JPH08209274A - Wear resistant aluminum-base sintered alloy - Google Patents

Wear resistant aluminum-base sintered alloy

Info

Publication number
JPH08209274A
JPH08209274A JP7225995A JP7225995A JPH08209274A JP H08209274 A JPH08209274 A JP H08209274A JP 7225995 A JP7225995 A JP 7225995A JP 7225995 A JP7225995 A JP 7225995A JP H08209274 A JPH08209274 A JP H08209274A
Authority
JP
Japan
Prior art keywords
alloy
primary crystal
phase
dispersed
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7225995A
Other languages
Japanese (ja)
Inventor
Zenzo Ishijima
善三 石島
Junichi Ichikawa
淳一 市川
Hideji Sasaki
秀二 佐々木
Hideo Yomo
英雄 四方
Hideo Urata
秀夫 浦田
Shoji Kawase
祥司 川瀬
Junichi Ueda
順一 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Resonac Corp
Original Assignee
Honda Motor Co Ltd
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Powdered Metals Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP7225995A priority Critical patent/JPH08209274A/en
Publication of JPH08209274A publication Critical patent/JPH08209274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To produce a lightweight Al-Si-base sintered alloy excellent in sliding characteristics, furthermore having wear resistance and low in the coefficient of friction. CONSTITUTION: This wear resistant aluminum-base sintered alloy is the one in which the compsn. of the whole body is constituted of, by weight, 1.3 to 23.3% Si, 1.1 to 5% Cu, 0.1 to 1.5% Mg, 0.005 to 1% of one or >= two kinds of transition metals selected from Ti, V, Cr, Mn, Fe, Co, Ni, Zr and Nb, 1 to 45% solid lubricant, and the balance Al with inevitable impurities, as for the Al alloy part, a dotted structure of Al-Si-base alloy phases in which primary crystal Si is dispersed and Al solid solution phases is shown, the area of the Al solid solution phases occupied in the area of the dotted structure is regulated to 20 to 80%, and a solid lubricant is dispersed in the grain boundaries of the Al alloy part, and the alloy is the one having the compsn. same as that of the above, and in which the maximum grain size of primary crystal Si at least in the part to be applied with friction of the Al-Si-base alloy phases is regulated to 5 to 60μm, and the grain size of primary crystal Si in the other part is regulated to <=5μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、歯車、プーリー、コン
プレッサー用ベーン、コンロッド、ピストンなどの、軽
量で強度が高く、かつ耐摩耗性であることを要求される
部品の材料として好適なアルミニウム系焼結合金に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum-based material suitable as a material for parts such as gears, pulleys, vanes for compressors, connecting rods, pistons, etc., which are required to be lightweight and have high strength and wear resistance. It relates to a sintered alloy.

【0002】[0002]

【従来の技術】機械効率の向上や省エネルギーの要求か
ら、機械要素は軽量化材料への置換が進んでいる。中で
もアルミニウム系焼結合金は、鋳造合金に比べて、初晶
Siを微細化でき、Si含有量を多くできることなどの
理由から、比強度と耐摩耗性に優れた材料として期待さ
れている。
2. Description of the Related Art In order to improve mechanical efficiency and save energy, mechanical elements are being replaced with lightweight materials. Among them, the aluminum-based sintered alloy is expected as a material excellent in specific strength and wear resistance because it can make primary crystal Si finer and can increase Si content as compared with a cast alloy.

【0003】従来の焼結Al−Si系合金としては、例
えば特開昭53−128512号公報に開示されている
ように、組成を構成する元素またはその母合金の粉末を
混合し、圧粉焼結して製造する方法がある。このように
して作られる合金は、液相焼結により微細化した初晶S
iを均一に分散させることにより、引張り強さが比較的
高い材料を得ることができる。また、軟質な金属粉末を
用いることができるため、粉末成形性がよく、金型成形
によるニアネットシェープ化ができるという特長を有す
る。
As a conventional sintered Al-Si alloy, for example, as disclosed in JP-A-53-128512, powders of elements constituting the composition or a mother alloy thereof are mixed and compacted. There is a method of binding and manufacturing. The alloy produced in this way is a primary crystal S refined by liquid phase sintering.
By uniformly dispersing i, a material having a relatively high tensile strength can be obtained. Further, since a soft metal powder can be used, it has a good powder formability and can be formed into a near net shape by die molding.

【0004】また、特開昭62−10237号公報に記
載されているように、Si以外の元素も含む急冷凝固ア
ルミニウム合金粉を用いる方法がある。同公報によれ
ば、圧粉体を熱間鍛造することにより、Al−Si系合
金素地中に初晶Siが均一に分散した組織が得られ、引
張り強さが更に向上する。この合金は、強度は比較的高
いが、粉末が硬いために金型成形によるニアネットシェ
ープ化が困難であること、焼結時に液相が発生しないこ
となどのために、焼結のみでは粉末相互の十分な結合を
達成することができず、ビレット形状からの押出しや鍛
造など、数回の圧縮工程を必要とする点に問題がある。
Further, as described in Japanese Patent Laid-Open No. 62-10237, there is a method using a rapidly solidified aluminum alloy powder containing an element other than Si. According to the publication, by hot forging the green compact, a structure in which primary crystal Si is uniformly dispersed in the Al-Si alloy base is obtained, and the tensile strength is further improved. Although this alloy has a relatively high strength, it is difficult to form a near net shape by mold forming because the powder is hard, and since a liquid phase does not occur during sintering, it is not possible to simply mix the powder with each other. However, there is a problem in that several compression steps such as extrusion from a billet shape and forging are required because a sufficient bond cannot be achieved.

【0005】また、このような課題を解決するために、
特開平5−156399号公報に提案されている焼結合
金は、急冷凝固Al−Si系合金粉に、所定量の純Al
粉を混合した粉末の圧粉体を熱間鍛造して製造され、微
細な初晶Siが分散した共晶Al−Si素地中に、熱間
鍛造で変形したAl固溶体粒が5〜20容量%分散した
組織を有するものである。この合金はAl固溶体粒が接
着剤として作用し、硬質な粒界の相互の密着性を向上さ
せ、耐摩耗性および靭性を向上させたものである。
Further, in order to solve such a problem,
The sintered alloy proposed in Japanese Unexamined Patent Publication No. 5-156399 is a rapidly solidified Al-Si alloy powder containing a predetermined amount of pure Al.
5 to 20% by volume of Al solid solution grains deformed by hot forging are produced in a eutectic Al-Si matrix in which fine primary crystal Si is dispersed, which is manufactured by hot forging a green compact of powder mixed with powder. It has a dispersed structure. In this alloy, the Al solid solution particles act as an adhesive, improve the mutual adhesion of hard grain boundaries, and improve the wear resistance and toughness.

【0006】一方、本出願人による特願平6−3760
6号において提案したアルミニウム系焼結合金は、全体
組成が重量比でSi:2.4〜23.5%、Cu:2〜5
%、Mg:0.2〜1.5%、Ti、V、Cr、Mn、F
e、Co、Ni、ZrおよびNbから選ばれる1種もし
くは2種以上の遷移金属:0.01〜1%、残部のAl
および不可避不純物からなり、最大粒径が5〜60μm
の初晶Siが分散したAl−Si系合金相とAl固溶体
相との斑組織を呈し、かつ斑組織面に占めるAl固溶体
相の面積が20〜80%である。この焼結合金は、遷移
金属を含有させることにより粒界のCu合金相を減少さ
せ、延性に優れ、かつ強度と耐摩耗性とを兼ね備えたも
のである。
On the other hand, Japanese Patent Application No. 6-3760 filed by the present applicant.
The aluminum-based sintered alloy proposed in No. 6 has a total composition of Si: 2.4 to 23.5% by weight and Cu: 2 to 5 by weight ratio.
%, Mg: 0.2-1.5%, Ti, V, Cr, Mn, F
One or more transition metals selected from e, Co, Ni, Zr and Nb: 0.01 to 1%, balance Al
And unavoidable impurities with a maximum particle size of 5 to 60 μm
Of Al-Si alloy phase having primary crystal Si dispersed therein and the Al solid solution phase, and the area of the Al solid solution phase occupying the surface of the mottled texture is 20 to 80%. This sintered alloy reduces the Cu alloy phase in the grain boundaries by containing a transition metal, has excellent ductility, and has both strength and wear resistance.

【0007】さらに、前記焼結合金の改良として、特願
平6−335712号において提案したアルミニウム系
焼結合金は、前記焼結合金の焼結方法を変更して、先ず
Al−Si系合金相中の初晶Siの粒径が5μm以下の
焼結体を製作した後、合金表面部を加熱して表面部のA
l−Si系合金相中の初晶Siの最大粒径が5〜60μ
mになるようにしたものであり、表面部は前記焼結合金
と同様の性質を有し、焼結合金内部は微細な初晶Siに
より強度を向上させたものである。
Further, as an improvement of the above-mentioned sintered alloy, the aluminum-based sintered alloy proposed in Japanese Patent Application No. 6-335712 was modified by changing the sintering method of the above-mentioned sintered alloy, and first, the Al-Si-based alloy phase was changed. After producing a sintered body in which the grain size of the primary crystal Si is 5 μm or less, the alloy surface is heated to
The maximum grain size of primary Si in the 1-Si alloy phase is 5 to 60 μm.
The surface portion has the same properties as the above-mentioned sintered alloy, and the inside of the sintered alloy has the strength improved by fine primary crystal Si.

【0008】[0008]

【発明が解決しようとする課題】本出願人が提案した前
記の焼結合金は、強度と耐摩耗性とを兼ね備えた優れた
合金であるが、この合金の強度と耐摩耗性を低下させる
ことなく、更に摩擦係数を低くすることができれば、摺
動部を有する機械要素への適用範囲を拡大することがで
きる。本発明の目的は、このような観点から、摩擦係数
の低いAl−Si系焼結合金を提供することにある。
The above-mentioned sintered alloy proposed by the present applicant is an excellent alloy having both strength and wear resistance. However, the strength and wear resistance of this alloy should be reduced. However, if the friction coefficient can be further reduced, the range of application to the mechanical element having the sliding portion can be expanded. An object of the present invention is to provide an Al-Si based sintered alloy having a low friction coefficient from such a viewpoint.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記のよ
うな目的を達成するために鋭意検討を行った結果、本発
明に到達した。すなわち、本発明の焼結合金は、アルミ
ニウム合金中に固体潤滑材を含有させたものであって、
全体組成が重量比でSi:1.3〜23.3%、Cu:
1.1〜5%、Mg:0.1〜1.5%、Ti、V、C
r、Mn、Fe、Co、Ni、ZrおよびNbから選ば
れる1種もしくは2種以上の遷移金属:0.005〜1
%、黒鉛、MoS2、BN、WS2、雲母、タルクおよび
亜鉛華などの1種もしくは2種以上の固体潤滑材:1〜
45%、および残部のAlおよび不可避不純物からな
り、 Al合金部分は最大粒径が5〜60μmの初晶S
iが分散しているAl−Si系合金相とAl固溶体相と
の斑組織を呈し、斑組織面に占めるAl固溶体相の面積
が20〜80%であり、かつ前記Al合金部分の粒界に
固体潤滑材が分散していること特徴とするものである。
また、他の第二の発明は、全体組成は前記と同一であっ
て、合金の表面部または少なくとも摺動予定面部のAl
−Si系合金相中の初晶Siの最大粒径が5〜60μm
であり、その他の部分のAl−Si系合金相中の初晶S
iの粒径が5μm以下であることを特徴とするものであ
る。
The present inventors have arrived at the present invention as a result of extensive studies to achieve the above-mentioned object. That is, the sintered alloy of the present invention contains a solid lubricant in an aluminum alloy,
The total composition is Si: 1.3 to 23.3% by weight and Cu:
1.1-5%, Mg: 0.1-1.5%, Ti, V, C
One or more transition metals selected from r, Mn, Fe, Co, Ni, Zr and Nb: 0.005 to 1
%, Graphite, MoS 2 , BN, WS 2 , one or more solid lubricants such as mica, talc and zinc white: 1 to
45%, and the balance of Al and unavoidable impurities, and the Al alloy portion has a maximum grain size of 5 to 60 μm of primary crystal S.
The Al-Si alloy phase in which i is dispersed and the Al solid solution phase exhibit a mottled structure, the area of the Al solid solution phase occupying the mottled surface is 20 to 80%, and the grain boundary of the Al alloy portion is It is characterized in that the solid lubricant is dispersed.
Further, in another second invention, the entire composition is the same as the above, and the Al of the surface portion of the alloy or at least the sliding surface portion is formed.
-The maximum grain size of primary Si in the Si-based alloy phase is 5 to 60 m.
And the primary crystal S in the Al-Si alloy phase in the other parts.
The particle size of i is 5 μm or less.

【0010】これらの焼結合金中の固体潤滑材は、気孔
を除く合金の体積比で1〜20%に相当する含有量であ
る。なお、この焼結合金は、焼結体のままでも使用でき
るが、高密度化および高強度化を目的として、焼結体を
常温または熱間で押出、鍛造、圧延等により塑性加工を
施したり、またはこの合金系で通常行なわれる溶体化処
理および時効処理などを施すこともできる。
The solid lubricant in these sintered alloys has a content corresponding to 1 to 20% by volume ratio of the alloy excluding pores. This sintered alloy can be used as a sintered body as it is, but for the purpose of increasing the density and strength, the sintered body is subjected to plastic working by extrusion, forging, rolling, etc. at room temperature or hot. Alternatively, solution treatment and aging treatment which are usually performed in this alloy system can be performed.

【0011】[0011]

【作用】次に、本発明の各構成要件について説明する。 (1)斑組織と初晶Siの粒径 斑組織は、初晶Siが分散したAl−Si系合金相とA
l固溶体相とで構成される。初晶Siが分散したAl−
Si系合金相は、相中にMg、Cuおよび遷移金属元素
が拡散した固溶体であって、この素地中に初晶Siが分
散しており、比較的硬質な相であって、主として材料強
度および耐摩耗性に寄与する。
Next, each constituent element of the present invention will be described. (1) Grain structure and grain size of primary crystal Si The mottle structure is composed of Al-Si alloy phase in which primary crystal Si is dispersed and A
and a solid solution phase. Al- with primary crystal Si dispersed
The Si-based alloy phase is a solid solution in which Mg, Cu, and a transition metal element are diffused in the phase, and primary crystal Si is dispersed in the base material, and is a relatively hard phase, and mainly the material strength and Contributes to wear resistance.

【0012】Al固溶体相は、純アルミニウム粉の形態
で添加されたAl中に、Si、Mg、Cuおよび遷移金
属が拡散した固溶体であって、比較的軟質であり、合金
の靭性に寄与するとともに、初期摩耗を受けてAl−S
i系合金間に油溜まりを形成し、潤滑性および摩擦中の
相手材とのなじみ性に寄与する。また、塑性変形し易い
ので、摺動面近傍の硬質な初晶Si粒子が摩耗粉として
脱落しそうになったり、脱落した場合に、それらを埋没
させ、Si粒子が研摩粒子として作用することを防ぐ効
果がある。
The Al solid solution phase is a solid solution in which Si, Mg, Cu and a transition metal are diffused in Al added in the form of pure aluminum powder, is relatively soft, and contributes to the toughness of the alloy. , Al-S due to initial wear
It forms an oil reservoir between the i-based alloys and contributes to the lubricity and the compatibility with the mating material during friction. Further, since it is easily plastically deformed, hard primary crystal Si particles in the vicinity of the sliding surface are likely to fall off as abrasion powder, and when they fall off, they are buried and the Si particles do not act as abrasive particles. effective.

【0013】前述の初晶Si粒子が分散したAl−Si
系合金相と軟質なAl固溶体相の2つの相は、Al−S
i系合金相が合金断面の面積比で20%未満のときは、
初晶Siの量が少ないために耐摩耗性は著しく低くな
る。また、Al−Si系合金相が80%を越える場合に
は、摩擦摺動により脱落したSi粒子を埋没させるAl
固溶体相の量が少ないために、耐摩耗性はやはり低くな
る。したがって、2つの相が、合金断面の面積比で20
〜80:80〜20の割合で斑状に混在した複合組織で
あるときに、両相の相互作用によって強度および耐摩耗
性が良好になる。
Al-Si in which the primary Si particles are dispersed
The two phases of the Al-based alloy phase and the soft Al solid solution phase are Al-S
When the i-based alloy phase is less than 20% in area ratio of the alloy cross section,
Since the amount of primary crystal Si is small, the wear resistance becomes significantly low. In addition, when the Al-Si alloy phase exceeds 80%, Al for burying Si particles that have fallen off due to frictional sliding is embedded.
The wear resistance is also low due to the small amount of solid solution phase. Therefore, the two phases have an area ratio of the alloy cross section of 20
In the case of a composite structure in which mottled mixture is present at a ratio of -80: 80-20, the strength and wear resistance are improved by the interaction of both phases.

【0014】初晶Siの粒径が大きくなると粒子のエッ
ジは鋭角になり、硬質な初晶Si粒子が突起物の状態を
呈して、相手材を引かき摩耗させる。一方、初晶Siの
量が少ないかまたは初晶Siの粒径が小さいと、摩擦摺
動時に素地から脱落し、脱落した初晶Siが研摩粒子と
して作用するために摩耗が進行する。したがって、耐摩
耗性の点から、初晶Siの粒径は適度の大きさであるこ
とが必要であり、最大粒径は5〜60μmのものが好ま
しい。一方、強度の点から考えると、初晶Siが大きい
ほど強度が低い。すなわち、初晶Siの粒径が小さいほ
ど強度が高くなるので好ましく、粒径5μm以下が好適
である。そこで、摩擦部材の表面あるいは少なくとも摺
動する部位に存在する初晶Siは、耐摩耗性を考慮し
て、最大粒径を5〜60μmにするとともに、内部の初
晶Siは、合金全体の強度を考慮して粒径を5μm以下
にすることによって、耐摩耗性と強度をともに向上させ
ることが可能となる。
When the grain size of the primary crystal Si becomes large, the edge of the grain becomes an acute angle, and the hard primary crystal Si grains take the form of protrusions to scratch and wear the mating material. On the other hand, when the amount of the primary crystal Si is small or the grain size of the primary crystal Si is small, the primary crystal Si falls off from the base material during frictional sliding, and the primary crystal Si that has fallen off acts as abrasive particles, which promotes wear. Therefore, from the viewpoint of wear resistance, it is necessary that the grain size of the primary crystal Si be an appropriate size, and the maximum grain size is preferably 5 to 60 μm. On the other hand, in terms of strength, the larger the primary crystal Si, the lower the strength. That is, the smaller the grain size of the primary crystal Si, the higher the strength is, which is preferable, and the grain size of 5 μm or less is preferable. Therefore, the primary grain Si existing on the surface of the friction member or at least on the sliding portion has a maximum grain size of 5 to 60 μm in consideration of wear resistance, and the primary grain Si inside has strength of the entire alloy. Considering the above, by setting the particle size to 5 μm or less, it becomes possible to improve both wear resistance and strength.

【0015】(2)Si アルミニウム合金中のSiは、一般的に熱膨張係数を低
下させ、耐摩耗性を向上させる等の効果を有する。全体
組成からみたSiの量は、後述の初晶Siが分散したA
l−Si系合金とAl固溶体相とが斑組織を呈するよう
な範囲で決定され、1.3〜23.5重量%の範囲が適当
である。全体組成中のSi量が少な過ぎると、初晶Si
が分散したAl−Si系合金中のSi量が少ないか、あ
るいはAl固溶体相の占める割合が多いことを意味し、
その場合には、耐摩耗性に寄与する初晶Siの量が少な
いため耐摩耗性が不十分となる。一方、Si量が多過ぎ
ると、上記と反対に初晶Siが分散したAl−Si系合
金中のSi量が多過ぎるか、あるいはAl固溶体相の占
める割合が少なくなり、やはり耐摩耗性が低下する。
(2) Si In the aluminum alloy, Si generally has the effects of lowering the coefficient of thermal expansion and improving wear resistance. The amount of Si seen from the overall composition is the A in which primary crystal Si described below is dispersed.
The 1-Si alloy and the Al solid solution phase are determined in a range such that they exhibit a mottled structure, and a range of 1.3 to 23.5% by weight is suitable. If the amount of Si in the overall composition is too small, the primary crystal Si
Means that the amount of Si in the dispersed Al-Si alloy is small, or that the proportion of the Al solid solution phase is large,
In that case, the wear resistance becomes insufficient because the amount of primary crystal Si that contributes to the wear resistance is small. On the other hand, when the amount of Si is too large, contrary to the above, the amount of Si in the Al-Si alloy in which the primary crystal Si is dispersed is too large, or the proportion of the Al solid solution phase is small, and the wear resistance also decreases. To do.

【0016】Siは、Al−Si合金粉の形態で添加さ
れる。Al−Si合金の粉末製造の際の急冷凝固により
初晶Siが晶出するためには、Si含有量が13重量%
以上であることが必要である。一方、Si含有量が30
重量%を越えると粉末製造時の溶湯温度が高くなるた
め、Si含有量は13〜30%が適当である。焼結した
後のAl−Si合金粉の部分は、後述のようにCu、N
i、Mgの一部が固溶し、初晶Siが分散したAl−S
i系合金となって、焼結合金の斑組織の片方の合金相を
構成する。
Si is added in the form of Al-Si alloy powder. In order to crystallize the primary crystal Si by rapid solidification during the powder production of the Al-Si alloy, the Si content is 13% by weight.
It is necessary to be above. On the other hand, the Si content is 30
When the content of Si exceeds 13% by weight, the temperature of the molten metal during powder production becomes high. Therefore, the Si content is preferably 13 to 30%. The portion of the Al-Si alloy powder after sintering is Cu, N as described later.
Al-S in which some of i and Mg are in solid solution and primary crystal Si is dispersed
It becomes an i-based alloy and constitutes one alloy phase of the uneven texture of the sintered alloy.

【0017】(3)Mg Mgは焼結中に液相を生じて素地中に固溶する。その効
果としては、焼結の促進および時効析出するMg2Si
による基地の強化および耐摩耗性の向上が挙げられる。
Mgの量は、全体組成で0.1重量%未満では効果が不
十分であり、一方1.5重量%を越えて添加してもそれ
以上の添加効果を示さないため、0.1〜1.5重量%の
範囲としたが、好ましい範囲は0.3〜0.7重量%であ
る。
(3) Mg Mg produces a liquid phase during sintering and forms a solid solution in the matrix. The effect is to promote sintering and Mg 2 Si that precipitates by aging.
To strengthen the base and improve wear resistance.
If the total amount of Mg is less than 0.1% by weight, the effect is insufficient. On the other hand, if the amount of Mg is more than 1.5% by weight, no additional effect is exhibited. The range is 0.5% by weight, but the preferred range is 0.3 to 0.7% by weight.

【0018】また、添加手段としては、Mg含有量が3
5重量%以上のAl−Mg合金粉またはMg粉の形態で
行う。これは、Al−Mg二元系合金の融点が、Mg含
有量33〜70%の間において460℃程度の低い値を
示すためである。すなわち、純粋なMg粉の場合には、
焼結の過程でAl素地と固相拡散してMg濃度が低下す
ることにより液相が発生する。一方、Al−Mg合金粉
を用いる場合には、Mg含有量を例えば33%とする
と、前記と同様にAlとの拡散でMg濃度が低下するこ
とにより融点が上昇して、有効に液相を利用することが
できないので、Mg含有量は35重量%以上とすること
が望ましい。
As a means of addition, the Mg content is 3
It is performed in the form of 5 wt% or more of Al-Mg alloy powder or Mg powder. This is because the Al—Mg binary alloy has a low melting point of about 460 ° C. when the Mg content is 33 to 70%. That is, in the case of pure Mg powder,
During the sintering process, a solid phase diffuses with the Al base material to lower the Mg concentration, thereby generating a liquid phase. On the other hand, in the case of using Al-Mg alloy powder, if the Mg content is set to 33%, for example, the melting point rises due to the decrease of the Mg concentration due to the diffusion with Al and the effective liquid phase is formed. Since it cannot be used, it is desirable that the Mg content be 35% by weight or more.

【0019】(4)Cuおよび遷移金属 CuはAl合金素地を強化する元素であり、時効処理に
より一層大きな効果を示す。Cuの含有量は全体組成で
1.1重量%〜5重量%であり、Cu含有量が1.1重量
%未満では所望の強度の向上が認められず、反対に5重
量%を越えると、粉末粒界近傍においてCuを主成分と
する金属間化合物が多量に析出して靭性が低下するので
好ましくない。なお、好適なCu含有量は3.5〜4.5
重量%である。CuをCu粉の形態で添加した場合に、
Cuを素地に固溶させるために必要な加熱を行うと、溶
製材料のように初晶Siが粗大化し、反対に加熱の温度
を下げ時間を短縮すると、素地の粒界にCuの金属間化
合物、例えばAl2CuMg、Al6CuMg4等が残存
して強度の低下を招く。そこで、適量のTi、V、C
r、Mn、Fe、Co、Ni、Zr、Nbなどの遷移金
属を共存させると、溶体化および時効処理により金属間
化合物を消失させることができる。この現象は、素地中
に過飽和に固溶したCuが時効処理により安定した化合
物として析出する際に、遷移金属とCuおよびSiが結
合し、素地中のCuおよびSiの量を部分的に減少させ
ると共に、金属間化合物のCuが素地中に拡散するため
であると考えられる。
(4) Cu and transition metals Cu is an element that strengthens the Al alloy substrate, and exhibits a greater effect by aging treatment. The Cu content is 1.1% by weight to 5% by weight in the whole composition, and if the Cu content is less than 1.1% by weight, the desired improvement in strength is not observed, and conversely, if it exceeds 5% by weight, It is not preferable because a large amount of an intermetallic compound containing Cu as a main component is precipitated in the vicinity of the powder grain boundaries to lower the toughness. In addition, the suitable Cu content is 3.5 to 4.5.
% By weight. When Cu is added in the form of Cu powder,
When the heating required to form a solid solution of Cu in the matrix is performed, the primary crystal Si is coarsened like a melted material, and conversely, when the heating temperature is lowered and the time is shortened, the Cu-metal intermetallic Compounds such as Al 2 CuMg and Al 6 CuMg 4 remain to cause a decrease in strength. Therefore, appropriate amount of Ti, V, C
When a transition metal such as r, Mn, Fe, Co, Ni, Zr, or Nb coexists, the intermetallic compound can be eliminated by solution treatment and aging treatment. This phenomenon causes the transition metal and Cu and Si to combine with each other when Cu, which is a supersaturated solid solution in the matrix, precipitates as a stable compound by aging treatment, and partially reduces the amounts of Cu and Si in the matrix. At the same time, it is considered that Cu, which is an intermetallic compound, diffuses into the matrix.

【0020】全体組成における遷移金属の量は、前記の
Cu含有量の範囲において、0.005重量%未満では
その効果が認められず、一方、1重量%を越えると遷移
金属を主成分とする金属間化合物が析出して靭性が低下
するので0.005〜1重量%とした。また、好ましく
は0.1〜0.5%の範囲である。遷移金属は単体で添加
すると拡散し難いため、Cu−遷移金属合金粉の形態で
添加する。Cu−遷移金属合金の融点は高いが、焼結過
程でAl、Mg等の元素が固相拡散することにより融点
が低下して液相を生じる。合金粉中の遷移金属の量は、
全体組成として必要なCu量および遷移金属量を考慮し
て、0.2重量%以上が必要であるが、30重量%を越
えると合金粉末の融点が高くなり過ぎ、焼結中に液相を
発生しなくなるため0.2〜30重量%の範囲でなけれ
ばならない。また、好ましくは2〜10重量%の範囲で
ある。
When the amount of transition metal in the total composition is less than 0.005% by weight in the above range of Cu content, the effect is not recognized, while when it exceeds 1% by weight, the transition metal is the main component. The intermetallic compound precipitates and the toughness decreases, so the content was made 0.005 to 1% by weight. Further, it is preferably in the range of 0.1 to 0.5%. Since the transition metal is difficult to diffuse when added alone, it is added in the form of Cu-transition metal alloy powder. Although the Cu-transition metal alloy has a high melting point, solid-phase diffusion of elements such as Al and Mg in the sintering process lowers the melting point to generate a liquid phase. The amount of transition metal in the alloy powder is
Considering the amount of Cu and the amount of transition metal required for the overall composition, 0.2% by weight or more is necessary, but if it exceeds 30% by weight, the melting point of the alloy powder becomes too high and the liquid phase is formed during sintering. Since it does not occur, it must be in the range of 0.2 to 30% by weight. Further, it is preferably in the range of 2 to 10% by weight.

【0021】(5)固体潤滑材 金属接触下における摩擦係数は、材料の硬さ、強度、粗
さ等の接触面の状態によって決定される。一般に、硬さ
が高くなるほど摩擦係数は低下する。初晶Siはその役
割を果たすものである。また、耐焼付性を向上させるた
めには、アルミニウム合金と相手材との接触面積を小さ
くすることが有効である。黒鉛、MoS2、BN、W
2、雲母、タルク、亜鉛華等の固体潤滑材を添加する
と、これらが摩擦面に被着して固体潤滑被膜を形成す
る。この固体潤滑被膜が介在することにより、相手材と
の焼付きが抑制され、また、金属接触部の摩擦係数は層
状構造を有する固体潤滑材の摩擦係数に近くなる。固体
潤滑材としては、焼結合金を真空中で使用する場合はM
oS2を、高温下で使用する場合にはBNを、また高荷
重下で使用する場合にはWS2を用いることが好適であ
り、焼結合金の使用雰囲気や使用温度、荷重などに応じ
て適宜に選択することができる。固体潤滑材の添加量
は、1体積%以下では添加効果が得られず、一方20体
積%以上では合金の強度が低下し、コストの面からも好
ましくない。体積%を重量%に換算すると、1体積%は
真比重が2.2の黒鉛の場合は約1重量%であり、20
体積%は真比重が7.4のWS2の場合に45重量%に相
当する。WS2は比重が高いので、添加量を少なくする
ことが好ましい。
(5) Solid Lubricant The friction coefficient under metal contact is determined by the condition of the contact surface such as hardness, strength and roughness of the material. Generally, the higher the hardness, the lower the coefficient of friction. Primary crystal Si plays that role. Further, in order to improve the seizure resistance, it is effective to reduce the contact area between the aluminum alloy and the mating material. Graphite, MoS 2 , BN, W
When a solid lubricant such as S 2 , mica, talc, or zinc white is added, these adhere to the friction surface to form a solid lubricant film. By interposing this solid lubricating coating, seizure with the mating material is suppressed, and the friction coefficient of the metal contact portion becomes close to that of the solid lubricating material having a layered structure. As a solid lubricant, M is used when a sintered alloy is used in vacuum.
It is preferable to use BN when using oS 2 at a high temperature, and WS 2 when using under a high load, depending on the operating atmosphere of the sintered alloy, operating temperature, load, etc. It can be selected appropriately. If the addition amount of the solid lubricant is 1% by volume or less, the effect of addition is not obtained, while if it is 20% by volume or more, the strength of the alloy decreases, which is not preferable in terms of cost. Converting volume% to weight%, 1 volume% is about 1 weight% in the case of graphite having a true specific gravity of 2.2.
The volume% corresponds to 45% by weight in the case of WS 2 having a true specific gravity of 7.4. Since WS 2 has a high specific gravity, it is preferable to reduce the addition amount.

【0022】[0022]

【実施例】以下、本発明を実施例によりさらに説明す
る。配合割合および組成は重量%である。原料粉とし
て、Al−20%Si合金粉、純Al粉、Cu−4%N
i合金粉、Al−50%Mg合金粉を用いた。これらの
うちCu−4%Ni合金粉3.13重量%およびAl−
50%Mg合金粉1重量%を配合して母材とした。この
母材に、固体潤滑材の種類および添加量を変えて配合し
た試料番号1〜9の混合粉を所定形状に圧粉成形した。
圧粉体を400℃で脱ろうし、540℃で60分間の焼
結を行った後、熱間鍛造によって密度比100%とし、
490℃で溶体化処理および240℃で時効処理を行っ
た。各試料について、引張り強さおよびピンオンディス
ク摩擦摩耗試験による摩耗量を測定して比較した。ピン
オンディスク摩擦摩耗試験は、試料をピンとし、相手材
のディスクとしてS48C材(機械構造用炭素鋼)の熱
処理品を用い、滑り速度5m/秒、面圧49MPaの条
件で間欠鉱油潤滑下に行った。試験の結果を表1に示
す。
EXAMPLES The present invention will be further described below with reference to examples. The mixing ratio and composition are% by weight. As raw material powder, Al-20% Si alloy powder, pure Al powder, Cu-4% N
i alloy powder and Al-50% Mg alloy powder were used. Of these, Cu-4% Ni alloy powder 3.13% by weight and Al-
1% by weight of 50% Mg alloy powder was blended to obtain a base material. The mixed powders of sample numbers 1 to 9 blended with the base material by changing the type and the addition amount of the solid lubricant were compacted into a predetermined shape.
After dewaxing the green compact at 400 ° C., sintering at 540 ° C. for 60 minutes, and hot forging to a density ratio of 100%,
The solution treatment was performed at 490 ° C and the aging treatment was performed at 240 ° C. For each sample, the tensile strength and the amount of wear by the pin-on-disk friction and wear test were measured and compared. In the pin-on-disk friction and wear test, a sample was used as a pin, and a heat-treated product of S48C material (carbon steel for machine structure) was used as a mating material disk under the conditions of a sliding speed of 5 m / sec and a surface pressure of 49 MPa under lubrication with intermittent mineral oil went. The test results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】固体潤滑材を含有するアルミニウム焼結合
金の試料は、摩擦係数および摩耗量が少ないが、一方、
固体潤滑材の含有量が多くなると引張り強さが低下す
る。高い強度が要求されない部材としては、固体潤滑材
の含有量が30体積%のものも使用可能であると考えら
れるが、20体積%を越えるものは強度の低下が大きい
ので、1〜20体積%が望ましい。
The aluminum sintered alloy sample containing the solid lubricant has a low coefficient of friction and a small amount of wear, while
When the content of the solid lubricant increases, the tensile strength decreases. As a member that does not require high strength, it is considered that the solid lubricant content of 30% by volume can be used. However, if the content of solid lubricant exceeds 20% by volume, the strength is largely decreased. Is desirable.

【0025】[0025]

【発明の効果】以上説明したように、斑組織からなる特
定組成のアルミニウム系合金マトリックス中に、固体潤
滑材を1〜45重量%含有する本発明の合金は、強度は
従来材と比べて遜色なく、摩擦係数が低く、耐摩耗性も
高いものであるから、軽量で摺動特性に優れ、かつ耐摩
耗性であることを要求される各種の機械要素への適用範
囲を拡大することができる。
As described above, the alloy of the present invention containing 1 to 45% by weight of a solid lubricant in an aluminum-based alloy matrix of a specific composition having a mottled structure has a strength comparable to that of conventional materials. Since it has a low friction coefficient and high wear resistance, it can be applied to various mechanical elements that are required to be lightweight, have excellent sliding characteristics, and have wear resistance. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 四方 英雄 千葉県松戸市大金平1−48−1 (72)発明者 浦田 秀夫 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 川瀬 祥司 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 上田 順一 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Shikata 1-48-1 Okanedai, Matsudo City, Chiba Prefecture (72) Hideo Urata 1-4-1 Chuo, Wako City, Saitama Stock Company Honda Technical Research Institute (72) Inventor, Shoji Kawase, 1-4-1, Chuo, Wako-shi, Saitama, Ltd., Honda R & D Co., Ltd. (72) Inventor, Junichi Ueda, 1-4-1, Chuo, Wako, Saitama, Ltd., Honda R & D Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 全体組成が重量比でSi:1.3〜23.
3%、Cu:1.1〜5%、Mg:0.1〜1.5%、T
i、V、Cr、Mn、Fe、Co、Ni、ZrおよびN
bから選ばれる1種もしくは2種以上の遷移金属:0.
005〜1%、固体潤滑材:1〜45%、残部のAlお
よび不可避不純物からなり、Al合金部分は最大粒径が
5〜60μmの初晶Siが分散しているAl−Si系合
金相とAl固溶体相との斑組織を呈し、斑組織面に占め
るAl固溶体相の面積が20〜80%であり、前記Al
合金部分の粒界に固体潤滑材が分散していることを特徴
とする耐摩耗性アルミニウム系焼結合金。
1. The total composition of Si: 1.3 to 23 by weight.
3%, Cu: 1.1-5%, Mg: 0.1-1.5%, T
i, V, Cr, Mn, Fe, Co, Ni, Zr and N
One or more transition metals selected from b: 0.
005 to 1%, solid lubricant: 1 to 45%, the balance consisting of Al and unavoidable impurities, and the Al alloy part has an Al-Si based alloy phase in which primary crystal Si having a maximum grain size of 5 to 60 μm is dispersed. The area of the Al solid solution phase presenting a mottled structure with the Al solid solution phase and occupying the mottled tissue surface is 20 to 80%.
A wear-resistant aluminum-based sintered alloy, characterized in that a solid lubricant is dispersed in the grain boundaries of the alloy portion.
【請求項2】 全体組成が重量比でSi:1.3〜23.
3%、Cu:1.1〜5%、Mg:0.1〜1.5%、T
i、V、Cr、Mn、Fe、Co、Ni、ZrおよびN
bから選ばれる1種もしくは2種以上の遷移金属:0.
005〜1%、固体潤滑材:1〜45%、残部のAlお
よび不可避不純物からなり、Al合金部分は初晶Siが
分散しているAl−Si系合金相とAl固溶体相との斑
組織を呈し、斑組織面に占めるAl固溶体相の面積が2
0〜80%であり、前記Al合金部分の粒界に固体潤滑
材が分散しているアルミニウム系焼結合金であって、合
金表面部または少なくとも摺動予定面部のAl−Si系
合金相中の初晶Siの最大粒径が5〜60μmであり、
その他の部分のAl−Si系合金相中の初晶Siの粒径
が5μm以下であることを特徴とする耐摩耗性アルミニ
ウム系焼結合金。
2. The total composition of Si: 1.3 to 23 by weight.
3%, Cu: 1.1-5%, Mg: 0.1-1.5%, T
i, V, Cr, Mn, Fe, Co, Ni, Zr and N
One or more transition metals selected from b: 0.
005 to 1%, solid lubricant: 1 to 45%, the balance consisting of Al and unavoidable impurities, and the Al alloy part has a mottled structure of an Al-Si alloy phase in which primary crystal Si is dispersed and an Al solid solution phase. And the area of the Al solid solution phase occupying the mottled tissue surface is 2
0 to 80%, which is an aluminum-based sintered alloy in which a solid lubricant is dispersed in the grain boundaries of the Al alloy portion, in the Al-Si alloy phase of the alloy surface portion or at least the planned sliding surface portion. The maximum grain size of primary crystal Si is 5 to 60 μm,
A wear-resistant aluminum-based sintered alloy, characterized in that the grain size of primary crystal Si in the Al-Si-based alloy phase in the other portion is 5 μm or less.
JP7225995A 1995-02-07 1995-02-07 Wear resistant aluminum-base sintered alloy Pending JPH08209274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7225995A JPH08209274A (en) 1995-02-07 1995-02-07 Wear resistant aluminum-base sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7225995A JPH08209274A (en) 1995-02-07 1995-02-07 Wear resistant aluminum-base sintered alloy

Publications (1)

Publication Number Publication Date
JPH08209274A true JPH08209274A (en) 1996-08-13

Family

ID=13484121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7225995A Pending JPH08209274A (en) 1995-02-07 1995-02-07 Wear resistant aluminum-base sintered alloy

Country Status (1)

Country Link
JP (1) JPH08209274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861911A1 (en) * 1996-09-03 1998-09-02 Toyota Jidosha Kabushiki Kaisha Alloy having excellent resistance against thermal fatigue, aluminum alloy having excellent resistance against thermal fatigue, and aluminum alloy member having excellent resistance against thermal fatigue
CN113774245A (en) * 2021-08-27 2021-12-10 苏州铭恒金属科技有限公司 Aluminum alloy ingot with excellent conductivity and production process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861911A1 (en) * 1996-09-03 1998-09-02 Toyota Jidosha Kabushiki Kaisha Alloy having excellent resistance against thermal fatigue, aluminum alloy having excellent resistance against thermal fatigue, and aluminum alloy member having excellent resistance against thermal fatigue
EP0861911A4 (en) * 1996-09-03 1999-09-08 Toyota Motor Co Ltd Alloy having excellent resistance against thermal fatigue, aluminum alloy having excellent resistance against thermal fatigue, and aluminum alloy member having excellent resistance against thermal fatigue
CN113774245A (en) * 2021-08-27 2021-12-10 苏州铭恒金属科技有限公司 Aluminum alloy ingot with excellent conductivity and production process thereof

Similar Documents

Publication Publication Date Title
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
US4857267A (en) Aluminum base bearing alloy and method of producing same
JPH0625782A (en) High ductility aluminum sintered alloy and its manufacture as well as its application
JP2001271129A (en) Sintering material and composite sintered sliding part
GB2131457A (en) Engine cylinder liners based on aluminium alloys and intermetallic compounds
JP4401326B2 (en) Method for producing high-strength wear-resistant aluminum sintered alloy
JP2810057B2 (en) Aluminum bearing alloy
JP4116166B2 (en) Slide bearing and manufacturing method thereof
JP3940022B2 (en) Method for producing sintered aluminum alloy
JP3784858B2 (en) Method for producing aluminum wear-resistant sintered alloy
JPH029099B2 (en)
JPH08209274A (en) Wear resistant aluminum-base sintered alloy
JP3057468B2 (en) Wear-resistant aluminum-based sintered alloy and method for producing the same
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
JP3060022B2 (en) Wear-resistant aluminum-based sintered alloy and method for producing the same
JPS5966918A (en) Double layer structure hollow member made of aluminum alloy
JPS62235455A (en) Aluminum bearing alloy and its production
JP3920656B2 (en) High rigidity aluminum alloy containing boron
JPH06192780A (en) High heat and wear resistance aluminum alloy and powder thereof
JP2002206158A (en) Aluminum alloy thermal sprayed layer having excellent sliding characteristic and sliding material
JPS61117244A (en) Sliding aluminum alloy
JP2574274B2 (en) Aluminum bearing alloy
JPH07331371A (en) Aluminum matrix composite having high heat resistance and high wear resistance
JP2000212718A (en) Aluminum alloy thermal spraying layer excellent in sliding characteristic and sliding material
JP4045130B2 (en) Free-cutting eutectic Al-Si alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041112

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20041112

Free format text: JAPANESE INTERMEDIATE CODE: A821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308