も生じていない。 FIG. 12 shows the X-ray diffraction result of the Mg-based composite powder when the content of Mg 2 Si particles is 7% on the volume basis with respect to the entire Mg-based composite powder. Since only the peaks of Mg and Mg 2 Si were detected and there was no Si peak used as a starting material, it completely reacted with Mg and consumed for the synthesis of Mg 2 Si. Further, since there is no MgO peak, no oxidation occurs during the sintering process.

また、光学顕微鏡による組識観察の結果、粉末素地中に分散するMgSiの平均粒子径は約24μmであり、出発原料であるSi粉末の粒子径と同等であることから、上記のMgとの反応過程において顕著な粗大粒成長は生じていない。その結果、本発明が規定するMgSi粒子が均一に素地中に分散するMg基複合粉末が得られた。 As a result of the organization observation with an optical microscope, the average particle diameter of Mg 2 Si dispersed in the powder base is about 24 μm, which is equivalent to the particle diameter of the Si powder as the starting material. No noticeable coarse grain growth occurred in the reaction process. As a result, an Mg-based composite powder in which Mg 2 Si particles defined by the present invention were uniformly dispersed in the substrate was obtained.

純Mg粉末(純度99.9%,平均粒子径350μm)とSi粉末(純度99.9%,平均粒子径22μm)を準備し、両粉末をMg:Si=2:1(モル比)で配合した後、ボールミルを用いて30分間混合処理を行った。その混合粉末をカーボン製型(内径35mmφ)に充填した状態で放電プラズマ焼結装置にセットして、真空中で圧力100MPa、試料温度600℃となるように調整して30分間の焼結を施した。その結果、MgSiからなる外径35mmφ,厚み18mmの円盤状試料を得た。 Prepare pure Mg powder (purity 99.9%, average particle diameter 350 μm) and Si powder (purity 99.9%, average particle diameter 22 μm), and blend both powders with Mg: Si = 2: 1 (molar ratio) Then, a mixing process was performed for 30 minutes using a ball mill. The mixed powder is filled in a carbon mold (inner diameter: 35 mmφ) and set in a discharge plasma sintering apparatus, adjusted to a pressure of 100 MPa and a sample temperature of 600 ° C. in a vacuum, and sintered for 30 minutes. did. As a result, a disk-shaped sample made of Mg 2 Si and having an outer diameter of 35 mmφ and a thickness of 18 mm was obtained.

上記の円盤状試料をジェットミル加工機によって粉砕し、最大粒子径が10μm以下となるように粉砕・篩粉処理を行い、出発原料であるMgSi粒子を作製した。 The above disk-shaped sample was pulverized with a jet mill processing machine, and pulverized and sieved so that the maximum particle size was 10 μm or less, thereby producing Mg 2 Si particles as a starting material.

図8に示す方法に基づき、先ずカーボン製坩堝にAZ61(公称組成Mg−6Al−1Zn/mass%)合金溶湯を準備した。溶湯温度を720〜740℃で管理した状態で上記のMgSi粒子を所定の比率で添加して十分に攪拌した後に、金型に鋳込み、MgSi粒子が分散するAZ61鋳造合金素材を作製した。 Based on the method shown in FIG. 8, first, AZ61 (nominal composition Mg-6Al-1Zn / mass%) alloy melt was prepared in a carbon crucible. In a state where the molten metal temperature is controlled at 720 to 740 ° C., the above-mentioned Mg 2 Si particles are added at a predetermined ratio and sufficiently stirred, and then cast into a mold to produce an AZ61 cast alloy material in which the Mg 2 Si particles are dispersed. did.

上記の鋳造合金から、切削加工によって直径0.5〜3mm程度のAZ61合金からなるMg基複合粉末を作製した。表1に鋳造合金素材全体に対するMgSi粒子の含有量(体積基準)を示す。また、得られた複合粉末の断面組識観察の結果と粉末を作製する際の切削加工における超硬製工具の損傷状況を同表に示す。 From the above cast alloy, an Mg-based composite powder made of an AZ61 alloy having a diameter of about 0.5 to 3 mm was produced by cutting. Table 1 shows the content (volume basis) of Mg 2 Si particles with respect to the entire cast alloy material. Moreover, the result of the cross-sectional organization observation of the obtained composite powder and the damage situation of the cemented carbide tool in the cutting work when producing the powder are shown in the same table.

本発明例である試料No.1〜5では、適正量のMgSiを含むことでMg基複合粉末においてMgSi粒子の偏析や凝集は生じることなく、MgSi粒子は素地中に均一に分散している。また、切削加工によりMg基複合粉末を作製する際の工具摩耗(損傷状況)に関しても僅かに軽微な擦れ跡が確認されるものの、問題ない状態である。 Sample No. which is an example of the present invention. In Nos. 1 to 5, Mg 2 Si particles are uniformly dispersed in the substrate without containing segregation or aggregation of Mg 2 Si particles in the Mg-based composite powder by containing an appropriate amount of Mg 2 Si. In addition, although slight slight rubbing traces are confirmed with respect to tool wear (damage condition) when producing the Mg-based composite powder by cutting, there is no problem.

他方、比較例である試料No.6においては、MgSi含有量が65%と多いために、粉末素地においてMgSi粒子の凝集が発生し、また切削加工により粉末を作製する際において鋳造合金が硬質のMgSiを多量に含むために、工具において深い損傷が発生すると同時に、その損傷部分にMgが凝着するといった問題が生じる。 On the other hand, sample No. In No. 6, since the Mg 2 Si content is as high as 65%, aggregation of Mg 2 Si particles occurs in the powder base, and the casting alloy produces a large amount of hard Mg 2 Si when producing powder by cutting. Therefore, there is a problem that deep damage occurs in the tool and Mg is adhered to the damaged portion.

純Mg粉末(純度99.9%,平均粒子径350μm)とSi粉末(純度99.9%,平均粒子径22μm)を準備し、両粉末をMg:Si=2:1(モル比)で配合した後、ボールミルを用いて30分間混合処理を行った。   Prepare pure Mg powder (purity 99.9%, average particle diameter 350 μm) and Si powder (purity 99.9%, average particle diameter 22 μm), and blend both powders with Mg: Si = 2: 1 (molar ratio) Then, a mixing process was performed for 30 minutes using a ball mill.

上記の混合粉末をカーボン製型(内径35mmφ)に充填した状態で放電プラズマ焼結装置にセットして、真空中で圧力100MPa,試料温度600℃となるように調整して15分間の焼結を施した。その結果、MgSiからなる外径35mmφ,厚み12mmの円盤状試料を得た。 The above mixed powder is set in a discharge plasma sintering apparatus filled in a carbon mold (inner diameter: 35 mmφ), adjusted to a pressure of 100 MPa and a sample temperature of 600 ° C. in a vacuum, and sintered for 15 minutes. gave. As a result, a disk-shaped sample made of Mg 2 Si and having an outer diameter of 35 mmφ and a thickness of 12 mm was obtained.

上記の円盤状試料をジェットミル加工機によって粉砕した。その際に粉砕加工条件を変更することで最大粒子径が異なるMgSi粒子を作製した。 The above disk-shaped sample was pulverized by a jet mill processing machine. At that time, Mg 2 Si particles having different maximum particle diameters were produced by changing the pulverization conditions.

図9に示す方法に基づき、Mg基粉末として直径3mmのAM60(公称組成Mg−6Al−0.5Mn/mass%)合金粉末を出発原料として準備し、これとMgSi粒子を所定の比率で混合し、直径60mmφの金型に充填して400MPaの圧力を付与して圧粉成形体を作製した。 Based on the method shown in FIG. 9, an AM60 (nominal composition Mg-6Al-0.5Mn / mass%) alloy powder having a diameter of 3 mm is prepared as a Mg-based powder as a starting material, and Mg 2 Si particles are mixed at a predetermined ratio. The mixture was mixed, filled in a mold having a diameter of 60 mmφ, and a pressure of 400 MPa was applied to produce a green compact.

次に、カーボン製坩堝内のAM60合金溶湯(溶湯温度;720〜740℃)に圧粉成形体を投入して十分に攪拌した後に、金型に鋳込み、MgSi粒子が分散するAM60鋳造合金素材を作製した。そして切削加工によって、この鋳造合金からAM60合金を素地とするMg基複合粉末(直径;0.5〜3mm)を作製した。なお、得られたMg基鋳造合金におけるMgSiの含有量は体積基準で22%である。 Next, after the powder compact is put into the AM60 alloy melt (melt temperature: 720 to 740 ° C.) in the carbon crucible and stirred sufficiently, it is cast into a mold and the AM60 cast alloy in which Mg 2 Si particles are dispersed. The material was made. Then, an Mg-based composite powder (diameter: 0.5 to 3 mm) having an AM60 alloy as a base material was produced from the cast alloy by cutting. The content of Mg 2 Si in the Mg based casting alloy obtained is 22% by volume.

上記のMg基複合粉末素地中に分散するMgSi粒子の最大粒子径を算出すべく、複合粉末の断面構造を光学顕微鏡により観察し、その結果から画像解析によりMgSi粒子の最大粒子径を求めた。その結果を表2に示す。また鋳造合金からMg基複合粉末を作製する際の切削加工における超硬製工具の損傷状況を同表に示す。 In order to calculate the maximum particle size of the Mg 2 Si particles dispersed in the Mg-based composite powder matrix, the cross-sectional structure of the composite powder is observed with an optical microscope, and from the results, the maximum particle size of the Mg 2 Si particles is analyzed by image analysis. Asked. The results are shown in Table 2. Moreover, the damage state of the cemented carbide tool in the cutting process at the time of producing Mg-based composite powder from a cast alloy is shown in the same table.

本発明例である試料No.7〜10では、鋳造合金において適正な粒子径を有するMgSiを含むことで、粉末を切削加工によって作製する際の工具摩耗・損傷は生じることなく、良好な表面性状である。 Sample No. which is an example of the present invention. In Nos. 7 to 10, by containing Mg 2 Si having an appropriate particle size in the cast alloy, tool wear and damage when producing powder by cutting are not caused, and the surface properties are good.

他方、比較例である試料No.11〜12においては、鋳造合金に含まれるMgSiの最大粒子径が50μmを超えて大きいために、切削加工の際に工具において深い損傷が発生すると同時に、その損傷部分にMgが凝着するといった問題が生じる。 On the other hand, sample No. In Nos. 11 to 12, since the maximum particle diameter of Mg 2 Si contained in the cast alloy is larger than 50 μm, deep damage occurs in the tool during cutting, and Mg adheres to the damaged portion at the same time. Problems arise.

上記の実施例3および実施例4に記載のMg基複合粉末を出発原料とし、金型成形により各粉末の圧粉体を作製した。各圧粉体を350℃に制御した窒素ガス雰囲気中で5分間加熱保持した後、直ちに押出加工(押出比37)を施して押出素材を作製した。各押出素材から引張試験片を作製し、常温での引張特性(引張強さと破断伸び)を評価すると共に、ヤング率を測定した。その結果を表3に示す。   Using the Mg-based composite powder described in Example 3 and Example 4 as a starting material, green compacts of each powder were produced by molding. Each green compact was heated and held in a nitrogen gas atmosphere controlled at 350 ° C. for 5 minutes, and then immediately subjected to extrusion (extrusion ratio 37) to produce an extruded material. Tensile test pieces were prepared from each extruded material, the tensile properties (tensile strength and elongation at break) at room temperature were evaluated, and Young's modulus was measured. The results are shown in Table 3.

本発明例である試料No.1〜5および7〜10においては、優れた強度と靭性を有するマグネシウム基合金が得られており、特に試料No.4および5ではアルミニウム合金に匹敵する高剛性を有する。また、試料No.7および8に示すように合金中に分散するMgSi粒子の最大粒子径が5μmあるいは20μmを下回るような微細な場合には、強度に加えて伸びも著しく増加する。 Sample No. which is an example of the present invention. In 1-5 and 7-10, magnesium-based alloys having excellent strength and toughness are obtained. 4 and 5 have high rigidity comparable to aluminum alloys. Sample No. As shown in 7 and 8, when the maximum particle size of Mg 2 Si particles dispersed in the alloy is as fine as less than 5 μm or 20 μm, the elongation increases remarkably in addition to the strength.

他方、比較例である試料No.6においては、MgSi含有量が多いためにMg基合金が脆くなり、機械加工による引張試験片の作製が困難となった。また比較例である試料No.11〜12においては、MgSiの最大粒子径が50μmを超えて大きいためにMg基合金の靭性が低下し、併せて引張強さも低下した。 On the other hand, sample No. In No. 6, since the Mg 2 Si content was large, the Mg-based alloy became brittle, making it difficult to produce a tensile test piece by machining. Sample No. which is a comparative example. In Nos. 11 to 12, since the maximum particle diameter of Mg 2 Si was larger than 50 μm, the toughness of the Mg-based alloy was lowered, and the tensile strength was also lowered.

純Mg粉末(純度99.9%,平均粒子径350μm)とSi粉末(純度99.9%,平均粒子径22μm)を準備し、両粉末をMg:Si=2:1(モル比)で配合した後、ボールミルを用いて30分間混合処理を行った。その混合粉末をカーボン製型(内径35mmφ)に充填した状態で放電プラズマ焼結装置にセットして、真空中で圧力100MPa,試料温度600℃となるように調整して30分間の焼結を施した。その結果、MgSiからなる外径35mmφ,厚み18mmの円盤状試料を得た。 Prepare pure Mg powder (purity 99.9%, average particle diameter 350 μm) and Si powder (purity 99.9%, average particle diameter 22 μm), and blend both powders with Mg: Si = 2: 1 (molar ratio) Then, a mixing process was performed for 30 minutes using a ball mill. The mixed powder is set in a discharge plasma sintering apparatus filled in a carbon mold (inner diameter: 35 mmφ), adjusted to a pressure of 100 MPa and a sample temperature of 600 ° C. in a vacuum, and sintered for 30 minutes. did. As a result, a disk-shaped sample made of Mg 2 Si and having an outer diameter of 35 mmφ and a thickness of 18 mm was obtained.

上記の円盤状試料をジェットミル加工機によって粉砕し、最大粒子径が10μm以下となるように粉砕・篩粉処理を行い、出発原料であるMgSi粒子を作製した。 The above disk-shaped sample was pulverized with a jet mill processing machine, and pulverized and sieved so that the maximum particle size was 10 μm or less, thereby producing Mg 2 Si particles as a starting material.

次に、容積350mlのビニール製容器に粒子径0.5〜2mmの純Mg粉末(純度99%)を200g投入し、その容器の中に0.6gのオレイン酸を添加した状態で振動ミルを用いて容器を15分間振動させることで、容器内の純Mg粉末の表面にオレイン酸を均一に塗布した。さらにこの容器の中に上記のMgSi粒子を添加(混合粉末全体に対して体積基準で13%)し、更に15分間振動を与えて純Mg粉末表面にMgSi粒子を付着させることにより、本発明が規定するMg基複合粉末を作製した。 Next, 200 g of pure Mg powder (purity 99%) with a particle diameter of 0.5 to 2 mm is put into a 350 ml capacity vinyl container, and a vibration mill is added with 0.6 g of oleic acid added to the container. The container was vibrated for 15 minutes to uniformly apply oleic acid to the surface of the pure Mg powder in the container. Furthermore, by adding the above Mg 2 Si particles into this container (13% on a volume basis with respect to the whole mixed powder) and further applying vibration for 15 minutes to adhere the Mg 2 Si particles to the surface of the pure Mg powder. The Mg-based composite powder defined by the present invention was produced.

上記のようにして得られたMg基複合粉末のX線回折結果を図13に示す。投入原料であるMgとMgSiのピークのみが検出されており、また走査型電子顕微鏡観察の結果においても微細なMgSi粒子が粗大な純Mg粉末表面に均一に付着していることが確認された。以上のことから、オレイン酸をバインダとして用いた場合でもMg基複合粉末を作製できることが認められる。 The X-ray diffraction results of the Mg-based composite powder obtained as described above are shown in FIG. Only the peaks of Mg and Mg 2 Si, which are input materials, are detected, and in the result of observation with a scanning electron microscope, fine Mg 2 Si particles are uniformly attached to the surface of coarse pure Mg powder. confirmed. From the above, it is recognized that Mg-based composite powder can be produced even when oleic acid is used as a binder.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変更を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and changes can be made to the illustrated embodiment within the same range as the present invention or within an equivalent range.

本発明によって得られるマグネシウム基合金は、従来のマグネシウム合金の性能上の課題である低剛性を大幅に向上させることでき、エンジン部品やミッション部品などの自動車用部品や構造用部材といった高剛性が求められる用途に有利に利用され得る。   The magnesium-based alloy obtained by the present invention can greatly improve the low rigidity, which is a performance problem of conventional magnesium alloys, and requires high rigidity such as automotive parts and structural members such as engine parts and mission parts. Can be advantageously used in certain applications.

Mg基粉末の表面にバインダを用いてMgSi粒子を付着させる方法の一例を示す図解図である。Using binder on the surface of the Mg based powder is an illustrative view showing one example of a method of attaching the Mg 2 Si particles. Mg基粉末の表面にバインダを用いてMgSi粒子を付着させる方法の他の例を示す図解図である。Using binder on the surface of the Mg based powder is an illustrative view showing another example of a method of attaching the Mg 2 Si particles. Mg基粉末の表面にMgSi粒子を付着したマグネシウム基複合粉末の一例を示す図解図である。On the surface of the Mg based powder is an illustrative view showing one example of the magnesium based composite powder attached the Mg 2 Si particles. Mg基粉末の表面にMgSi粒子を付着したマグネシウム基複合粉末の他の例を示す図解図である。On the surface of the Mg based powder is an illustrative view showing another example of the magnesium based composite powder attached the Mg 2 Si particles. マグネシウム基複合粉末を製造する方法の一例を示す図である。It is a figure which shows an example of the method of manufacturing a magnesium group composite powder. Mg基粉末の素地中にMgSi粒子を分散させたマグネシウム基複合粉末の一例を示す図解図である。The material mixture of the Mg based powder is an illustrative view showing one example of the magnesium based composite powder is dispersed Mg 2 Si particles. マグネシウム基複合粉末を製造する方法の他の例を示す図である。It is a figure which shows the other example of the method of manufacturing a magnesium group composite powder. マグネシウム基複合粉末を製造する方法のさらに他の例を示す図である。It is a figure which shows the further another example of the method of manufacturing a magnesium group composite powder. マグネシウム基複合粉末を製造する方法のさらに他の例を示す図である。It is a figure which shows the further another example of the method of manufacturing a magnesium group composite powder. マグネシウム基複合粉末を製造する方法のさらに他の例を示す図である。It is a figure which shows the further another example of the method of manufacturing a magnesium group composite powder. Mg基合金素地中にMgSi粒子を分散させているマグネシウム基複合粉末の断面組織の一例を示す顕微鏡写真である。The Mg-based alloy in the matrix is a microphotograph showing an example of a cross section structure of a magnesium based composite powder that is dispersed Mg 2 Si particles. マグネシウム基複合粉末のX線回折結果の一例を示す図である。It is a figure which shows an example of the X-ray-diffraction result of magnesium group composite powder. マグネシウム基複合粉末のX線回折結果の他の例を示す図である。It is a figure which shows the other example of the X-ray-diffraction result of magnesium group composite powder.

符号の説明Explanation of symbols

1 容器、2 混合物、3 温風、4 バインダ溶液、7 Mg基粉末、8 MgSi粒子、9 バインダ、15 マグネシウム基複合粉末、16 マグネシウム基複合粉末。 1 container, 2 mixture, 3 warm air, 4 binder solution, 7 Mg-based powder, 8 Mg 2 Si particles, 9 binder, 15 magnesium-based composite powder, 16 magnesium-based composite powder.

Claims (8)

マグネシウム基粉末と、前記マグネシウム基粉末の表面にバインダを介して付着しているマグネシウムシリサイド(MgSi)粒子とを備えた、マグネシウム基複合粉末。 A magnesium-based composite powder comprising a magnesium-based powder and magnesium silicide (Mg 2 Si) particles attached to the surface of the magnesium-based powder via a binder . 前記MgSiの最大粒子径が50μm以下である、請求項1に記載のマグネシウム基複合粉末。 The magnesium-based composite powder according to claim 1, wherein the maximum particle diameter of the Mg 2 Si is 50 µm or less. 前記MgSiの最大粒子径が20μm以下である、請求項1に記載のマグネシウム基複合粉末。 The magnesium-based composite powder according to claim 1, wherein the maximum particle diameter of the Mg 2 Si is 20 μm or less. 前記MgSiの最大粒子径が5μm以下である、請求項1に記載のマグネシウム基複合粉末。 The magnesium-based composite powder according to claim 1, wherein the maximum particle diameter of the Mg 2 Si is 5 µm or less. 当該マグネシウム基複合粉末に対する前記MgSiの含有量は、体積基準で5〜60%である、請求項1に記載のマグネシウム基複合粉末。 2. The magnesium-based composite powder according to claim 1, wherein a content of the Mg 2 Si with respect to the magnesium-based composite powder is 5 to 60% on a volume basis. 請求項1〜5のいずれかに記載のマグネシウム基複合粉末を圧粉成形して焼結し、MgSi粒子が素地中に分散している、マグネシウム基合金素材。 A magnesium-based alloy material in which the magnesium-based composite powder according to any one of claims 1 to 5 is compacted and sintered, and Mg 2 Si particles are dispersed in the substrate. マグネシウム(Mg)基粉末およびマグネシウムシリサイド(MgSi)粒子を準備する工程と、
前記Mg基粉末の表面にバインダを塗布する工程と、
前記バインダを塗布したMg基粉末と前記MgSi粒子とを混合・攪拌して、Mg基粉末の表面にMgSi粒子を結合させる工程とを備えた、マグネシウム基複合粉末の製造方法。
Preparing a magnesium (Mg) based powder and magnesium silicide (Mg 2 Si) particles;
Applying a binder to the surface of the Mg-based powder;
The binder of the coated Mg based powder the Mg 2 Si particles and mixed and stirred to the a, and a step of bonding the Mg 2 Si particles to the surface of the Mg based powder, a manufacturing method of magnesium based composite powder.
請求項1〜5のいずれかに記載のマグネシウム基複合粉末を圧粉成形する工程と、
前記圧粉成形体を200〜400℃の不活性ガス雰囲気または非酸化性ガス雰囲気で加熱する工程と、
前記加熱後直ちに前記圧粉成形体を押出加工して緻密化する工程とを備えた、マグネシウム基合金素材の製造方法。
A step of compacting the magnesium-based composite powder according to claim 1;
Heating the green compact in an inert gas atmosphere or non-oxidizing gas atmosphere at 200 to 400 ° C .;
A method for producing a magnesium-based alloy material, comprising a step of extruding and densifying the green compact immediately after the heating.
JP2004202181A 2004-07-08 2004-07-08 Magnesium-based composite powder, magnesium-based alloy material, and production method thereof Expired - Fee Related JP4686690B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004202181A JP4686690B2 (en) 2004-07-08 2004-07-08 Magnesium-based composite powder, magnesium-based alloy material, and production method thereof
US11/631,633 US20080019857A1 (en) 2004-07-08 2005-06-27 Magnesium Based Composite Powder, Magnesium Based Alloy Base Material and Manufacturing Method Thereof
CNA2005800225841A CN1980760A (en) 2004-07-08 2005-06-27 Magnesium-base composite powder, magnesium-base alloy material and method for production thereof
PCT/JP2005/011744 WO2006006379A1 (en) 2004-07-08 2005-06-27 Magnesium-base composite powder, magnesium-base alloy material and method for production thereof
EP05765162A EP1772213A1 (en) 2004-07-08 2005-06-27 Magnesium-base composite powder, magnesium-base alloy material and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202181A JP4686690B2 (en) 2004-07-08 2004-07-08 Magnesium-based composite powder, magnesium-based alloy material, and production method thereof

Publications (2)

Publication Number Publication Date
JP2006022380A JP2006022380A (en) 2006-01-26
JP4686690B2 true JP4686690B2 (en) 2011-05-25

Family

ID=35783726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202181A Expired - Fee Related JP4686690B2 (en) 2004-07-08 2004-07-08 Magnesium-based composite powder, magnesium-based alloy material, and production method thereof

Country Status (5)

Country Link
US (1) US20080019857A1 (en)
EP (1) EP1772213A1 (en)
JP (1) JP4686690B2 (en)
CN (1) CN1980760A (en)
WO (1) WO2006006379A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539577B2 (en) * 2006-02-08 2010-09-08 Jfeスチール株式会社 Method for producing iron-based powder mixture
CN102477526B (en) * 2010-11-22 2015-02-04 鸿富锦精密工业(深圳)有限公司 Shell and manufacture method thereof
US9053860B2 (en) 2010-12-24 2015-06-09 Showa Denko K.K. Tungsten powder, anode body for capacitors, and electrolytic capacitor
CN102417999B (en) * 2011-12-09 2013-06-12 中国科学院长春应用化学研究所 Method for preparing magnesium alloy
CN103451463B (en) * 2013-08-27 2015-11-25 朱育盼 A kind of Mg 2si strengthens the preparation method of Mg alloy composite materials
CN103451464B (en) * 2013-08-27 2015-11-25 朱育盼 A kind of Mg 2the Mg alloy composite materials that Si strengthens
CN103691934A (en) * 2013-12-18 2014-04-02 浙江帕特尼触头有限公司 Powder granulating method
CN106807937A (en) * 2015-12-02 2017-06-09 镇江市润州金山金属粉末厂 A kind of high-strength aluminum-magnesium alloy powder
CN105603228B (en) * 2016-01-28 2017-08-01 大连理工大学 A kind of preparation method of in-situ nano particle reinforced magnesium base compound material
CN108568522B (en) * 2018-04-27 2021-07-16 安徽省瀚海新材料股份有限公司 Method for recycling and efficiently utilizing neodymium iron boron ultrafine powder
CN115807176B (en) * 2022-12-29 2023-08-11 中北大学 Preparation method of magnesium alloy combining spark plasma sintering and free fluid rapid cooling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249801A (en) * 2001-02-26 2002-09-06 National Institute Of Advanced Industrial & Technology Method for manufacturing corrosion resistant magnesium alloy and material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2448243A (en) * 1944-06-15 1948-08-31 Permanente Metals Corp Process of producing magnesium powder by cold rolling and grinding
US2978798A (en) * 1955-08-31 1961-04-11 Metallgesellschaft Ag Aluminum and silicon containing metal powder and method of producing workpieces therefrom
US5249621A (en) * 1988-11-10 1993-10-05 Lanxide Technology Company, Lp Method of forming metal matrix composite bodies by a spontaneous infiltration process, and products produced therefrom
JPH04198408A (en) * 1990-11-29 1992-07-17 Sumitomo Metal Ind Ltd Coating method with intermetallic compound
JP3622989B2 (en) * 1993-03-30 2005-02-23 三井金属鉱業株式会社 Molded member made of magnesium alloy and manufacturing method thereof
JPH0892603A (en) * 1994-09-28 1996-04-09 Suzuki Motor Corp Intermetallic compound-dispersed al alloy and its powder and their production
US5700962A (en) * 1996-07-01 1997-12-23 Alyn Corporation Metal matrix compositions for neutron shielding applications
EP1433862A4 (en) * 2001-09-25 2006-05-31 Toudai Tlo Ltd Magnesium base composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249801A (en) * 2001-02-26 2002-09-06 National Institute Of Advanced Industrial & Technology Method for manufacturing corrosion resistant magnesium alloy and material

Also Published As

Publication number Publication date
JP2006022380A (en) 2006-01-26
WO2006006379A1 (en) 2006-01-19
CN1980760A (en) 2007-06-13
EP1772213A1 (en) 2007-04-11
EP1772213A8 (en) 2007-08-15
US20080019857A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
US9869006B2 (en) Intermetallic compound ultrafine particle reinforced metal-based composite material and preparation method thereof
EP1772213A1 (en) Magnesium-base composite powder, magnesium-base alloy material and method for production thereof
JP4467641B2 (en) Al2Ca-containing magnesium-based composite material
US5143795A (en) High strength, high stiffness rapidly solidified magnesium base metal alloy composites
JP2010500469A (en) Metal injection molding method
JP4215126B2 (en) Magnesium-based composite material and method for producing the same
JP2010059481A (en) METHOD FOR PRODUCING Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL
JP2006063400A (en) Aluminum-based composite material
JPH05501429A (en) Dual processing of aluminum-based metal matrix composites
JPH0841571A (en) Aluminum alloy and its production
JP4730338B2 (en) COMPOSITE MATERIAL FOR INJECTION MOLDING COMPRISING CERAMIC DISPERSED MAGNESIUM COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
CN102021473A (en) Method for preparing Fe3Al-Al2O3 composite material
JP2009242943A (en) Magnesium-based composite material
JPWO2004062837A1 (en) Magnesium composite powder and method for producing the same, magnesium-based composite material and method for producing the same
JP5665037B2 (en) Binary aluminum alloy powder sintered material and method for producing the same
US5149496A (en) Method of making high strength, high stiffness, magnesium base metal alloy composites
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPH06330214A (en) Aluminum power alloy having high hardness and wear resistnce and its production
JP2509052B2 (en) Nitrogen compound aluminum sintered alloy and method for producing the same
JP7266269B2 (en) Mg-based sintered composite material, manufacturing method thereof, and sliding member
JPH0578708A (en) Production of aluminum-based grain composite alloy
JPH10310838A (en) Superhard composite member and its production
JPH08193236A (en) Aluminum alloy with high toughness and wear resistance and its production
JP4126742B2 (en) Method for producing SiC particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees