WO2010026793A1 - Magnesium-based composite material having ti particles dispersed therein, and method for production thereof - Google Patents

Magnesium-based composite material having ti particles dispersed therein, and method for production thereof Download PDF

Info

Publication number
WO2010026793A1
WO2010026793A1 PCT/JP2009/055026 JP2009055026W WO2010026793A1 WO 2010026793 A1 WO2010026793 A1 WO 2010026793A1 JP 2009055026 W JP2009055026 W JP 2009055026W WO 2010026793 A1 WO2010026793 A1 WO 2010026793A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
powder
composite material
dispersed
particle
Prior art date
Application number
PCT/JP2009/055026
Other languages
French (fr)
Japanese (ja)
Inventor
勝義 近藤
貫太郎 金子
Original Assignee
株式会社栗本鐵工所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社栗本鐵工所 filed Critical 株式会社栗本鐵工所
Priority to US13/060,078 priority Critical patent/US20110150694A1/en
Priority to EP09811322A priority patent/EP2327808A1/en
Priority to CN200980114389XA priority patent/CN102016094A/en
Publication of WO2010026793A1 publication Critical patent/WO2010026793A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F2009/0804Dispersion in or on liquid, other than with sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to magnesium alloys, and in particular, titanium (Ti) particle-dispersed magnesium-based composites that can be used in a wide range of fields such as home appliances, automobile parts, and aircraft parts by improving both strength and ductility. It relates to a material and a method of manufacturing the same.
  • magnesium (Mg) has the smallest specific gravity among industrial metal materials, it is expected to be used for parts and members such as motorcycles, automobiles and aircrafts, for which there is a strong need for weight reduction. However, since the strength is not sufficient as compared with conventional industrial materials such as steel materials and aluminum alloys, the use of magnesium alloys is currently limited.
  • Titanium (Ti) is considered as an effective second phase to be dispersed.
  • stiffness Mg: 45 GPa
  • Ti 105 GPa
  • hardness Mg: 35-45 Hv (Vickers hardness)
  • Ti 110-120 Hv
  • titanium particles as a dispersion reinforcing material in a magnesium base.
  • Non-Patent Document 1 As a technology relating to Ti particle-dispersed magnesium composite material that has been reported so far, for example, as Non-Patent Document 1, the Japan Institute of Metals Research Abstract (Mar. 26, 2008) p. 355, no. 464 (Kataoka, Hokusu: Influence of microstructure on mechanical properties of Ti particle-dispersed Mg-based composite material), as Non-Patent Document 2, Proceedings of the Light Metals Society of Japan (May 11, 2008) p. 13, No. 7 (Hokkaido, Kataoka, Komazu: Influence of addition of titanium particles on mechanical properties of magnesium), Non-Patent Document 3 as a summary of powder powder metallurgy lectures (June 6, 2007) p. 148, no. No.
  • Non-Patent Document 4 as powder and powder metallurgy, Vol. 55, No. 4 (2008), p. 244 (Hananami, Fujita, Motoe, Ohara, Igarashi, Kondo: Development of magnesium composite material by bulk mechanical alloying method), Non-Patent Document 5 as light metal, volume 54, 11 (2004), p. 522-526 (Sato, Watanabe, Miura, Miura: development of titanium particle-dispersed magnesium based functionally graded material by centrifugal solid phase method).
  • Non-Patent Document 1 and Non-Patent Document 2 pure titanium particles are dispersed on the surface of a pure magnesium plate and heated and pressed in a state where the pure magnesium plate is placed thereon, the titanium particles are made pure magnesium plate. It is disclosed that a Ti particle dispersed magnesium base composite material in which titanium particles are arranged in a plane direction of a plate is prepared by preparing a composite material in a sandwiched state, and further heating and pressing this composite material in layers. There is.
  • Non-Patent Document 3 and Non-Patent Document 4 after hot-extrusion processing is carried out after continuously applying strong plastic processing while mixing magnesium alloy powder and pure titanium powder and filling in a mold. It is disclosed to produce a Ti particle-dispersed magnesium based composite material.
  • the heating temperature is set to a temperature sufficiently lower than the melting point of magnesium, and the composite material is manufactured in a complete solid phase temperature range without melting.
  • the ductility break elongation
  • Non-Patent Document 5 centrifugal force is applied to a molten metal of magnesium or magnesium alloy (AZ91D) containing titanium particles present as a solid phase, and the difference is caused by the difference in centrifugal force due to the density difference between dispersed particles and molten metal.
  • a manufacturing method is described that uses compositional movement control to control compositional grading. Since the specific gravity of titanium is at least twice the specific gravity of magnesium, it is difficult to uniformly disperse titanium particles in a molten magnesium or magnesium alloy by the centrifugal solid phase method disclosed in Non-Patent Document 5 .
  • this document states that "It is difficult to disperse titanium particles by this method.” Furthermore, in this document, when the titanium particles are introduced into the melt of a magnesium alloy (AZ91D) containing aluminum and the centrifugal solid phase method is applied, the aluminum concentration is extremely high in the titanium particle aggregation portion. And, it is described that a region in which aluminum is solid-solved also exists in the outer peripheral portion of the titanium particles. The reason for this is that, in this document, "the initial melt with high aluminum concentration may have penetrated between the titanium particles by capillary action, and may have been involved in its aggregation and sintering. Thus, the AZ91D alloy containing aluminum The use of the centrifugal solid phase method was found to be problematic in view of the melt composition.
  • AZ91D magnesium alloy
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to achieve excellent properties by uniformly dispersing titanium particles in a magnesium base and improving the interfacial adhesion between titanium and magnesium. It is an object of the present invention to provide a Ti particle-dispersed magnesium-based composite material having a high strength.
  • the Ti particle-dispersed magnesium-based composite material according to the present invention is obtained by uniformly dispersing titanium particles in a magnesium matrix.
  • the characteristics are that magnesium and titanium particles that constitute the base exhibit good wettability without being intercalated with titanium oxide at their interface and are bonded, and the magnesium-based composite material has 230 MPa or more It is to have tensile strength.
  • the present invention it is possible to obtain a magnesium-based composite material having a high tensile strength of 230 MPa or more, because titanium particles of an appropriate amount exhibit good wettability and are uniformly dispersed in the base of magnesium.
  • One embodiment of the present invention is directed to a powder for producing the Ti particle dispersed magnesium based composite material described above.
  • the powder is obtained by machining a cast material, in which titanium particles are uniformly dispersed in a magnesium base, into a powder.
  • the powder according to another embodiment of the present invention is a powder for producing the above-described Ti particle-dispersed magnesium-based composite material, and a molten metal of magnesium in which titanium particles are uniformly dispersed is solidified into a powder by an atomizing method. It is obtained by
  • the method for producing a Ti particle-dispersed magnesium based composite material comprises the steps of: introducing titanium particles into molten magnesium; stirring the molten metal so that the titanium particles are uniformly dispersed in the molten metal; Solidifying it to obtain a composite material in which titanium particles are uniformly dispersed in a magnesium base, and subjecting the composite material to hot plastic working to obtain a magnesium-based composite material having a tensile strength of 230 MPa or more Equipped with
  • the step of obtaining the composite material comprises: solidifying the molten metal to obtain a cast material in which titanium particles are dispersed in a magnesium base; and machining the cast material to form a powder. And compacting the powder to obtain a compact.
  • the step of obtaining the composite material includes solidifying the molten metal into a powder by an atomizing method, and powder-solidifying the powder to obtain a powder compact.
  • the method for producing a Ti particle-dispersed magnesium-based composite material according to the present invention comprises the steps of mixing magnesium powder and titanium particles, and holding the mixed powder at a temperature higher than the liquid phase generation temperature of the magnesium powder. And solidifying the mixed powder held at a high temperature, and subjecting the sintered and solidified body to hot plastic working to obtain a magnesium-based composite material having a tensile strength of 230 MPa or more. .
  • the inventors of the present application focused on the wettability of both of them and evaluated the characteristics thereof in order to develop a titanium particle-dispersed magnesium composite material capable of improving the interfacial adhesion between titanium and magnesium, as well as excellent wettability.
  • the adhesion between Mg and Ti is not sufficient because heating and sintering are performed at a solid phase temperature below the melting point of Mg, and as a result, the strength and ductility in the composite material It is thought that no improvement was obtained.
  • the magnesium and titanium particles constituting the base exhibit excellent wettability and excellent adhesion without the titanium oxide being intervened in their interface. Have a bond.
  • a Ti particle-dispersed magnesium-based composite material having a tensile strength of 230 MPa or more can be obtained.
  • a composite material in which titanium particles are uniformly dispersed in a magnesium base can also be manufactured by a conventional casting method, die casting method or the like.
  • the cast materials can be machined such as cutting and grinding to make them into powder.
  • titanium particles are uniformly dispersed in the matrix of magnesium.
  • An example of a photograph of the structure of this magnesium-based composite powder is shown in FIG. As apparent from FIG. 4, no void is observed at the interface between the Ti particles and the Mg base, and it is recognized that the adhesive has good adhesion.
  • a magnesium-based composite powder in which titanium particles are uniformly dispersed in a magnesium base can also be obtained by solidifying magnesium melt in which titanium particles are uniformly dispersed by an atomizing method.
  • the present inventors dissolve pure magnesium in a carbon crucible, add 3 mass% of pure titanium powder (average particle size: 29.8 ⁇ m) to the melt, and sufficiently stir The molten metal was discharged from the bottom of the crucible as a molten metal flow, and high-pressure water was injected into the molten metal flow (water atomization method) to obtain a solidified powder.
  • the appearance photograph of the obtained powder and the structure observation result inside powder are shown in FIG. Also in this water atomized powder, no void is observed at the interface between the Ti particles and the Mg base, and it is recognized that the powder has good adhesion.
  • a magnesium base composite material is obtained by a casting method or a die casting method, or magnesium in which titanium particles are uniformly dispersed.
  • the titanium particles and the base magnesium are bonded together with good adhesion without voids due to excellent wettability.
  • the material After heating a Ti particle-dispersed magnesium-based composite material produced by casting or die casting to a predetermined temperature, the material is subjected to hot plastic working such as hot extrusion, hot rolling, forging, etc.
  • hot plastic working such as hot extrusion, hot rolling, forging, etc.
  • the grains of the base are refined and the strength of the composite material is further improved.
  • the tensile strength of the composite material is 230 MPa or more.
  • Ti particle dispersed magnesium base composite powder manufactured by machining process such as cutting from cast material, or Ti particle dispersed magnesium base composite powder obtained by injecting high pressure water or high pressure gas to molten metal flow is compacted and solidified. Powdered compacts and sintered / solidified bodies are prepared, and if necessary, the composite powders are joined together metallurgically by subjecting them to hot plastic working such as hot extrusion, hot rolling, forging etc. Alternatively, it is possible to create a sintered Ti particle-dispersed magnesium-based composite material.
  • titanium particles of an appropriate amount were charged into a molten magnesium, but as another embodiment, it is also possible to obtain a Ti particle-dispersed magnesium based composite material by the following method.
  • magnesium powder and titanium particles are mixed, and the mixed powder is held at a predetermined temperature to sinter and solidify.
  • the important thing here is to keep the mixed powder at a temperature higher than the liquid phase generation temperature of the magnesium powder.
  • magnesium and titanium particles constituting the base have good wettability without the interposition of titanium oxide at their interface.
  • To be bonded with excellent adhesion. By subjecting the sintered and solidified body to hot plastic working, a Ti particle-dispersed magnesium-based composite material having a tensile strength of 230 MPa or more can be obtained.
  • Pure magnesium lumps having a purity of 99.8% and titanium powder having an average particle diameter of 29.8 ⁇ m were prepared as starting materials. Pure magnesium lumps are melted by heating to 750 ° C in a carbon crucible, and the above Ti particles are added to the melt under the three conditions of 0.5 mass%, 1.5 mass% and 2.8 mass% in total weight ratio did. Thereafter, the molten metal was sufficiently uniformly stirred to prevent segregation of the Ti particles and settling to the bottom, and then a Ti particle-dispersed magnesium-based composite powder was produced by a water atomizing method.
  • pure magnesium powder (average particle diameter: 162 ⁇ m) having a purity of 99.9% is prepared as a comparison, and the ratio of the above-mentioned Ti powder is 0.5 mass%, 1.5 mass%, 2.8 mass%. After weighing, they were mixed using a dry ball mill to produce an Mg—Ti mixed powder.
  • round rod extruded material was produced based on said manufacturing procedure also about the pure magnesium powder which does not contain Ti particle as comparison.
  • tensile strength and yield strength of Ti particle dispersed magnesium based composite powder extruded material using water atomization method according to the present invention is about 35 to 40% It increased, and the breaking elongation was equal and showed a high value of 15% or more.
  • the tensile strength and the yield strength increased slightly by about 3 to 6%, but the breaking elongation decreased to less than 10%.
  • the crack has progressed at the interface between the Ti particle and the magnesium base, and the adhesion between the two is not sufficient. It was recognized that there was not.
  • Example 2 In the same manner as in Example 1, a pure magnesium lump having a purity of 99.8% and a titanium powder having an average particle diameter of 29.8 ⁇ m were prepared as starting materials. Magnesium lumps were melted by heating to 750 ° C. in a carbon crucible, and the above-described Ti particles were added to the melt under the three conditions of 1 mass, 3 mass%, and 5 mass% in the total weight ratio. Thereafter, the molten metal was sufficiently uniformly stirred to prevent segregation of the Ti particles and settling to the bottom, and then the molten metal was cast into a cylindrical mold to prepare a billet having a diameter of 60 mm.
  • a billet for extrusion with a diameter of 45 mm is produced from each cast billet by machining, each billet is held at 200 ° C. for 5 minutes in an argon gas atmosphere, and hot extrusion (extrusion ratio: 37) is applied immediately to a diameter of 7 mm.
  • the optical microscope observation result of each extruded material is shown in FIG.
  • the proportion of Ti particles in the extruded material also increases as the amount of added Ti particles increases, and even when 5 mass% of Ti particles is added, the aggregation and segregation phenomena of Ti particles are not observed, and uniform in the magnesium base It is understood that it is dispersed.
  • the tensile strength is increased as the content of Ti particles increases. Both the strength and the load resistance increase, and no remarkable decrease in the elongation at break is observed. From the above results, in the Ti particle-dispersed magnesium-based composite material according to the present invention, it is possible to improve the strength of the magnesium material by adding Ti particles without causing aggregation and segregation of the Ti particles.
  • Example 2 In the same manner as in Example 1, a pure magnesium lump having a purity of 99.8% and a titanium powder having an average particle diameter of 29.8 ⁇ m were prepared as starting materials.
  • the magnesium lump was melted by heating to 750 ° C. in a carbon crucible, and the above-mentioned Ti particles were added to the molten metal in the total weight ratio of 2 mass% and 4 mass%, respectively. Thereafter, the molten metal was sufficiently uniformly stirred to prevent segregation of the Ti particles and settling to the bottom, and then the molten metal was cast into a cylindrical mold to prepare a billet having a diameter of 60 mm. Chips having a total length of about 1 to 4 mm were produced from each cast billet by cutting.
  • each chip Ti particles were uniformly dispersed in the Mg base without aggregation and segregation. Then, the chips were filled in a mold made of SKD11 and a pressing force of 600 MPa was applied by a hydraulic press to produce a powder compact billet having a diameter of 45 mm. Each billet was held at 300 ° C. for 5 minutes in an argon gas atmosphere, and immediately subjected to hot extrusion (extrusion ratio: 37) to produce a round bar extruded material with a diameter of 7 mm.
  • the strength of the magnesium material can be improved by the addition of the Ti particles, without the aggregation / segregation of the Ti particles.
  • Example 2 In the same manner as in Example 1, a pure magnesium lump having a purity of 99.8% and a titanium alloy powder (Ti-6.1Al% -3.8V / mass%) having an average particle diameter of 22.8 ⁇ m were prepared as starting materials. Magnesium lumps were melted by heating to 750 ° C. in a carbon crucible, and the above Ti alloy particles were added to the melt under the three conditions of 1 mass%, 3 mass%, and 5 mass% in terms of the total weight ratio. Thereafter, the molten metal was sufficiently uniformly stirred to prevent segregation of the Ti alloy particles and settling to the bottom, and then the molten metal was cast into a cylindrical mold to prepare a billet having a diameter of 60 mm.
  • a pure magnesium lump having a purity of 99.8% and a titanium alloy powder (Ti-6.1Al% -3.8V / mass%) having an average particle diameter of 22.8 ⁇ m were prepared as starting materials. Magnesium lumps were melted by heating to 750 ° C
  • a billet for extrusion with a diameter of 45 mm is produced from each cast billet by machining, each billet is held at 200 ° C. for 5 minutes in an argon gas atmosphere, and hot extrusion (extrusion ratio: 37) is applied immediately to a diameter of 7 mm.
  • the round bar extruded material of And the tensile test piece was extract
  • the Ti alloy particles are uniformly dispersed in the base without aggregation and segregation, and the addition amount thereof increases As a result, the tensile strength is increased, and the increase in tensile strength is increased as compared with the case where pure Ti particles are added. That is, the strength of the magnesium composite material is further improved by further increasing the hardness and strength of the dispersed particles.
  • the present invention can be advantageously used as a Ti particle-dispersed magnesium-based composite material having excellent strength and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Disclosed is a magnesium-based composite material having Ti particles dispersed therein, which comprises a magnesium matrix and titanium particles dispersed in the magnesium matrix homogeneously. In the composite material, the magnesium matrix and the titanium particles exhibit good wetting properties, and are therefore bound together without the need of interposing any titanium oxide at the interfaces between magnesium matrix and the titanium particles. The composite material has a tensile strength of 230 MPa or more.

Description

Ti粒子分散マグネシウム基複合材料およびその製造方法Ti particle-dispersed magnesium based composite material and method for producing the same
 本発明は、マグネシウム合金に関するものであり、特に、強度と延性の両方を向上することにより、家電製品、自動車用部品、航空機用部材など幅広い分野で使用可能なチタン(Ti)粒子分散マグネシウム基複合材料およびその製造方法に関するものである。 TECHNICAL FIELD The present invention relates to magnesium alloys, and in particular, titanium (Ti) particle-dispersed magnesium-based composites that can be used in a wide range of fields such as home appliances, automobile parts, and aircraft parts by improving both strength and ductility. It relates to a material and a method of manufacturing the same.
 マグネシウム(Mg)は工業用金属材料のなかで最も比重が小さいことから、軽量化ニーズが強い二輪車、自動車、航空機などの部品や部材への利用が期待されている。しかしながら、鉄鋼材料やアルミニウム合金などの従来の工業用材料と比較すると強度が十分でないので、マグネシウム合金の利用は限定されているのが現状である。 Since magnesium (Mg) has the smallest specific gravity among industrial metal materials, it is expected to be used for parts and members such as motorcycles, automobiles and aircrafts, for which there is a strong need for weight reduction. However, since the strength is not sufficient as compared with conventional industrial materials such as steel materials and aluminum alloys, the use of magnesium alloys is currently limited.
 このような課題を解決すべく、マグネシウムよりも高強度で高硬度の特性を有する粒子やファイバーなどを第2相として分散する複合材料の開発が進められている。分散する有効な第2相としてチタン(Ti)が考えられる。剛性を比較すると、Mg:45GPa、Ti:105GPaであり、硬さを比較すると、Mg:35~45Hv(ビッカース硬さ)、Ti:110~120Hvであることから、チタン粒子をマグネシウム素地中に分散することにより、マグネシウム基複合材料の強度および硬度を向上できる効果が期待できる。 In order to solve such problems, development of a composite material in which particles, fibers and the like having characteristics of higher strength and higher hardness than magnesium are dispersed as a second phase has been advanced. Titanium (Ti) is considered as an effective second phase to be dispersed. When comparing stiffness, Mg: 45 GPa, Ti: 105 GPa, and comparing hardness: Mg: 35-45 Hv (Vickers hardness), Ti: 110-120 Hv, titanium particles are dispersed in the magnesium base By doing this, the effect of improving the strength and hardness of the magnesium-based composite material can be expected.
 また従来の複合材料では、酸化物、炭化物、窒化物などのセラミックス系粒子やセラミックス系ファイバーの分散が主流であったが、これらの粒子やファイバーはいずれも高い剛性および硬度を有するものの、延性に乏しいために、それらがマグネシウム合金に分散した際に複合材料そのものの延性(例えば、破断伸び)を低下させる。これに対して、チタンは金属であり、それ自体が延性に優れることから、チタン粒子をマグネシウムに添加・分散した際に複合材料の延性を低下させる問題はない。 In the conventional composite materials, dispersion of ceramic particles such as oxides, carbides and nitrides and ceramic fibers is the main stream, but these particles and fibers all have high rigidity and hardness, but they have a ductility. Because they are poor, they reduce the ductility (e.g., elongation at break) of the composite itself when dispersed in a magnesium alloy. On the other hand, titanium is a metal, and itself is excellent in ductility, so there is no problem of reducing the ductility of the composite material when titanium particles are added and dispersed in magnesium.
 他方、マグネシウムは耐腐食性に劣るといった問題がある。これはマグネシウムが卑なる特性を有しており、例えば、標準電極電位Es(水素HをゼロVとする)が-2.356Vと小さい。このようなマグネシウムの中に例えば、鉄(Fe:Es=-0.44V)や銅(Cu:Es=+0.34V)が少量含まれると、Mg-FeおよびMg-Cu間の電位差によってガルバニック腐食現象が進行する。これに対してチタンの標準電極電位は-1.75Vであり、Mgへの添加元素であるアルミニウム(Al:Es=-1.676V)と比較しても、Mgとの電位差はより小さい。すなわち、チタンをマグネシウムに分散することによる腐食現象への影響は小さいといえる。 On the other hand, magnesium has a problem that it is inferior in corrosion resistance. This has the characteristic that magnesium is superior, and for example, the standard electrode potential Es (hydrogen H is zero V) is as small as -2.356V. If a small amount of iron (Fe: Es = −0.44 V) or copper (Cu: Es = + 0.34 V) is contained in such magnesium, galvanic corrosion is caused by the potential difference between Mg-Fe and Mg-Cu. The phenomenon progresses. On the other hand, the standard electrode potential of titanium is −1.75 V, and the potential difference with Mg is smaller than that of aluminum (Al: Es = −1.676 V) which is an additive element to Mg. That is, it can be said that the influence on the corrosion phenomenon by dispersing titanium in magnesium is small.
 以上のことから、マグネシウム素地中への分散強化材としてチタン粒子を用いることは、有効であると考えられる。 From the above, it is considered effective to use titanium particles as a dispersion reinforcing material in a magnesium base.
 これまでに報告されているTi粒子分散マグネシウム複合材料に関する技術として、例えば、非特許文献1として、日本金属学会講演概要(2008年3月26日)p.355、No.464(片岡、北薗:Ti粒子分散Mg基複合材料の機械的特性に及ぼす微細組織の影響)、非特許文献2として、軽金属学会講演概要(2008年5月11日)p.13、No.7(北薗、片岡、駒津:マグネシウムの機械的特性に及ぼすチタン粒子添加の影響)、非特許文献3として、粉体粉末冶金講演概要集(2007年6月6日)p.148、No.2-51A(榎並、藤田、大原、五十嵐:バルクメカニカルアロイング法によるマグネシウム複合材料の開発)、非特許文献4として、粉体および粉末冶金、第55巻、第4号(2008)、p.244(榎並、藤田、本江、大原、五十嵐、近藤:バルクメカニカルアロイング法によるマグネシウム複合材料の開発)、非特許文献5として、軽金属、第54巻、第11号(2004)、p.522-526(佐藤、渡辺、三浦、三浦:遠心力固相法によるチタン粒子分散マグネシウム基傾斜機能材料の開発)などがある。 As a technology relating to Ti particle-dispersed magnesium composite material that has been reported so far, for example, as Non-Patent Document 1, the Japan Institute of Metals Research Abstract (Mar. 26, 2008) p. 355, no. 464 (Kataoka, Hokusu: Influence of microstructure on mechanical properties of Ti particle-dispersed Mg-based composite material), as Non-Patent Document 2, Proceedings of the Light Metals Society of Japan (May 11, 2008) p. 13, No. 7 (Hokkaido, Kataoka, Komazu: Influence of addition of titanium particles on mechanical properties of magnesium), Non-Patent Document 3 as a summary of powder powder metallurgy lectures (June 6, 2007) p. 148, no. No. 2-51A (Hananami, Fujita, Ohara, Igarashi: Development of magnesium composites by bulk mechanical alloying method), Non-Patent Document 4 as powder and powder metallurgy, Vol. 55, No. 4 (2008), p. 244 (Hananami, Fujita, Motoe, Ohara, Igarashi, Kondo: Development of magnesium composite material by bulk mechanical alloying method), Non-Patent Document 5 as light metal, volume 54, 11 (2004), p. 522-526 (Sato, Watanabe, Miura, Miura: development of titanium particle-dispersed magnesium based functionally graded material by centrifugal solid phase method).
 非特許文献1および非特許文献2においては、純マグネシウム板の表面に純チタン粒子を散布し、その上に純マグネシウム板を載せた状態で加熱および加圧することにより、チタン粒子を純マグネシウム板で挟みこんだ状態の複合材料を作製し、さらにこの複合材料を重ねて加熱および加圧することにより、チタン粒子が板の平面方向に配列したTi粒子分散マグネシウム基複合材料を作製することが開示されている。 In Non-Patent Document 1 and Non-Patent Document 2, pure titanium particles are dispersed on the surface of a pure magnesium plate and heated and pressed in a state where the pure magnesium plate is placed thereon, the titanium particles are made pure magnesium plate. It is disclosed that a Ti particle dispersed magnesium base composite material in which titanium particles are arranged in a plane direction of a plate is prepared by preparing a composite material in a sandwiched state, and further heating and pressing this composite material in layers. There is.
 非特許文献3および非特許文献4には、マグネシウム合金粉末と純チタン粉末とを混合し、金型内に充填した状態で強塑性加工を連続的に付与した後、熱間押出加工を施すことにより、Ti粒子分散マグネシウム基複合材料を作製することが開示されている。 According to Non-Patent Document 3 and Non-Patent Document 4, after hot-extrusion processing is carried out after continuously applying strong plastic processing while mixing magnesium alloy powder and pure titanium powder and filling in a mold. It is disclosed to produce a Ti particle-dispersed magnesium based composite material.
 上記の非特許文献1~4のいずれの場合においても、加熱温度はマグネシウムの融点を十分に下回る温度とし、溶融することなく完全な固相温度域において複合材料を作製している。それぞれの複合材料に関する引張試験の結果において、Ti粒子を添加しない材料と比較して約5~10%の強度増加が確認されたものの、延性(破断伸び)は約20~30%低下している。これはマグネシウムとチタンとが化合物を形成しないため、両者の接合界面強度が十分でないことから、強度向上は十分でなく、反面、界面が応力集中部となり延性低下が生じたものと認められる。 In any of the above non-patent documents 1 to 4, the heating temperature is set to a temperature sufficiently lower than the melting point of magnesium, and the composite material is manufactured in a complete solid phase temperature range without melting. In the result of the tensile test for each composite material, although the increase of strength of about 5-10% was confirmed compared with the material not adding Ti particles, the ductility (break elongation) is reduced by about 20-30%. . Since magnesium and titanium do not form a compound, the joint interface strength between the two is not sufficient, so that the strength improvement is not sufficient. On the other hand, it is recognized that the interface becomes a stress concentration part and the ductility decreases.
 以上のように、チタン粒子分散マグネシウム基複合材料において強度と延性の両者を顕著に向上させるには、Mg-Tiの界面における密着性を向上させる必要がある。 As described above, in order to significantly improve both the strength and the ductility in the titanium particle-dispersed magnesium-based composite material, it is necessary to improve the adhesion at the interface of Mg—Ti.
 非特許文献5には、固相として存在するチタン粒子を含むマグネシウムまたはマグネシウム合金(AZ91D)の溶湯中に遠心力を印加し、分散粒子と溶湯との密度差に起因する遠心力の差により生じる移動速度差を用いて組成傾斜を制御する製造方法が記載されている。チタンの比重はマグネシウムの比重の2倍以上であるので、非特許文献5に開示された遠心力固相法によって、チタン粒子をマグネシウムまたはマグネシウム合金の溶湯中に均一に分散させることは困難である。実際に、この文献には、「この手法によってチタン粒子を分散させることは困難であることがわかった。」と記載されている。さらに、この文献には、アルミニウムを含むマグネシウム合金(AZ91D)の溶湯中にチタン粒子を投入して遠心力固相法を適用した場合、チタン粒子凝集部にアルミニウム濃度が非常に多くなっていること、およびチタン粒子の外周部にアルミニウムが固溶した領域も存在していたことが記載されている。その理由として、この文献には、「高アルミニウム濃度の初期融液が毛管現象によってチタン粒子間に浸透し、その凝集・焼結に関与した可能性がある。このように、アルミニウムを含むAZ91D合金に遠心力固相法を用いることは、融液組成から考えて問題があることが判明した。」と記載されている。 In Non-Patent Document 5, centrifugal force is applied to a molten metal of magnesium or magnesium alloy (AZ91D) containing titanium particles present as a solid phase, and the difference is caused by the difference in centrifugal force due to the density difference between dispersed particles and molten metal. A manufacturing method is described that uses compositional movement control to control compositional grading. Since the specific gravity of titanium is at least twice the specific gravity of magnesium, it is difficult to uniformly disperse titanium particles in a molten magnesium or magnesium alloy by the centrifugal solid phase method disclosed in Non-Patent Document 5 . In fact, this document states that "It is difficult to disperse titanium particles by this method." Furthermore, in this document, when the titanium particles are introduced into the melt of a magnesium alloy (AZ91D) containing aluminum and the centrifugal solid phase method is applied, the aluminum concentration is extremely high in the titanium particle aggregation portion. And, it is described that a region in which aluminum is solid-solved also exists in the outer peripheral portion of the titanium particles. The reason for this is that, in this document, "the initial melt with high aluminum concentration may have penetrated between the titanium particles by capillary action, and may have been involved in its aggregation and sintering. Thus, the AZ91D alloy containing aluminum The use of the centrifugal solid phase method was found to be problematic in view of the melt composition.
 本発明は、上記の課題を解決するためになされたものであり、その目的は、マグネシウム素地中にチタン粒子を均一に分散させるとともに、チタンとマグネシウムとの界面密着性を向上させることによって、優れた強度を持つTi粒子分散マグネシウム基複合材料を提供することである。 The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to achieve excellent properties by uniformly dispersing titanium particles in a magnesium base and improving the interfacial adhesion between titanium and magnesium. It is an object of the present invention to provide a Ti particle-dispersed magnesium-based composite material having a high strength.
 本発明に従ったTi粒子分散マグネシウム基複合材料は、マグネシウムの素地中にチタン粒子を均一に分散させたものである。その特徴は、素地を構成するマグネシウムとチタン粒子とが、それらの界面にチタン酸化物を介在させること無く良好な濡れ性を発揮して結合していること、およびマグネシウム基複合材料が230MPa以上の引張強度を有していることにある。 The Ti particle-dispersed magnesium-based composite material according to the present invention is obtained by uniformly dispersing titanium particles in a magnesium matrix. The characteristics are that magnesium and titanium particles that constitute the base exhibit good wettability without being intercalated with titanium oxide at their interface and are bonded, and the magnesium-based composite material has 230 MPa or more It is to have tensile strength.
 本発明によれば、適正量のチタン粒子がマグネシウムの素地中に良好な濡れ性を発揮して均一に分散しているからこそ、230MPa以上の高い引張強度を有するマグネシウム基複合材料が得られる。 According to the present invention, it is possible to obtain a magnesium-based composite material having a high tensile strength of 230 MPa or more, because titanium particles of an appropriate amount exhibit good wettability and are uniformly dispersed in the base of magnesium.
 本発明の一つの実施形態は、上記のTi粒子分散マグネシウム基複合材料を製造するための粉末に向けられるものである。この粉末は、チタン粒子がマグネシウム素地中に均一に分散している鋳造材を粉末となるように機械加工することによって得られる。 One embodiment of the present invention is directed to a powder for producing the Ti particle dispersed magnesium based composite material described above. The powder is obtained by machining a cast material, in which titanium particles are uniformly dispersed in a magnesium base, into a powder.
 本発明の他の実施形態における粉末は、上記のTi粒子分散マグネシウム基複合材料を製造するための粉末であって、チタン粒子が均一に分散しているマグネシウムの溶湯をアトマイズ法によって粉末状に凝固させることによって得られる。 The powder according to another embodiment of the present invention is a powder for producing the above-described Ti particle-dispersed magnesium-based composite material, and a molten metal of magnesium in which titanium particles are uniformly dispersed is solidified into a powder by an atomizing method. It is obtained by
 本発明に従ったTi粒子分散マグネシウム基複合材料の製造方法は、マグネシウムの溶湯中にチタン粒子を投入する工程と、チタン粒子が溶湯内で均一に分散するように溶湯を撹拌する工程と、溶湯を凝固させてマグネシウムの素地中にチタン粒子を均一に分散させた複合素材を得る工程と、複合素材に対して熱間塑性加工を施して引張強度が230MPa以上のマグネシウム基複合材料を得る工程とを備える。 The method for producing a Ti particle-dispersed magnesium based composite material according to the present invention comprises the steps of: introducing titanium particles into molten magnesium; stirring the molten metal so that the titanium particles are uniformly dispersed in the molten metal; Solidifying it to obtain a composite material in which titanium particles are uniformly dispersed in a magnesium base, and subjecting the composite material to hot plastic working to obtain a magnesium-based composite material having a tensile strength of 230 MPa or more Equipped with
 一つの実施形態では、上記の複合素材を得る工程は、溶湯を凝固させてマグネシウムの素地中にチタン粒子を分散させた鋳造材を得ることと、鋳造材に対して機械加工を施して粉末状にすることと、粉末を圧粉固化して圧粉成形体を得ることとを含む。 In one embodiment, the step of obtaining the composite material comprises: solidifying the molten metal to obtain a cast material in which titanium particles are dispersed in a magnesium base; and machining the cast material to form a powder. And compacting the powder to obtain a compact.
 他の実施形態では、上記の複合素材を得る工程は、溶湯をアトマイズ法によって粉末状に凝固させることと、粉末を圧粉固化して圧粉成形体を得ることとを含む。 In another embodiment, the step of obtaining the composite material includes solidifying the molten metal into a powder by an atomizing method, and powder-solidifying the powder to obtain a powder compact.
 他の局面において、この発明に従ったTi粒子分散マグネシウム基複合材料の製造方法は、マグネシウム粉末とチタン粒子とを混合する工程と、混合粉末をマグネシウム粉末の液相発生温度よりも高い温度に保持する工程と、高い温度に保持された混合粉末を焼結固化する工程と、焼結固化体に対して熱間塑性加工を施して引張強度が230MPa以上のマグネシウム基複合材料を得る工程とを備える。 In another aspect, the method for producing a Ti particle-dispersed magnesium-based composite material according to the present invention comprises the steps of mixing magnesium powder and titanium particles, and holding the mixed powder at a temperature higher than the liquid phase generation temperature of the magnesium powder. And solidifying the mixed powder held at a high temperature, and subjecting the sintered and solidified body to hot plastic working to obtain a magnesium-based composite material having a tensile strength of 230 MPa or more. .
 上記に記載の本発明の構成の技術的意義または作用効果については、以下の項目で詳細に説明する。 The technical significance or effects of the configuration of the present invention described above will be described in detail in the following items.
純マグネシウムと純チタンとの濡れ性を評価するための図および写真である。It is a figure and photograph for evaluating the wettability of pure magnesium and pure titanium. 純マグネシウムと純チタンとの界面を走査型電子顕微鏡で観察した写真である。It is the photograph which observed the interface of pure magnesium and pure titanium with a scanning electron microscope. 純チタン粉末と純マグネシウム粉末との混合粉末を加熱および加圧した後に得られた複合材料における両者の界面を走査型電子顕微鏡で観察した写真である。It is the photograph which observed the interface of both in the composite material obtained after heating and pressurizing the mixed powder of pure titanium powder and pure magnesium powder with a scanning electron microscope. チタン粒子が内部に分散したマグネシウム基複合粉末の組織写真の一例である。It is an example of the structure | tissue photograph of the magnesium group composite powder which the titanium particle disperse | distributed inside. 水アトマイズ法によって得られたTi粒子分散マグネシウム基複合粉末の外観写真および組織観察写真である。It is an external appearance photograph and structure observation photograph of Ti particle-dispersed magnesium group composite powder obtained by the water atomization method. チタン粒子を含まない純マグネシウム粉末、および2つの製法により作製したTi粒子分散マグネシウム基複合粉末を用いた押出材の応力-歪曲線を示す図である。It is a figure which shows the stress-distortion line of the extrusion material using the pure magnesium powder which does not contain a titanium particle, and the Ti particle dispersion magnesium base composite powder produced by two manufacturing methods. チタン添加量に対する各押出材の引張強さ(TS)および耐力(YS)の変化を示す図である。It is a figure which shows the change of the tensile strength (TS) and proof stress (YS) of each extrusion material with respect to a titanium addition amount. チタン粒子の含有量を変えた各押出材の光学顕微鏡観察写真である。It is an optical-microscope observation photograph of each extruded material which changed content of titanium particle.
 本願の発明者らは、チタンとマグネシウムとの界面密着性の向上を可能としたチタン粒子分散マグネシウム複合材料を開発すべく、両者の濡れ性に着目し、その特性評価を行なうとともに、優れた濡れ性を利用した複合材料の製造方法の検討を行った。 The inventors of the present application focused on the wettability of both of them and evaluated the characteristics thereof in order to develop a titanium particle-dispersed magnesium composite material capable of improving the interfacial adhesion between titanium and magnesium, as well as excellent wettability. We examined the manufacturing method of the composite material using the property.
 (1)純マグネシウムと純チタンとの濡れ性
 本願の発明者らは、純チタン板と純マグネシウム液滴との濡れ性を調べた。具体的には、高真空状態において溶融した純マグネシウムの液滴(800℃に保持)を酸化マグネシウム(MgO)製ノズル先端から純チタン板表面に静的に配置し、800℃における純Mgと純Tiとの濡れ性を連続撮影して評価した。その結果を図1に示す。
(1) Wettability of Pure Magnesium and Pure Titanium The inventors of the present application examined the wettability of a pure titanium plate and a pure magnesium droplet. Specifically, droplets of pure magnesium melted in a high vacuum state (held at 800 ° C.) are statically arranged on the surface of a pure titanium plate from the tip of a nozzle made of magnesium oxide (MgO), and pure Mg and pure at 800 ° C. The wettability with Ti was evaluated by continuous shooting. The results are shown in FIG.
 図1に示すようにTi板表面に接触した時点(t=0秒)で濡れ角は約50°となり、時間の経過と共に濡れ角は減少して6分後には13°に至った。一般に濡れ角が90°を下回ると濡れ現象が生じたと判断し、その値が0°に近づくにつれて濡れ性が向上する。マグネシウムとの濡れ性が良好と言われる炭化チタニウム(TiC)は、900℃において濡れ角が約33°(参考文献:A. Contrerasaら:Scripta Materialia, 48 (2003) 1625-1630)であることを考えると、純Mgと純Tiとの濡れ性は極めて良好であると認められる。 As shown in FIG. 1, the wetting angle was about 50 ° at the time of contact with the surface of the Ti plate (t = 0 seconds), and the wetting angle decreased with time and reached 13 ° after 6 minutes. Generally, it is judged that the wetting phenomenon occurs when the wetting angle is less than 90 °, and the wettability improves as the value approaches 0 °. Titanium carbide (TiC), which is said to have good wettability with magnesium, has a wetting angle of approximately 33 ° at 900 ° C (Reference: A. Contrerasa et al .: Scripta Materialia, 48 (2003) 1625-1630). When considered, the wettability between pure Mg and pure Ti is recognized to be extremely good.
 濡れ性の評価後に、試験片上で凝固後の純Mgとチタン板との界面を走査型電子顕微鏡(SEM)で観察した。その結果を図2に示す。溶融したMgはチタン板と接触した全域に亘り、隙間・空隙なく良好に密着していることが認められる。 After the evaluation of the wettability, the interface between pure Mg and the titanium plate after solidification was observed with a scanning electron microscope (SEM) on the test piece. The results are shown in FIG. It is observed that the melted Mg adheres well without gaps or gaps throughout the entire area in contact with the titanium plate.
 比較のために、従来技術(非特許文献1~4)で報告されているような複合材料、すなわちマグネシウム粉末の固相温度で純チタン粉末と純マグネシウム粉末の混合粉末を加熱および加圧した複合材料を作製し、両者の接合界面を観察した。その結果を図3に示す。複合材料を作製するにあたり、加熱温度を520度とし、純マグネシウムの融点(650度)よりも低く設定して完全固相状態とした。矢印で示すようにTi粒子とMg素地との界面には、多数の隙間・空隙が観察されており、密着性が十分でないことがわかる。したがって、従来技術で開示されている製造方法においては、Mgの融点を下回る固相温度で加熱・焼結するためMgとTiとの密着性が十分でなく、その結果、複合材料における強度および延性の向上が得られなかったと考えられる。 For comparison, composites as reported in the prior art (Non-patent documents 1 to 4), ie composites obtained by heating and pressing mixed powder of pure titanium powder and pure magnesium powder at solid phase temperature of magnesium powder A material was produced and the bonding interface between the two was observed. The results are shown in FIG. In preparing the composite material, the heating temperature was set to 520 ° C. and set lower than the melting point of pure magnesium (650 ° C.) to obtain a completely solid state. As shown by the arrows, a large number of gaps and voids are observed at the interface between the Ti particles and the Mg base, and it can be seen that the adhesion is not sufficient. Therefore, in the manufacturing method disclosed in the prior art, the adhesion between Mg and Ti is not sufficient because heating and sintering are performed at a solid phase temperature below the melting point of Mg, and as a result, the strength and ductility in the composite material It is thought that no improvement was obtained.
 (2)Ti粒子分散マグネシウム溶湯を用いた複合材料
 本発明者らは、上記の結果に基づき、マグネシウム素地とTi粒子との界面の密着性を向上させるために、以下の方法でTi粒子分散マグネシウム基複合材料を作製した。まず、素地を構成するマグネシウムあるいはマグネシウム合金の融点よりも高い温度にマグネシウム溶湯を保持し、この溶湯中に適正量のTi粒子を添加した。チタン粒子が溶湯中で均一に分散するように溶湯を十分に撹拌した後に、溶湯を凝固させた。このような製法で作製したマグネシウム基複合素材においては、素地を構成するマグネシウムとチタン粒子とが、それらの界面にチタン酸化物を介在させること無く、良好な濡れ性を発揮して優れた密着性を持って結合している。このマグネシウム基複合素材に対して熱間塑性加工を施すことによって、230MPa以上の引張強度を有するTi粒子分散マグネシウム基複合材料を得ることができた。
(2) Composite Material Using Ti Particle-Dispersed Magnesium Melt Based on the above results, the present inventors based on the above results, in order to improve the adhesion of the interface between the magnesium base and the Ti particle, the Ti particle-dispersed magnesium by the following method A matrix composite was made. First, a molten magnesium was held at a temperature higher than the melting point of magnesium or a magnesium alloy constituting the base, and an appropriate amount of Ti particles was added to the molten metal. The molten metal was solidified after sufficiently stirring the molten metal so that the titanium particles were uniformly dispersed in the molten metal. In a magnesium-based composite material produced by such a method, the magnesium and titanium particles constituting the base exhibit excellent wettability and excellent adhesion without the titanium oxide being intervened in their interface. Have a bond. By subjecting the magnesium-based composite material to hot plastic working, a Ti particle-dispersed magnesium-based composite material having a tensile strength of 230 MPa or more can be obtained.
 チタン粒子をマグネシウム素地中に均一に分散させた複合素材は、従来の鋳造法やダイキャスト法などによっても製造することが可能である。またそれらの鋳造材に対して切削加工や粉砕加工などの機械加工を施して粉末状にすることができる。このようにして得られたマグネシウム基複合粉末においては、チタン粒子がマグネシウムの素地中に均一に分散している。このマグネシウム基複合粉末の組織写真の一例を図4に示す。図4を参照すれば明らかなように、Ti粒子とMg素地との界面には空隙は見られず、良好な密着性を有していることが認められる。 A composite material in which titanium particles are uniformly dispersed in a magnesium base can also be manufactured by a conventional casting method, die casting method or the like. In addition, the cast materials can be machined such as cutting and grinding to make them into powder. In the magnesium-based composite powder thus obtained, titanium particles are uniformly dispersed in the matrix of magnesium. An example of a photograph of the structure of this magnesium-based composite powder is shown in FIG. As apparent from FIG. 4, no void is observed at the interface between the Ti particles and the Mg base, and it is recognized that the adhesive has good adhesion.
 チタン粒子をマグネシウム素地中に均一に分散させたマグネシウム基複合粉末は、チタン粒子を均一に分散させているマグネシウムの溶湯をアトマイズ法によって凝固させることによっても得られる。具体的な手法として、本発明者らは、カーボン製坩堝内で純マグネシウムを溶解し、その溶湯中に純チタン粉末(平均粒子径:29.8μm)を3mass%添加し、十分に攪拌した後、その溶湯を坩堝底部から溶湯流として排出し、この溶湯流に高圧水を噴射すること(水アトマイズ法)により、凝固した粉末を得た。得られた粉末の外観写真と粉末内部の組織観察結果を図5に示す。この水アトマイズ粉末においても、Ti粒子とMg素地との界面には空隙は見られず、良好な密着性を有していることが認められる。 A magnesium-based composite powder in which titanium particles are uniformly dispersed in a magnesium base can also be obtained by solidifying magnesium melt in which titanium particles are uniformly dispersed by an atomizing method. As a specific method, the present inventors dissolve pure magnesium in a carbon crucible, add 3 mass% of pure titanium powder (average particle size: 29.8 μm) to the melt, and sufficiently stir The molten metal was discharged from the bottom of the crucible as a molten metal flow, and high-pressure water was injected into the molten metal flow (water atomization method) to obtain a solidified powder. The appearance photograph of the obtained powder and the structure observation result inside powder are shown in FIG. Also in this water atomized powder, no void is observed at the interface between the Ti particles and the Mg base, and it is recognized that the powder has good adhesion.
 以上のように、マグネシウム溶湯中にチタン粒子を添加し、十分に均一攪拌処理を施した後、鋳造法あるいはダイカスト法によりマグネシウム基複合素材とする場合、あるいはチタン粒子を均一に分散させているマグネシウム溶湯をアトマイズ法によって直接粉末化する場合のいずれにおいても、チタン粒子と素地のマグネシウムとは、優れた濡れ性によって空隙のない良好な密着性を有して結合する。 As described above, after titanium particles are added to molten magnesium and subjected to sufficient uniform stirring treatment, then a magnesium base composite material is obtained by a casting method or a die casting method, or magnesium in which titanium particles are uniformly dispersed. In any of the cases where the molten metal is directly powdered by the atomizing method, the titanium particles and the base magnesium are bonded together with good adhesion without voids due to excellent wettability.
 鋳造法またはダイキャスト法で作製したTi粒子分散マグネシウム基複合素材を所定の温度に加熱した後に、この素材に対して熱間押出加工、熱間圧延加工、鍛造加工などの熱間塑性加工を施すことで、素地の結晶粒は微細化して複合材料の強度は更に向上する。例えば、複合材料の引張強度は230MPa以上となる。 After heating a Ti particle-dispersed magnesium-based composite material produced by casting or die casting to a predetermined temperature, the material is subjected to hot plastic working such as hot extrusion, hot rolling, forging, etc. Thus, the grains of the base are refined and the strength of the composite material is further improved. For example, the tensile strength of the composite material is 230 MPa or more.
 また鋳造材から切削加工等の機械加工によって作製したTi粒子分散マグネシウム基複合粉末、または溶湯流に高圧水や高圧ガスを噴射して得られたTi粒子分散マグネシウム基複合粉末を圧粉固化して圧粉成形体や焼結固化体を作製し、必要に応じて引き続いて熱間押出加工、熱間圧延加工、鍛造加工などの熱間塑性加工を施すことにより、複合粉末同士を冶金的に結合または焼結したTi粒子分散マグネシウム基複合材料を創製することが可能である。 In addition, Ti particle dispersed magnesium base composite powder manufactured by machining process such as cutting from cast material, or Ti particle dispersed magnesium base composite powder obtained by injecting high pressure water or high pressure gas to molten metal flow is compacted and solidified. Powdered compacts and sintered / solidified bodies are prepared, and if necessary, the composite powders are joined together metallurgically by subjecting them to hot plastic working such as hot extrusion, hot rolling, forging etc. Alternatively, it is possible to create a sintered Ti particle-dispersed magnesium-based composite material.
 上記の実施形態では、マグネシウムの溶湯中に適正量のチタン粒子を投入するものであったが、他の実施形態として、次の製法によってTi粒子分散マグネシウム基複合材料を得ることも可能である。この実施形態では、マグネシウム粉末とチタン粒子とを混合し、この混合粉末を所定の温度に保持して焼結固化する。ここで重要なことは、混合粉末をマグネシウム粉末の液相発生温度よりも高い温度に保持することである。このような高い温度に保持することにより、焼結後の焼結固化体中では、素地を構成するマグネシウムとチタン粒子とが、それらの界面にチタン酸化物を介在させること無く、良好な濡れ性を発揮して優れた密着性を持って結合したものとなる。この焼結固化体に対して熱間塑性加工を施すことによって、230MPa以上の引張強度を有するTi粒子分散マグネシウム基複合材料を得ることができる。 In the above embodiment, titanium particles of an appropriate amount were charged into a molten magnesium, but as another embodiment, it is also possible to obtain a Ti particle-dispersed magnesium based composite material by the following method. In this embodiment, magnesium powder and titanium particles are mixed, and the mixed powder is held at a predetermined temperature to sinter and solidify. The important thing here is to keep the mixed powder at a temperature higher than the liquid phase generation temperature of the magnesium powder. By maintaining at such a high temperature, in the sintered and solidified body after sintering, magnesium and titanium particles constituting the base have good wettability without the interposition of titanium oxide at their interface. To be bonded with excellent adhesion. By subjecting the sintered and solidified body to hot plastic working, a Ti particle-dispersed magnesium-based composite material having a tensile strength of 230 MPa or more can be obtained.
 純度99.8%の純マグネシウム塊と平均粒子径29.8μmのチタン粉末とを出発原料として準備した。純マグネシウム塊をカーボン坩堝内で750℃に加熱して溶解し、その溶湯中に上記のTi粒子を全体の重量比率で0.5mass%、1.5mass%、2.8mass%の3条件で添加した。その後、Ti粒子の偏析および底部への沈降を防ぐために、溶湯を十分に均一攪拌処理した後、水アトマイズ法によってTi粒子分散マグネシウム基複合粉末を作製した。 Pure magnesium lumps having a purity of 99.8% and titanium powder having an average particle diameter of 29.8 μm were prepared as starting materials. Pure magnesium lumps are melted by heating to 750 ° C in a carbon crucible, and the above Ti particles are added to the melt under the three conditions of 0.5 mass%, 1.5 mass% and 2.8 mass% in total weight ratio did. Thereafter, the molten metal was sufficiently uniformly stirred to prevent segregation of the Ti particles and settling to the bottom, and then a Ti particle-dispersed magnesium-based composite powder was produced by a water atomizing method.
 一方、比較として純度99.9%の純マグネシウム粉末(平均粒子径162μm)を準備し、上記のTi粉末の比率が0.5mass%、1.5mass%、2.8mass%となるように両者を秤量した後、乾式ボールミルを用いて混合処理を施して、Mg-Ti混合粉末を作製した。 On the other hand, pure magnesium powder (average particle diameter: 162 μm) having a purity of 99.9% is prepared as a comparison, and the ratio of the above-mentioned Ti powder is 0.5 mass%, 1.5 mass%, 2.8 mass%. After weighing, they were mixed using a dry ball mill to produce an Mg—Ti mixed powder.
 これらの粉末をカーボン型に充填し、放電プラズマ焼結装置を用いて真空雰囲気中で550℃にて30分間(加圧力:30MPa)加圧することで、粉末同士を焼結固化して直径45mmの押出用ビレットを作製した。それぞれのTi粒子分散マグネシウム粉末ビレットをアルゴンガス雰囲気中で200℃にて5分間保持し,直ちに熱間押出加工(押出比:37)を施して直径7mmの丸棒押出材を作製した。 These powders are filled in a carbon mold, and pressed for 30 minutes (pressure: 30 MPa) at 550 ° C. in a vacuum atmosphere using a discharge plasma sintering apparatus to sinter and solidify the powders to a diameter of 45 mm. A billet for extrusion was made. Each Ti particle-dispersed magnesium powder billet was held at 200 ° C. for 5 minutes in an argon gas atmosphere, and immediately subjected to hot extrusion processing (extrusion ratio: 37) to produce a round bar extruded material with a diameter of 7 mm.
 なお、比較として、Ti粒子を含まない純マグネシウム粉末についても上記の製造手順に基づいて丸棒押出材を作製した。 In addition, the round rod extruded material was produced based on said manufacturing procedure also about the pure magnesium powder which does not contain Ti particle as comparison.
 得られた3種類のマグネシウム粉末押出材から引張試験片を採取し、常温にて引張強度試験を行った。Ti粒子を含まない純Mg粉末、および2つの製法により作製した2.8mass%のTi粒子を含むMg粉末をそれぞれ用いた押出材における応力-歪曲線を図6に示す。 Tensile test pieces were collected from the obtained three types of magnesium powder extruded materials, and tensile strength tests were conducted at normal temperature. The stress-distortion line in an extruded material using a pure Mg powder containing no Ti particles and an Mg powder containing 2.8 mass% of Ti particles produced by the two production methods is shown in FIG.
 Ti粒子を含まない純マグネシウム粉末押出材の強度および伸び特性と比較して、本発明による水アトマイズ法を用いたTi粒子分散マグネシウム基複合粉末押出材の引張強さおよび耐力は約35~40%増加し、また破断伸びは同等であり15%以上の高い値を示した。 Compared with the strength and elongation characteristics of pure magnesium powder extruded material not containing Ti particles, tensile strength and yield strength of Ti particle dispersed magnesium based composite powder extruded material using water atomization method according to the present invention is about 35 to 40% It increased, and the breaking elongation was equal and showed a high value of 15% or more.
 一方、比較材であるTi粒子とMg粉末との混合粉末を用いて作製した押出材では、引張強さおよび耐力は僅かに3~6%程度増加するものの、破断伸びは10%未満と低減した。引張試験後の試料破断面を観察したところ、比較材ではTi粒子とマグネシウム素地との界面において亀裂が進展しており、両者の密着性が十分でないためにTi粒子添加による強度改善効果が得られなかったことが認められた。 On the other hand, in the extruded material produced using the mixed powder of Ti particles and Mg powder, which is a comparative material, the tensile strength and the yield strength increased slightly by about 3 to 6%, but the breaking elongation decreased to less than 10%. . As a result of observing the fractured surface of the sample after the tensile test, in the comparative material, the crack has progressed at the interface between the Ti particle and the magnesium base, and the adhesion between the two is not sufficient. It was recognized that there was not.
 Ti添加量に対する各押出材の引張強さ(TS)および耐力(YS)の変化を図7に示す。本発明による水アトマイズ法を用いたTi粒子分散マグネシウム基複合粉末押出材においては、引張強さおよび耐力は共に、Ti粒子含有量の増加に対して増大しており、Ti粒子の均一分散による高強度化の効果が確認された。これは前述したように溶湯におけるTi粒子とマグネシウムとの優れた濡れ性による両者の密着性向上による結果である。 Changes in tensile strength (TS) and proof stress (YS) of each extruded material with respect to the amount of added Ti are shown in FIG. In the Ti particle-dispersed magnesium-based composite powder extruded material using the water atomizing method according to the present invention, both the tensile strength and the proof stress increase with the increase of the Ti particle content, and the high value by the uniform dispersion of the Ti particles The effect of strengthening was confirmed. This is a result of the improvement in adhesion between the Ti particles and the magnesium in the molten metal due to the excellent wettability as described above.
 一方、従来の製法であるTi粉末とMg粉末との混合粉末を用いて固相温度域で焼結・押出固化した場合、Ti粒子の添加量が増加するに連れて押出材の引張強さおよび耐力は低下する傾向にあり、Ti粒子による分散強化が十分でないことが認められた。 On the other hand, when sintering and extruding and solidifying in the solid phase temperature range using a mixed powder of Ti powder and Mg powder, which is a conventional production method, the tensile strength of the extruded material and the addition amount of Ti particles increase. The yield strength tends to decrease, and it was recognized that the dispersion strengthening by the Ti particles was not sufficient.
 実施例1と同様に、純度99.8%の純マグネシウム塊と平均粒子径29.8μmのチタン粉末とを出発原料として準備した。マグネシウム塊をカーボン坩堝内で750℃に加熱して溶解し、その溶湯中に上記のTi粒子を全体の重量比率で1mass、3mass%、5mass%の3条件で添加した。その後、Ti粒子の偏析および底部への沈降を防ぐために、溶湯を十分に均一攪拌処理した後、円筒状金型に鋳込んで直径60mmのビレットを作製した。各鋳込みビレットから機械加工により直径45mmの押出用ビレットを作製し、各ビレットをアルゴンガス雰囲気中で200℃にて5分間保持し、直ちに熱間押出加工(押出比:37)を施して直径7mmの丸棒押出材を作製した。 In the same manner as in Example 1, a pure magnesium lump having a purity of 99.8% and a titanium powder having an average particle diameter of 29.8 μm were prepared as starting materials. Magnesium lumps were melted by heating to 750 ° C. in a carbon crucible, and the above-described Ti particles were added to the melt under the three conditions of 1 mass, 3 mass%, and 5 mass% in the total weight ratio. Thereafter, the molten metal was sufficiently uniformly stirred to prevent segregation of the Ti particles and settling to the bottom, and then the molten metal was cast into a cylindrical mold to prepare a billet having a diameter of 60 mm. A billet for extrusion with a diameter of 45 mm is produced from each cast billet by machining, each billet is held at 200 ° C. for 5 minutes in an argon gas atmosphere, and hot extrusion (extrusion ratio: 37) is applied immediately to a diameter of 7 mm. The round bar extruded material of
 各押出材の光学顕微鏡観察結果を図8に示す。Ti粒子添加量が増加するにつれて押出材におけるTi粒子の割合も増大しており、またTi粒子を5mass%添加した場合においてもTi粒子の凝集・偏析現象は見られず、マグネシウム素地中に均一に分散していることがわかる。 The optical microscope observation result of each extruded material is shown in FIG. The proportion of Ti particles in the extruded material also increases as the amount of added Ti particles increases, and even when 5 mass% of Ti particles is added, the aggregation and segregation phenomena of Ti particles are not observed, and uniform in the magnesium base It is understood that it is dispersed.
 各押出材の引張試験結果を表1に示す。 The tensile test results of each extruded material are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
 
Figure JPOXMLDOC01-appb-T000001
 
 
 実施例1と同様に、本発明による鋳造法を用いて作製したTi粒子マグネシウム基複合材料に対して押出加工を施して得られる押出材において、Ti粒子の含有量が増加するに伴い、引張強さおよび耐力は共に増大し、しかも破断伸びの顕著な低下は見られない。以上の結果より本発明によるTi粒子分散マグネシウム基複合材料においては、Ti粒子の凝集・偏析を伴うことなく、Ti粒子の添加によってマグネシウム素材の強度向上が可能となる。 In the same manner as in Example 1, in the extruded material obtained by subjecting the Ti particle magnesium base composite material produced by using the casting method according to the present invention to extrusion processing, the tensile strength is increased as the content of Ti particles increases. Both the strength and the load resistance increase, and no remarkable decrease in the elongation at break is observed. From the above results, in the Ti particle-dispersed magnesium-based composite material according to the present invention, it is possible to improve the strength of the magnesium material by adding Ti particles without causing aggregation and segregation of the Ti particles.
 実施例1と同様に、純度99.8%の純マグネシウム塊と平均粒子径29.8μmのチタン粉末とを出発原料として準備した。マグネシウム塊をカーボン坩堝内で750℃に加熱して溶解し、その溶湯中に上記のTi粒子を全体の重量比率で2mass%および4mass%の条件でそれぞれ添加した。その後、Ti粒子の偏析および底部への沈降を防ぐために、溶湯を十分に均一攪拌処理した後、円筒状金型に鋳込んで直径60mmのビレットを作製した。各鋳込みビレットから切削加工により全長1~4mm程度の切粉を作製した。 In the same manner as in Example 1, a pure magnesium lump having a purity of 99.8% and a titanium powder having an average particle diameter of 29.8 μm were prepared as starting materials. The magnesium lump was melted by heating to 750 ° C. in a carbon crucible, and the above-mentioned Ti particles were added to the molten metal in the total weight ratio of 2 mass% and 4 mass%, respectively. Thereafter, the molten metal was sufficiently uniformly stirred to prevent segregation of the Ti particles and settling to the bottom, and then the molten metal was cast into a cylindrical mold to prepare a billet having a diameter of 60 mm. Chips having a total length of about 1 to 4 mm were produced from each cast billet by cutting.
 各切粉を組織観察した結果、Ti粒子は凝集・偏析することなくMg素地中に均一に分散していた。そして、切粉をSKD11製金型に充填して油圧プレスにより加圧力600MPaを付与して直径45mmの粉末成形体ビレットを作製した。各ビレットをアルゴンガス雰囲気中で300℃にて5分間保持し、直ちに熱間押出加工(押出比:37)を施して直径7mmの丸棒押出材を作製した。 As a result of structure observation of each chip, Ti particles were uniformly dispersed in the Mg base without aggregation and segregation. Then, the chips were filled in a mold made of SKD11 and a pressing force of 600 MPa was applied by a hydraulic press to produce a powder compact billet having a diameter of 45 mm. Each billet was held at 300 ° C. for 5 minutes in an argon gas atmosphere, and immediately subjected to hot extrusion (extrusion ratio: 37) to produce a round bar extruded material with a diameter of 7 mm.
 それぞれのマグネシウム粉末押出材から引張試験片を採取し、常温にて引張強度試験を行ったところ、2mass%Tiを含む切粉を用いた押出材では、引張強さ:264MPa、破断伸び:15.4%、4mass%Tiを含む切粉を用いた押出材では、引張強さ:294MPa、破断伸び:13.74%が得られた。Ti粒子の添加量の増加に伴い、破断伸びの著しい低下を伴うことなく、引張強さは増大しており、また実施例1で記載した比較材の特性を比較すると、同一量のTi粒子を含む場合であっても明らかに引張強さおよび耐力は増大している。 When tensile test pieces were taken from each of the magnesium powder extruded materials and subjected to a tensile strength test at room temperature, the extruded materials using chips containing 2 mass% Ti had a tensile strength of 264 MPa and a breaking elongation of 15. In the extruded material using chips containing 4% and 4 mass% Ti, tensile strength: 294 MPa and breaking elongation: 13.74% were obtained. The tensile strength is increased with the increase of the addition amount of Ti particles without a significant decrease of the breaking elongation, and when the characteristics of the comparative material described in Example 1 are compared, the same amount of Ti particles is obtained. Even in the case of including, tensile strength and proof stress are increased.
 以上の結果より、上述した本発明の製法によって得られたTi粒子分散マグネシウム基複合材料では、Ti粒子の凝集・偏析を伴うことなく、Ti粒子の添加によってマグネシウム素材の強度向上が可能となる。 From the above results, in the Ti particle-dispersed magnesium-based composite material obtained by the manufacturing method of the present invention described above, the strength of the magnesium material can be improved by the addition of the Ti particles, without the aggregation / segregation of the Ti particles.
 実施例1と同様に、純度99.8%の純マグネシウム塊と平均粒子径22.8μmのチタン合金粉末(Ti-6.1Al%-3.8V/mass%)とを出発原料として準備した。マグネシウム塊をカーボン坩堝内で750℃に加熱して溶解し、その溶湯中に上記のTi合金粒子を全体の重量比率で1mass%、3mass%、5mass%の3条件で添加した。その後、Ti合金粒子の偏析および底部への沈降を防ぐために、溶湯を十分に均一攪拌処理を施した後、円筒状金型に鋳込んで直径60mmのビレットを作製した。 In the same manner as in Example 1, a pure magnesium lump having a purity of 99.8% and a titanium alloy powder (Ti-6.1Al% -3.8V / mass%) having an average particle diameter of 22.8 μm were prepared as starting materials. Magnesium lumps were melted by heating to 750 ° C. in a carbon crucible, and the above Ti alloy particles were added to the melt under the three conditions of 1 mass%, 3 mass%, and 5 mass% in terms of the total weight ratio. Thereafter, the molten metal was sufficiently uniformly stirred to prevent segregation of the Ti alloy particles and settling to the bottom, and then the molten metal was cast into a cylindrical mold to prepare a billet having a diameter of 60 mm.
 各鋳込みビレットから機械加工により直径45mmの押出用ビレットを作製し、各ビレットをアルゴンガス雰囲気中で200℃にて5分間保持し、直ちに熱間押出加工(押出比:37)を施して直径7mmの丸棒押出材を作製した。そして各マグネシウム粉末押出材から引張試験片を採取し、常温にて引張試験を行った。 A billet for extrusion with a diameter of 45 mm is produced from each cast billet by machining, each billet is held at 200 ° C. for 5 minutes in an argon gas atmosphere, and hot extrusion (extrusion ratio: 37) is applied immediately to a diameter of 7 mm. The round bar extruded material of And the tensile test piece was extract | collected from each magnesium powder extruded material, and the tensile test was done at normal temperature.
 その結果を表2に示す。なお、実施例2に記載の純Ti粒子を用いた際の押出材の引張強さを比較値として用いた。 The results are shown in Table 2. In addition, the tensile strength of the extruded material at the time of using the pure Ti particle | grain as described in Example 2 was used as a comparative value.
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000002
 
 
 Ti-6Al-4V合金粉末を用いた場合においても、本発明によるTi粒子分散マグネシウム基複合材料においては、Ti合金粒子は凝集・偏析することなく素地中に均一に分散し、その添加量が増加するに伴い、引張強さは増大しており、また純Ti粒子を添加した場合と比較して引張強さの増加量は増大している。つまり、分散する粒子の硬度・強度がより増加することでマグネシウム複合材料の強度も更に向上する。 Even in the case of using Ti-6Al-4V alloy powder, in the Ti particle-dispersed magnesium-based composite material according to the present invention, the Ti alloy particles are uniformly dispersed in the base without aggregation and segregation, and the addition amount thereof increases As a result, the tensile strength is increased, and the increase in tensile strength is increased as compared with the case where pure Ti particles are added. That is, the strength of the magnesium composite material is further improved by further increasing the hardness and strength of the dispersed particles.
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。 Although the embodiments of the present invention have been described above with reference to the drawings, the present invention is not limited to the illustrated embodiments. Various modifications and variations can be made to the illustrated embodiment within the same or equivalent scope of the present invention.
 この発明は、優れた強度を有するTi粒子分散マグネシウム基複合材料およびその製造方法として、有利に利用され得る。 The present invention can be advantageously used as a Ti particle-dispersed magnesium-based composite material having excellent strength and a method for producing the same.

Claims (7)

  1. マグネシウムの素地中にチタン粒子を均一に分散させたTi粒子分散マグネシウム基複合材料において、
     素地を構成するマグネシウムとチタン粒子とが、それらの界面にチタン酸化物を介在させること無く良好な濡れ性を発揮して結合しており、230MPa以上の引張強度を有していることを特徴とする、Ti粒子分散マグネシウム基複合材料。
    In a Ti particle-dispersed magnesium-based composite material in which titanium particles are uniformly dispersed in a magnesium matrix,
    The magnesium and titanium particles constituting the base exhibit good wettability without being intercalated with titanium oxide at their interface and are bonded, and have a tensile strength of 230 MPa or more. Ti particle dispersed magnesium base composite material.
  2. 請求項1に記載のTi粒子分散マグネシウム基複合材料を製造するための粉末であって、
     チタン粒子がマグネシウム素地中に均一に分散している鋳造材を粉末となるように機械加工することによって得られる、Ti粒子分散マグネシウム基複合粉末。
    It is a powder for producing the Ti particle-dispersed magnesium-based composite material according to claim 1;
    A Ti particle-dispersed magnesium-based composite powder obtained by machining a cast material in which titanium particles are uniformly dispersed in a magnesium base into a powder.
  3. 請求項1に記載のTi粒子分散マグネシウム基複合材料を製造するための粉末であって、
     チタン粒子が均一に分散しているマグネシウムの溶湯をアトマイズ法によって粉末状に凝固させることによって得られる、Ti粒子分散マグネシウム基複合粉末。
    It is a powder for producing the Ti particle-dispersed magnesium-based composite material according to claim 1;
    A Ti particle-dispersed magnesium-based composite powder obtained by solidifying a molten metal of magnesium in which titanium particles are uniformly dispersed into a powder by an atomizing method.
  4. マグネシウムの溶湯中にチタン粒子を投入する工程と、
     前記チタン粒子が前記溶湯内で均一に分散するように前記溶湯を撹拌する工程と、
     前記溶湯を凝固させてマグネシウムの素地中に前記チタン粒子を均一に分散させた複合素材を得る工程と、
     前記複合素材に対して熱間塑性加工を施して引張強度が230MPa以上のマグネシウム基複合材料を得る工程とを備える、Ti粒子分散マグネシウム基複合材料の製造方法。
    Charging titanium particles into molten magnesium;
    Stirring the melt such that the titanium particles are uniformly dispersed in the melt;
    Obtaining the composite material in which the titanium particles are uniformly dispersed in a magnesium base by solidifying the molten metal;
    And b. Subjecting the composite material to hot plastic working to obtain a magnesium-based composite material having a tensile strength of 230 MPa or more.
  5. 前記複合素材を得る工程は、前記溶湯を凝固させてマグネシウムの素地中にチタン粒子を分散させた鋳造材を得ることと、
     前記鋳造材に対して機械加工を施して粉末状にすることと、
     前記粉末を圧粉固化して圧粉成形体を得ることとを含む、請求項4に記載のTi粒子分散マグネシウム基複合材料の製造方法。
    The step of obtaining the composite material includes solidifying the molten metal to obtain a cast material in which titanium particles are dispersed in a base of magnesium;
    Machining the cast material into a powder form;
    The method for producing a Ti particle-dispersed magnesium based composite material according to claim 4, comprising: compacting and solidifying the powder to obtain a powder compact.
  6. 前記複合素材を得る工程は、前記溶湯をアトマイズ法によって粉末状に凝固させることと、
     前記粉末を圧粉固化して圧粉成形体を得ることとを含む、請求項4に記載のTi粒子分散マグネシウム基複合材料の製造方法。
    The step of obtaining the composite material comprises solidifying the molten metal into a powder by atomization;
    The method for producing a Ti particle-dispersed magnesium based composite material according to claim 4, comprising: compacting and solidifying the powder to obtain a powder compact.
  7. マグネシウム粉末とチタン粒子とを混合する工程と、
     前記混合粉末をマグネシウム粉末の液相発生温度よりも高い温度に保持する工程と、
     前記高い温度に保持された混合粉末を焼結固化する工程と、
     前記焼結固化体に対して熱間塑性加工を施して引張強度が230MPa以上のマグネシウム基複合材料を得る工程とを備える、Ti粒子分散マグネシウム基複合材料の製造方法。
    Mixing magnesium powder and titanium particles,
    Maintaining the mixed powder at a temperature higher than the liquid phase generation temperature of the magnesium powder;
    Sinter-solidify the mixed powder held at the high temperature;
    And b. Subjecting the sintered and solidified body to hot plastic working to obtain a magnesium-based composite material having a tensile strength of 230 MPa or more.
PCT/JP2009/055026 2008-09-03 2009-03-16 Magnesium-based composite material having ti particles dispersed therein, and method for production thereof WO2010026793A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/060,078 US20110150694A1 (en) 2008-09-03 2009-03-16 METHOD FOR MANUFACTURING Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL
EP09811322A EP2327808A1 (en) 2008-09-03 2009-03-16 Magnesium-based composite material having ti particles dispersed therein, and method for production thereof
CN200980114389XA CN102016094A (en) 2008-09-03 2009-03-16 Magnesium-based composite material having Ti particles dispersed therein, and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008226260A JP4397425B1 (en) 2008-09-03 2008-09-03 Method for producing Ti particle-dispersed magnesium-based composite material
JP2008-226260 2008-09-03

Publications (1)

Publication Number Publication Date
WO2010026793A1 true WO2010026793A1 (en) 2010-03-11

Family

ID=41591568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055026 WO2010026793A1 (en) 2008-09-03 2009-03-16 Magnesium-based composite material having ti particles dispersed therein, and method for production thereof

Country Status (6)

Country Link
US (1) US20110150694A1 (en)
EP (1) EP2327808A1 (en)
JP (1) JP4397425B1 (en)
KR (1) KR20100092055A (en)
CN (1) CN102016094A (en)
WO (1) WO2010026793A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111266592B (en) * 2020-03-25 2022-04-22 燕山大学 Titanium-magnesium composite material with double-communication structure and preparation method and application thereof
CN113174519B (en) * 2021-03-23 2022-04-29 山东科技大学 Superfine vanadium particle reinforced fine-grain magnesium-based composite material and preparation method thereof
CN114959391B (en) * 2022-05-30 2023-01-06 广东省科学院新材料研究所 Titanium particle reinforced magnesium-based composite material and preparation method thereof
CN115074560B (en) * 2022-06-30 2023-03-14 广东省科学院新材料研究所 Titanium particle reinforced magnesium matrix composite material and preparation method thereof
CN116103521B (en) * 2023-02-15 2024-02-02 重庆大学 Preparation method of metal titanium particle reinforced magnesium-based composite material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129329A (en) * 1988-11-08 1990-05-17 Katsuhiro Nishiyama Magnesium-titanium series alloy and its manufacture
JPH05214477A (en) * 1992-01-31 1993-08-24 Suzuki Motor Corp Composite material and its manufacture
JPH10102163A (en) * 1996-09-24 1998-04-21 Hiroshima Pref Gov Intermetallic compound reinforced magnesium base composite material and its production
JP2002105575A (en) * 2000-09-28 2002-04-10 Hokkaido Technology Licence Office Co Ltd Magnesium matrix alloy composite material for plastic working and production method for thin sheet material for plastic working
JP2008163361A (en) * 2006-12-27 2008-07-17 Mitsubishi Alum Co Ltd Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
JP2008195978A (en) * 2007-02-09 2008-08-28 Topy Ind Ltd Magnesium-based composite material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751048A (en) * 1984-10-19 1988-06-14 Martin Marietta Corporation Process for forming metal-second phase composites and product thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129329A (en) * 1988-11-08 1990-05-17 Katsuhiro Nishiyama Magnesium-titanium series alloy and its manufacture
JPH05214477A (en) * 1992-01-31 1993-08-24 Suzuki Motor Corp Composite material and its manufacture
JPH10102163A (en) * 1996-09-24 1998-04-21 Hiroshima Pref Gov Intermetallic compound reinforced magnesium base composite material and its production
JP2002105575A (en) * 2000-09-28 2002-04-10 Hokkaido Technology Licence Office Co Ltd Magnesium matrix alloy composite material for plastic working and production method for thin sheet material for plastic working
JP2008163361A (en) * 2006-12-27 2008-07-17 Mitsubishi Alum Co Ltd Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
JP2008195978A (en) * 2007-02-09 2008-08-28 Topy Ind Ltd Magnesium-based composite material

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A. CONTRERASA ET AL., SCRIPTA MATERIALIA, vol. 48, 2003, pages 1625 - 1630
ENAMI, FUJITA; OHARA; LGARASHI: "Abstracts of Spring Meeting of Japan Society of Powder and Powder Metallurgy", DEVELOPMENT OF MAGNESIUM COMPOSITE MATERIAL BY BULK MECHANICAL ALLOYING METHOD, 6 June 2007 (2007-06-06), pages 148
ENAMI; FUJITA; HONE; OHARA; IGARASHI; KONDO: "Journal of Japan Society of Powder and Powder Metallurgy", DEVELOPMENT OF MAGNESIUM COMPOSITE MATERIAL BY BULK MECHANICAL ALLOYING METHOD, vol. 55, no. 4, 2008, pages 244
KATAOKA; KITAZONO: "Collected Abstracts of the 2008 Spring Meeting of the Japan Institute of Metals", EFFECT OF MICROSTRUCTURE ON MECHANICAL CHARACTERISTICS OF TI PARTICLE-DISPERSED MG-BASED COMPOSITE MATERIAL, no. 464, 26 March 2008 (2008-03-26), pages 355
KITAZONO; KATAOKA; KOMAZU: "Collected Abstracts of the 2008 Spring Meeting of the Japan Institute of Light Metals", EFFECT OF ADDITION OF TITANIUM PARTICLES ON MECHANICAL CHARACTERISTICS OF MAGNESIUM, 11 May 2008 (2008-05-11), pages 13
SATO; WATANABE; MIURA; MIURA: "Journal of Japan Institute of Light Metals", DEVELOPMENT OF TITANIUM PARTCLE-DISPERSED MAGNESIUM-BASED FUNCTIONALLY GRADED MATERIAL BY CENTRIFUGAL SOLID-PARTICLE METHOD, vol. 54, no. 11, 2004, pages 522 - 526
TOSHIYUKI NISHIO ET AL.: "Magnesium Gokin Funmatsu o Riyo shita MMC-zai no Seikei Oyobi Kikaiteki Seishitsu", JAPANESE FOUNDRY ENGINEERING SOCIETY, REPORTS OF THE JFS MEETING, - 15 October 1998 (1998-10-15), pages 71, XP008142875 *

Also Published As

Publication number Publication date
KR20100092055A (en) 2010-08-19
US20110150694A1 (en) 2011-06-23
JP2010059480A (en) 2010-03-18
JP4397425B1 (en) 2010-01-13
EP2327808A1 (en) 2011-06-01
CN102016094A (en) 2011-04-13

Similar Documents

Publication Publication Date Title
Stalin et al. Investigations on microstructure and mechanical properties of Mg-5wt.% Cu-TiB2 composites produced via powder metallurgy route
US9869006B2 (en) Intermetallic compound ultrafine particle reinforced metal-based composite material and preparation method thereof
CN102337423B (en) Preparation method of ceramic-powder-enhanced zinc-aluminum alloy based composite material
Satish et al. Preparation of magnesium metal matrix composites by powder metallurgy process
WO2010026794A1 (en) Magnesium-based composite material having ti particles dispersed therein, and method for production thereof
CN109321767B (en) Method for preparing hybrid particle reinforced aluminum matrix composite material by composite reinforcement method
Martınez-Flores et al. Structure and properties of Zn–Al–Cu alloy reinforced with alumina particles
Chandio et al. Silicon carbide effect as reinforcement on aluminium metal matrix composite
Sharma et al. Effects of various fabrication techniques on the mechanical characteristics of metal matrix composites: a review
CN106967900A (en) A kind of titanium-based metal glass particle reinforced aluminum matrix composites and preparation method thereof
WO2010026793A1 (en) Magnesium-based composite material having ti particles dispersed therein, and method for production thereof
Moustafa et al. Hot forging and hot pressing of AlSi powder compared to conventional powder metallurgy route
Raja et al. Effects on microstructure and hardness of Al-B4C metal matrix composite fabricated through powder metallurgy
Burke et al. Sintering fundamentals of magnesium powders
Hanada et al. Microstructures and mechanical properties of Al-Li/SiCp composite produced by extrusion processing
Bhaskar Raju et al. Mechanical and Tribological Behaviour of Aluminium Metal Matrix Composites using Powder Metallurgy Technique—A Review.
RU2246379C1 (en) Method for producing composition material
Youseffi et al. PM processing of elemental and prealloyed 6061 aluminium alloy with and without common lubricants and sintering aids
Kumar et al. A review on properties of Al-B4C composite of different routes
Moazami-Goudarzi et al. Effect of SiC nanoparticles addition on densification of commercially pure Al and 5252 Al powder compacts
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
CN114892045A (en) In-situ self-assembly core-shell structure reinforced aluminum-based composite material and preparation method thereof
DE102014002583B3 (en) Method for producing a wear-resistant light metal component
Aswar et al. Effect of copper addition on aluminum matrix composite by powder metallurgy method
Ramanjaneyulu et al. Development and evaluation of mechanical properties of aluminium alloys and boron fiber composite material by powder metallurgy route

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114389.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107015461

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13060078

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009811322

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE