JP2004162109A - Sputtering target and powder for producing the same - Google Patents

Sputtering target and powder for producing the same Download PDF

Info

Publication number
JP2004162109A
JP2004162109A JP2002328368A JP2002328368A JP2004162109A JP 2004162109 A JP2004162109 A JP 2004162109A JP 2002328368 A JP2002328368 A JP 2002328368A JP 2002328368 A JP2002328368 A JP 2002328368A JP 2004162109 A JP2004162109 A JP 2004162109A
Authority
JP
Japan
Prior art keywords
powder
less
sputtering target
particle size
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002328368A
Other languages
Japanese (ja)
Inventor
Hideyuki Takahashi
秀行 高橋
Masataka Yahagi
政隆 矢作
Atsushi Nakamura
篤志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2002328368A priority Critical patent/JP2004162109A/en
Priority to PCT/JP2003/009857 priority patent/WO2004044260A1/en
Priority to TW92121356A priority patent/TWI245077B/en
Publication of JP2004162109A publication Critical patent/JP2004162109A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Sb-Te sputtering target which effectively prevents generation of particles, abnormal electric discharge, generation of nodules, occurrence of cracks or breakage, etc., in sputtering and of which the oxygen content is reduced; its production method; and a powder for sintering suitable for producing the sputtering target. <P>SOLUTION: The Sb-Te sputtering target has an average crystal particle size of 20 μm or lower, a bending strength of 60 MPa or higher, and an oxygen content of 1,000 ppm or lower. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、Sb−Te系スパッタリングターゲット特にAg−In−Sb−Te合金又はGe−Sb−Te合金からなる相変化記録層を形成するためのSb−Te系スパッタリングターゲット及び該スパッタリングターゲットを製造するために好適な焼結用粉末に関する。
【0002】
【従来の技術】
近年、相変化記録用材料として、すなわち相変態を利用して情報を記録する媒体としてSb−Te系材料からなる薄膜が用いられるようになってきた。このSb−Te系材料からなる薄膜を形成する方法としては、真空蒸着法やスパッタリング法などの、一般に物理蒸着法と言われている手段によって行われるのが普通である。特に、操作性や皮膜の安定性からマグネトロンスパッタリング法を用いて形成することが多い。
【0003】
スパッタリング法による膜の形成は、陰極に設置したターゲットにArイオンなどの正イオンを物理的に衝突させ、その衝突エネルギーでターゲットを構成する材料を放出させて、対面している陽極側の基板にターゲット材料とほぼ同組成の膜を積層することによって行われる。
スパッタリング法による被覆法は処理時間や供給電力等を調節することによって、安定した成膜速度でオングストローム単位の薄い膜から数十μmの厚い膜まで形成できるという特徴を有している。
【0004】
相変化記録膜用Sb−Te系材料からなる膜を形成する場合に特に問題となるのは、スパッタリング時にパーティクルが発生したりあるいは異常放電(マイクロアーキング)やクラスター状(固まりになって付着)の薄膜形成の原因となるノジュール(突起物)の発生や、スパッタリングの際にターゲットのクラック又は割れが発生したりすること、さらにはターゲット用焼結粉の製造工程で多量に酸素を吸収することである。
このようなターゲット又はスパッタリングの際の問題は、記録媒体である薄膜の品質を低下させる大きな原因となっている。
【0005】
上記の問題は、焼結用粉末の粒径又はターゲットの構造や性状によって大きく影響を受けることが分かっている。しかしながら、従来は相変化記録層を形成するためのSb−Te系スパッタリングターゲットを製造する際に、適度な粉末が製造することができないこと、また焼結によって得られるターゲットが十分な特性を保有していないということもあって、スパッタリングの際の、パーティクルの発生、異常放電、ノジュールの発生、ターゲットのクラック又は割れの発生、さらにはターゲット中に含まれる多量の酸素を避けることができなかった。
【0006】
従来のGe−Sb−Te系スパッタリング用ターゲットの製造方法として、Ge−Te合金、Sb−Te合金について不活性ガスアトマイズ法により急冷した粉末を作製し、Ge/Te=1/1、Sb/Te=0.5〜2.0なる割合をもつ合金を均一に混合した後加圧焼結を行うGe−Sb−Te系スパッタリング用ターゲットの製造方法が開示されている(例えば特許文献1参照)。
また、Ge、Sb、Teを含む合金粉末のうち、タップ密度(相対密度)が50%以上になる粉末を型に流し込み、冷間もしくは温間で加圧し、冷間加圧後の密度が95%以上である成形材をArもしくは真空雰囲気中で熱処理を施すことにより焼結することにより、該焼結体の含有酸素量が700ppm以下であることを特徴とするGe−Sb−Te系スパッタリングターゲットの製造方法及びこれらに使用する粉末をアトマイズ法により製造する技術の記載がある(例えば特許文献2参照)。
また、Ge、Sb、Teを含む原料について不活性ガスアトマイズ方法により急冷した粉末を作製し、該粉末の内20μm以上であり、かつ単位重量当たりの比表面積が300mm/g以下である粒度分布を有する粉末を使用し、冷間もしくは温間にて加圧成形した成形体を焼結するGe−Sb−Te系スパッタリングターゲット材の製造方法の記載がある(例えば、特許文献3参照)。
しかし、以上の特許文献については、ターゲットの十分な強度が得られておらず、またターゲット組織の微細化及び均質化が達成されているとは言い難い。また、許容される酸素含有量も高く、相変化記録層を形成するためのSb−Te系スパッタリングターゲットとしては、十分とは言えないという問題がある。
【0007】
【特許文献1】
特開2000−265262号公報
【特許文献2】
特開2001−98366号公報
【特許文献3】
特開2001−123266号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記の諸問題点の解決、特にスパッタリングの際の、パーティクルの発生、異常放電、ノジュールの発生、ターゲットのクラック又は割れの発生等を効果的に抑制し、さらにターゲット中に含まれる酸素を減少させることのできるSb−Te系スパッタリングターゲット、特にAg−In−Sb−Te合金又はGe−Sb−Te合金からなる相変化記録層を形成するためのSb−Te系スパッタリングターゲット及び該スパッタリングターゲットを製造するために好適な焼結用粉末を提供するものである。
【0009】
【課題を解決するための手段】
上記問題点を解決するための技術的な手段は、安定しかつ均質な相変化記録層は、粉末の性状並びにターゲットの構造及び特性を工夫することによって得ることができるとの知見を得た。
この知見に基づき、本発明は
1.焼結原料粉となるアトマイズ粉の粒度が20μm未満であり、焼結体ターゲットの平均結晶粒径が20μm以下であることを特徴とするSb−Te系スパッタリングターゲット
2.焼結原料粉となるアトマイズ粉の粒度が20μm未満であり、焼結体ターゲットの平均結晶粒径が10μm以下であることを特徴とするSb−Te系スパッタリングターゲット
3.焼結原料粉となるアトマイズ粉の粒度が20μm未満であり、焼結体ターゲットの平均結晶粒径が5μm以下であることを特徴とするSb−Te系スパッタリングターゲット
4.抗折力が60MPa以上であることを特徴とするSb−Te系スパッタリングターゲット
5.抗折力が60MPa以上であることを特徴とする上記1〜3のいずれかに記載のSb−Te系スパッタリングターゲット
6.酸素含有量が1000ppm以下であることを特徴とする上記1〜5のいずれかに記載のスパッタリングターゲット
7.酸素含有量が150ppm以下であることを特徴とする上記1〜5のいずれかに記載のスパッタリングターゲット
を提供する。
【0010】
本発明は、また
8.平均粒径10μm以下の一次結晶粒が内在する平均粒度20μm未満のガスアトマイズ粉であることを特徴とするSb−Te系スパッタリングターゲット製造用粉末
9.平均粒径10μm以下の一次結晶粒が内在する平均粒度20μm未満のガスアトマイズ粉を、さらに粉砕した平均粒径10μm以下の粉末であることを特徴とするSb−Te系スパッタリングターゲット製造用粉末
10.平均粒径1μm以下の一次結晶粒が内在する平均粒度20μm未満のガスアトマイズ粉であることを特徴とするSb−Te系スパッタリングターゲット製造用粉末
11.平均粒径1μm以下の一次結晶粒が内在する平均粒度20μm未満のガスアトマイズ粉を、さらに粉砕した平均粒径1μm以下の粉末であることを特徴とするSb−Te系スパッタリングターゲット製造用粉末
12.0.5m/g以上の比表面積(BET)を持つ粉末であることを特徴とする上記8又は9記載のスパッタリングターゲット製造用粉末
13.0.7m/g以上の比表面積(BET)を持つ粉末であることを特徴とする上記12記載のスパッタリングターゲット製造用粉末
14.Ag、In、Ge、Ga、Ti、Au、Pt、Pdから選択した1種以上の元素を含有するSb−Te合金からなることを特徴とする上記1〜13のいずれかに記載の相変化記録層用スパッタリングターゲット及び同製造用粉末
を提供する。
【0011】
【発明の実施の形態】
本発明のSb−Te系スパッタリングターゲットは、Ag、In、Ge、Ga、Ti、Au、Pt、Pdから選択した1種以上の元素を含有するSb−Te合金からなるターゲットに適用される。ターゲットの組織は微細であり、平均結晶粒径が20μm以下である。好ましくは平均結晶粒径が10μm以下、さらには平均結晶粒径が5μm以下とする。
このような微細な組織を持つターゲットは、平均粒径1μm以下の一次結晶粒が内在する平均粒度20μm未満のガスアトマイズ粉をホットプレスすることによって製造することができる。
また、上記平均粒径1μm以下の一次結晶粒が内在する平均粒度20μm未満のガスアトマイズ粉をさらに粉砕して、平均粒径1μm以下の粉末とすることが望ましい。ターゲットの製造にはホットプレスを用いるが、このような微細なアトマイズ粉の使用によって微細結晶を持つターゲットを製造することができ、かつ抗折力を高めることができる。
【0012】
上記の微細な結晶構造の相変化ターゲットゲットは、スパッタエロージョンによる表面凹凸が減少し、ターゲット上面へのリデポ(再付着物)膜剥離によるパーティクル発生が抑制できる。
また組織微細化によりスパッタ膜も面内及びロット間の組成変動が抑えられ、相変化記録層の品質が安定するというメリットがある。そして、このようにスパッタリングの際の、パーティクルの発生、異常放電、ノジュールの発生等を効果的に抑制することができる。
【0013】
また、本発明のSb−Te系スパッタリングターゲットにおいて、さらに重要なことは抗折力が60MPa以上であることである。このように機械的強度を著しく向上させることにより、ターゲットのクラック又は割れの発生を効果的に防止することができる。
さらに、本発明のSb−Te系スパッタリングターゲットにおいて、ガスアトマイズ粉の二次粒子は球形であり、酸素含有量を1000ppm以下、特にAg−In−Sb−Teの組成では、酸素含有量を150ppm以下とすることができる。このような酸素の低減は、パーティクルの発生や異常放電の発生をさらに低減することができる。
【0014】
結晶粒が微細で強度が高い本発明のSb−Te系スパッタリングターゲットの製造に使用する粉末は、0.5m/g以上さらには0.7m/g以上の比表面積(BET)を持つ粉末を使用することができる。
Sb−Te系スパッタリングターゲットとしては、Ag、In、Ge、Ga、Ti、Au、Pt、Pdから選択した1種以上の元素を含有するSb−Te合金からなるターゲット、例えばAg−In−Sb−Te合金又はGe−Sb−Te合金からなる相変化記録層用スパッタリングターゲットである。
【0015】
【実施例及び比較例】
本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。
【0016】
(実施例1)
Ag−In−Sb−Te合金原料をガスアトマイズ装置を使用し、ノズル径2.00mmφ、噴射ガスとしてアルゴン(50kgf/cm)を使用して514°Cで噴射し、ガスアトマイズ粉を製造した。
このガスアトマイズ粉のSEM写真(画像)を図1に示す。図1のスケールは図内に示した通りである。図1ではきれいな球形のアトマイズ粉が得られている。このガスアトマイズ粉の酸素含有量は150ppmであった。また平均粒度は86.98μmであった。
より低温(例えば600°C)で噴射したアトマイズ粉(図示せず)は、全体に細かいが、きれいな球形にならずやや尻尾のついた形状になった。このアトマイズ粉をホットプレスした。
この結果、相対密度は97.5%、抗折力は85.1MPaとなり、極めて高い強度をもつ焼結体(ターゲット)が得られた。結晶組織は球状のアトマイズ粉が砕け、20μm以下のマクロ組織がうっすらと見られる中に一次粒子と考えられる1μm未満の微細結晶粒が混在する結晶組織であった。
【0017】
(実施例2)
実施例1と同一のガスアトマイズ粉をさらにスタンプミルと自動乳鉢で追加粉砕した。この追加粉砕粉のSEM写真(画像)を図2に示す。図2のスケールはそれぞれ図中に示した通りである。図2では球形のアトマイズ粉がさらに破砕された1μm未満の粉が得られている。この粉末の比表面積(BET)値は0.845であり大きな値を示した。なお、比較のために、アトマイズ粉によらない通常の粉砕粉のSEM画像を図4に示す。図4では角張った鋭角の粒が多数見られる。
次に、上記アトマイズ粉をホットプレスした。この結果、相対密度は97.3%、抗折力は75.4MPaとなり、極めて高い強度をもつ焼結体(ターゲット)が得られた。結晶組織は図3に示すように、20μm以下の微細結晶粒からなる組織であった。
【0018】
(実施例3)
GeSbTe合金原料をガスアトマイズ装置を使用し、ノズル径2.00mmφ、噴射ガスとしてアルゴン(100kgf/cm)を使用して780°Cで噴射しアトマイズ粉を製造した。
このガスアトマイズ粉のSEM像を図5に示す。図5のスケールは図内に示した通りである。図5を見てわかるように、きれいな球形のアトマイズ粉が得られている。このガスアトマイズ粉の酸素含有量は810ppmであった。また平均粒径は17.54μmであった。
このアトマイズ粉をホットプレスにて焼結した。この結果、密度は6.358g/cc、抗折力は66.7MPaとなり、極めて高い強度をもつ焼結体(ターゲット)が得られた。結晶組織は球状のアトマイズ粉が砕け、100μm以下のマクロ組織に一次粒子と考えられる10μm未満の結晶粒が見られた。
【0019】
(実施例4)
GeSbTe合金原料をガスアトマイズ装置を使用し、ノズル径2.00mmφ、噴射ガスとしてアルゴン(100kgf/cm)を使用して780°Cで噴射しアトマイズ粉を製造した。
そして、このガスアトマイズ粉をさらに自動乳鉢で追加粉砕した。この追加粉砕したガスアトマイズ粉のSEM像を図6に示す。図6のスケールは図内に示した通りである。図6には球形のアトマイズ粉がさらに破砕された4μm以下の粉が見られる。酸素含有量は900ppmであった。また、図6で見られる粉の平均粒径は1.4μmであった。
このアトマイズ粉をホットプレスにて焼結した。この結果、密度は6.344g/cc、抗折力は74.2MPaとなり、さらに高い強度をもつ焼結体(ターゲット)が得られた。結晶組織は球状のアトマイズ粉が砕け、実施例3と同様に100μm以下のマクロ組織に一次粒子と考えられる10μm未満の結晶粒が見られたが、実施例3に比べてマクロ組織が目立たず、より均一な組織となった。
【0020】
(比較例1)
実施例3と同様のGeSbTe合金原料をガスアトマイズ装置を使用し、ノズル径4.00mmφ、噴射ガスとしてアルゴン(100kgf/cm)を使用して1000°Cで噴射し、ガスアトマイズ粉を製造した。このガスアトマイズ粉の比表面積(BET)値は0.2m/g、また平均粒度は120μmであった。
このアトマイズ粉をホットプレスした。この結果、密度は4.29g/cc、抗折力は50.1MPaとなり、実施例に比べて強度が低下し、好ましくない結果となった。
【0021】
上記実施例1、2、3、4及び比較例1から明らかなように、本発明のSb−Te系スパッタリングターゲット焼結体は、平均結晶粒径が20μm以下の均質な微細結晶構造を有し、抗折力が60MPa以上であり、さらに酸素含有量が1000ppm以下である優れた特性を持つものであった。
【0022】
【発明の効果】
上記のように、Sb−Te系スパッタリングターゲット組織微細化によりスパッタエロージョンによる表面の凹凸が減少し、ターゲット上面へのリデポ膜剥離によるパーティクル発生が減少するという効果がある。
また、組織微細化により均質化され、作成される薄膜の面内及びロット間の組成変動が抑えられ、相変化上の記録層の品質が安定する効果がある。さらに、スパッタレートの違いによるノジュールの発生が低減し、結果としてパーティクルの発生が抑えられる。
ガスアトマイズが真空中又は不活性ガス雰囲気中での工程であるために、低酸素濃度の材料が得られるという著しい効果がある。さらに、本発明のSb−Te系スパッタリングターゲット焼結体は、抗折力が60MPa以上であり強度が高く、スパッタリング時にクラックや割れが発生せず、極めて優れた特性を有する。
【図面の簡単な説明】
【図1】Ag−In−Sb−Te合金原料のガスアトマイズ粉のSEM写真(画像)である。
【図2】実施例2の、ガスアトマイズ粉をさらにスタンプミルと自動乳鉢で追加粉砕した追加粉砕粉のSEM写真(画像)である。
【図3】実施例2のホットプレスによって20μm以下の微細結晶粒からなる組織の顕微鏡写真である。
【図4】アトマイズ粉によらない通常の粉砕粉のSEM画像である。
【図5】Ge−Sb−Te合金原料のガスアトマイズ粉のSEM写真(画像)である。
【図6】実施例4の、ガスアトマイズ粉をさらにスタンプミルと自動乳鉢で追加粉砕した追加粉砕粉のSEM写真(画像)である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention manufactures an Sb-Te based sputtering target for forming a phase change recording layer composed of an Sb-Te based sputtering target, particularly an Ag-In-Sb-Te alloy or a Ge-Sb-Te alloy, and the sputtering target. Sintering powder suitable for this purpose.
[0002]
[Prior art]
In recent years, a thin film made of a Sb-Te-based material has been used as a phase change recording material, that is, as a medium for recording information using phase transformation. A method of forming a thin film made of this Sb-Te-based material is generally performed by a means generally called a physical vapor deposition method such as a vacuum vapor deposition method or a sputtering method. In particular, it is often formed using a magnetron sputtering method from the viewpoint of operability and stability of the film.
[0003]
The formation of the film by the sputtering method involves physically colliding positive ions such as Ar ions with a target placed on the cathode, releasing the material constituting the target with the collision energy, and forming the target on the facing substrate on the anode side. This is performed by laminating a film having almost the same composition as the target material.
The coating method by the sputtering method has a feature that a thin film of angstrom unit to a thick film of several tens of μm can be formed at a stable film forming rate by adjusting a processing time, a supply power and the like.
[0004]
Particularly problematic when forming a film made of an Sb-Te-based material for a phase change recording film is that particles are generated at the time of sputtering, or abnormal discharge (micro arcing) or cluster-like (agglomerated and adhered). Nodules (protrusions) causing thin film formation, cracking or cracking of the target during sputtering, and absorption of a large amount of oxygen in the manufacturing process of the target sintered powder. is there.
Such a problem at the time of the target or sputtering is a major cause of deteriorating the quality of a thin film as a recording medium.
[0005]
It has been found that the above problems are greatly affected by the particle size of the sintering powder or the structure and properties of the target. However, conventionally, when manufacturing an Sb-Te-based sputtering target for forming a phase change recording layer, an appropriate powder cannot be manufactured, and a target obtained by sintering has sufficient characteristics. Due to the fact that they did not occur, it was not possible to avoid generation of particles, abnormal discharge, generation of nodules, generation of cracks or cracks in the target, and a large amount of oxygen contained in the target during sputtering.
[0006]
As a conventional method for manufacturing a Ge—Sb—Te-based sputtering target, powders of Ge—Te alloys and Sb—Te alloys that have been quenched by an inert gas atomization method are prepared, and Ge / Te = 1/1, Sb / Te = There is disclosed a method of manufacturing a Ge-Sb-Te-based sputtering target in which an alloy having a ratio of 0.5 to 2.0 is uniformly mixed and then subjected to pressure sintering (for example, see Patent Document 1).
In addition, among alloy powders containing Ge, Sb, and Te, a powder having a tap density (relative density) of 50% or more is poured into a mold and pressurized in a cold or warm state. % Or more, by sintering the molding material by performing a heat treatment in an Ar or vacuum atmosphere so that the oxygen content of the sintered body is 700 ppm or less. And a technique for producing a powder used in these by an atomizing method (for example, see Patent Document 2).
In addition, a raw material containing Ge, Sb, and Te is quenched by an inert gas atomizing method to produce a powder, and a particle size distribution of 20 μm or more and a specific surface area per unit weight of 300 mm 2 / g or less is obtained. There is a description of a method for manufacturing a Ge—Sb—Te-based sputtering target material that uses a powder having the same and sinters a compact formed by pressing under cold or warm conditions (for example, see Patent Document 3).
However, in the above patent documents, it is difficult to say that sufficient strength of the target has not been obtained, and that the target structure has not been made fine and homogenized. Also, the allowable oxygen content is high, and there is a problem that it cannot be said that the Sb-Te based sputtering target for forming the phase change recording layer is sufficient.
[0007]
[Patent Document 1]
JP 2000-265262 A [Patent Document 2]
JP 2001-98366 A [Patent Document 3]
JP 2001-123266 A
[Problems to be solved by the invention]
The present invention effectively solves the above-described problems, particularly during sputtering, generation of particles, abnormal discharge, generation of nodules, cracks or cracks in the target, and the like, and is effectively contained in the target. Sb-Te based sputtering target capable of reducing oxygen, particularly Sb-Te based sputtering target for forming a phase change recording layer made of Ag-In-Sb-Te alloy or Ge-Sb-Te alloy, and the sputtering It is intended to provide a sintering powder suitable for producing a target.
[0009]
[Means for Solving the Problems]
The technical means for solving the above problem has been found that a stable and homogeneous phase change recording layer can be obtained by devising the properties of the powder and the structure and characteristics of the target.
Based on this finding, the present invention provides: 1. A Sb-Te-based sputtering target characterized in that the atomized powder to be used as the sintering raw material powder has a particle size of less than 20 μm, and the average crystal grain size of the sintered body target is 20 μm or less. 2. A Sb-Te-based sputtering target, characterized in that the atomized powder serving as the sintering raw material powder has a particle size of less than 20 μm, and the average crystal grain size of the sintered body target is 10 μm or less. 3. The Sb-Te-based sputtering target, wherein the particle size of the atomized powder to be used as the sintering raw material powder is less than 20 μm, and the average crystal grain size of the sintered body target is 5 μm or less. 4. Sb-Te-based sputtering target having a transverse rupture strength of 60 MPa or more; 5. The Sb-Te-based sputtering target according to any one of the above 1 to 3, wherein the transverse rupture strength is 60 MPa or more. 6. The sputtering target according to any one of 1 to 5, wherein the oxygen content is 1000 ppm or less. The sputtering target according to any one of the above 1 to 5, wherein the sputtering target has an oxygen content of 150 ppm or less.
[0010]
The present invention also relates to 8. 8. Powder for producing an Sb-Te-based sputtering target, which is a gas atomized powder having an average particle size of less than 20 μm in which primary crystal grains having an average particle size of 10 μm or less are present. 9. A powder for producing an Sb-Te-based sputtering target, which is obtained by further pulverizing a gas atomized powder having an average particle size of less than 20 μm in which primary crystal grains having an average particle size of 10 μm or less are present. 10. A powder for producing an Sb-Te-based sputtering target, wherein the powder is a gas atomized powder having an average particle size of less than 20 μm in which primary crystal grains having an average particle size of 1 μm or less are present. A gas atomized powder having an average particle diameter of less than 20 μm in which primary crystal grains having an average particle diameter of 1 μm or less are contained, and further pulverized into a powder having an average particle diameter of 1 μm or less; 10. The powder for producing a sputtering target according to the above item 8 or 9, wherein the powder has a specific surface area (BET) of 13.0.7 m 2 / g or more, which is a powder having a specific surface area (BET) of 0.5 m 2 / g or more. 13. The powder for producing a sputtering target according to the above item 12, wherein the powder is a powder. The phase-change recording according to any one of the above items 1 to 13, wherein the phase-change recording is made of an Sb-Te alloy containing at least one element selected from Ag, In, Ge, Ga, Ti, Au, Pt, and Pd. A sputtering target for a layer and a powder for the production are provided.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The Sb-Te-based sputtering target of the present invention is applied to a target made of an Sb-Te alloy containing at least one element selected from Ag, In, Ge, Ga, Ti, Au, Pt, and Pd. The structure of the target is fine, and the average crystal grain size is 20 μm or less. Preferably, the average crystal grain size is 10 μm or less, and more preferably, the average crystal grain size is 5 μm or less.
A target having such a fine structure can be manufactured by hot pressing a gas atomized powder having an average particle size of less than 20 μm in which primary crystal grains having an average particle size of 1 μm or less are present.
Further, it is desirable to further pulverize the gas atomized powder having an average particle size of less than 20 μm in which the primary crystal grains having an average particle size of 1 μm or less are present to obtain a powder having an average particle size of 1 μm or less. Although a hot press is used for manufacturing the target, a target having fine crystals can be manufactured by using such fine atomized powder, and the transverse rupture strength can be increased.
[0012]
In the phase change target having a fine crystal structure, surface irregularities due to sputter erosion are reduced, and generation of particles due to peeling of a redeposition (reattachment) film on the target upper surface can be suppressed.
In addition, the compositional refinement of the sputtered film also suppresses in-plane and lot-to-lot composition fluctuations, and has the advantage of stabilizing the quality of the phase change recording layer. In addition, generation of particles, abnormal discharge, generation of nodules, and the like during sputtering can be effectively suppressed.
[0013]
Further, in the Sb-Te-based sputtering target of the present invention, more importantly, the transverse rupture strength is 60 MPa or more. By significantly improving the mechanical strength in this way, the occurrence of cracks or cracks in the target can be effectively prevented.
Further, in the Sb-Te-based sputtering target of the present invention, the secondary particles of the gas atomized powder are spherical, and have an oxygen content of 1000 ppm or less, and particularly an oxygen content of 150 ppm or less in the composition of Ag-In-Sb-Te. can do. Such a reduction in oxygen can further reduce the generation of particles and abnormal discharge.
[0014]
The powder used for producing the Sb—Te-based sputtering target of the present invention in which the crystal grains are fine and high in strength is a powder having a specific surface area (BET) of 0.5 m 2 / g or more, and more preferably 0.7 m 2 / g or more. Can be used.
As the Sb-Te-based sputtering target, a target made of a Sb-Te alloy containing at least one element selected from Ag, In, Ge, Ga, Ti, Au, Pt, and Pd, for example, Ag-In-Sb- The sputtering target for a phase change recording layer is made of a Te alloy or a Ge—Sb—Te alloy.
[0015]
[Examples and Comparative Examples]
An embodiment of the present invention will be described. This embodiment is merely an example, and the present invention is not limited to this example. That is, within the scope of the technical idea of the present invention, all aspects or modifications other than the examples are included.
[0016]
(Example 1)
The Ag-In-Sb-Te alloy raw material was sprayed at 514 ° C using a gas atomizing device using a nozzle diameter of 2.00 mmφ and argon (50 kgf / cm 2 ) as a spray gas to produce gas atomized powder.
FIG. 1 shows an SEM photograph (image) of this gas atomized powder. The scale of FIG. 1 is as shown in the figure. In FIG. 1, a clean spherical atomized powder is obtained. The oxygen content of this gas atomized powder was 150 ppm. The average particle size was 86.98 μm.
The atomized powder (not shown) sprayed at a lower temperature (for example, 600 ° C.) was fine, but not spherical, but slightly tailed. This atomized powder was hot pressed.
As a result, the relative density was 97.5%, the transverse rupture strength was 85.1 MPa, and a sintered body (target) having extremely high strength was obtained. The crystal structure was a crystal structure in which spherical atomized powder was broken, a macro structure of 20 μm or less was slightly observed, and fine crystal grains of less than 1 μm considered as primary particles were mixed.
[0017]
(Example 2)
The same gas atomized powder as in Example 1 was further pulverized with a stamp mill and an automatic mortar. FIG. 2 shows an SEM photograph (image) of this additional pulverized powder. The scale in FIG. 2 is as shown in the figure. In FIG. 2, a powder of less than 1 μm in which the spherical atomized powder is further crushed is obtained. The specific surface area (BET) value of this powder was 0.845, which was a large value. For comparison, FIG. 4 shows an SEM image of a normal pulverized powder not depending on the atomized powder. In FIG. 4, a large number of sharp and sharp grains are seen.
Next, the atomized powder was hot-pressed. As a result, the relative density was 97.3%, the transverse rupture strength was 75.4 MPa, and a sintered body (target) having extremely high strength was obtained. The crystal structure was a structure composed of fine crystal grains of 20 μm or less, as shown in FIG.
[0018]
(Example 3)
Ge 2 Sb 2 Te 5 alloy raw material was sprayed at 780 ° C. using a gas atomizer using a gas atomizing apparatus, using a nozzle diameter of 2.00 mmφ and argon (100 kgf / cm 2 ) as a spray gas to produce atomized powder.
FIG. 5 shows an SEM image of the gas atomized powder. The scale of FIG. 5 is as shown in the figure. As can be seen from FIG. 5, a clean spherical atomized powder is obtained. The oxygen content of this gas atomized powder was 810 ppm. The average particle size was 17.54 μm.
This atomized powder was sintered by hot pressing. As a result, the density was 6.358 g / cc, the transverse rupture strength was 66.7 MPa, and a sintered body (target) having extremely high strength was obtained. As for the crystal structure, spherical atomized powder was broken, and crystal grains of less than 10 μm considered as primary particles were observed in a macrostructure of 100 μm or less.
[0019]
(Example 4)
Ge 2 Sb 2 Te 5 alloy raw material was sprayed at 780 ° C. using a gas atomizer using a gas atomizing apparatus, using a nozzle diameter of 2.00 mmφ and argon (100 kgf / cm 2 ) as a spray gas to produce atomized powder.
Then, the gas atomized powder was further pulverized in an automatic mortar. FIG. 6 shows an SEM image of the additionally atomized gas atomized powder. The scale of FIG. 6 is as shown in the figure. FIG. 6 shows a powder of 4 μm or less in which spherical atomized powder is further crushed. The oxygen content was 900 ppm. The average particle size of the powder shown in FIG. 6 was 1.4 μm.
This atomized powder was sintered by hot pressing. As a result, the density was 6.344 g / cc, the transverse rupture strength was 74.2 MPa, and a sintered body (target) having higher strength was obtained. As for the crystal structure, spherical atomized powder was broken, and crystal grains of less than 10 μm considered as primary particles were found in the macrostructure of 100 μm or less as in Example 3, but the macrostructure was less conspicuous than in Example 3, A more uniform texture was obtained.
[0020]
(Comparative Example 1)
The same Ge 2 Sb 2 Te 5 alloy raw material as in Example 3 was injected at 1000 ° C. using a gas atomizing apparatus using a gas atomizing apparatus, a nozzle diameter of 4.00 mmφ, and argon (100 kgf / cm 2 ) as an injection gas. Was manufactured. The specific surface area (BET) value of this gas atomized powder was 0.2 m 2 / g, and the average particle size was 120 μm.
This atomized powder was hot pressed. As a result, the density was 4.29 g / cc, and the transverse rupture strength was 50.1 MPa. The strength was lower than that of the example, which was not preferable.
[0021]
As is clear from Examples 1, 2, 3, 4 and Comparative Example 1, the Sb-Te-based sputtering target sintered body of the present invention has a uniform fine crystal structure with an average crystal grain size of 20 μm or less. And the transverse rupture strength was 60 MPa or more, and the oxygen content was 1000 ppm or less.
[0022]
【The invention's effect】
As described above, there is an effect that unevenness of the surface due to sputter erosion is reduced due to the refinement of the structure of the Sb-Te-based sputtering target, and generation of particles due to peeling of the redeposition film on the target upper surface is reduced.
Further, there is an effect that the in-plane and lot-to-lot composition fluctuations of the thin film to be homogenized by the structure refinement are suppressed, and the quality of the recording layer on the phase change is stabilized. Further, generation of nodules due to a difference in sputter rate is reduced, and as a result, generation of particles is suppressed.
Since the gas atomization is a process in a vacuum or an inert gas atmosphere, there is a remarkable effect that a material having a low oxygen concentration can be obtained. Furthermore, the Sb-Te-based sputtering target sintered body of the present invention has a high transverse rupture strength of 60 MPa or more, a high strength, does not generate cracks or cracks during sputtering, and has extremely excellent characteristics.
[Brief description of the drawings]
FIG. 1 is an SEM photograph (image) of a gas atomized powder as a raw material of an Ag—In—Sb—Te alloy.
FIG. 2 is an SEM photograph (image) of an additional pulverized powder obtained by further pulverizing a gas atomized powder of Example 2 with a stamp mill and an automatic mortar.
FIG. 3 is a micrograph of a structure composed of fine crystal grains of 20 μm or less obtained by hot pressing in Example 2.
FIG. 4 is an SEM image of a normal pulverized powder not based on atomized powder.
FIG. 5 is an SEM photograph (image) of a gas atomized powder as a raw material of a Ge—Sb—Te alloy.
FIG. 6 is an SEM photograph (image) of an additional pulverized powder obtained by additionally pulverizing gas atomized powder with a stamp mill and an automatic mortar in Example 4.

Claims (14)

焼結原料粉となるアトマイズ粉の粒度が20μm未満であり、焼結体ターゲットの平均結晶粒径が20μm以下であることを特徴とするSb−Te系スパッタリングターゲット。An Sb-Te-based sputtering target, characterized in that the atomized powder serving as the sintering raw material powder has a particle size of less than 20 μm, and the average crystal grain size of the sintered body target is 20 μm or less. 焼結原料粉となるアトマイズ粉の粒度が20μm未満であり、焼結体ターゲットの平均結晶粒径が10μm以下であることを特徴とするSb−Te系スパッタリングターゲット。An Sb-Te-based sputtering target, characterized in that the atomized powder used as the sintering raw material powder has a particle size of less than 20 μm, and the average crystal grain size of the sintered body target is 10 μm or less. 焼結原料粉となるアトマイズ粉の粒度が20μm未満であり、焼結体ターゲットの平均結晶粒径が5μm以下であることを特徴とするSb−Te系スパッタリングターゲット。An Sb-Te-based sputtering target, characterized in that the atomized powder serving as the sintering raw material powder has a particle size of less than 20 μm, and the average crystal grain size of the sintered body target is 5 μm or less. 抗折力が60MPa以上であることを特徴とするSb−Te系スパッタリングターゲット。An Sb-Te-based sputtering target having a transverse rupture force of 60 MPa or more. 抗折力が60MPa以上であることを特徴とする請求項1〜3のいずれかに記載のSb−Te系スパッタリングターゲット。The Sb-Te-based sputtering target according to any one of claims 1 to 3, wherein the transverse rupture strength is 60 MPa or more. 酸素含有量が1000ppm以下であることを特徴とする請求項1〜5のいずれかに記載のスパッタリングターゲット。The sputtering target according to any one of claims 1 to 5, wherein the oxygen content is 1000 ppm or less. 酸素含有量が150ppm以下であることを特徴とする請求項1〜5のいずれかに記載のスパッタリングターゲット。The sputtering target according to any one of claims 1 to 5, wherein the oxygen content is 150 ppm or less. 平均粒径10μm以下の一次結晶粒が内在する平均粒度20μm未満のガスアトマイズ粉であることを特徴とするSb−Te系スパッタリングターゲット製造用粉末。A powder for producing an Sb-Te-based sputtering target, which is a gas atomized powder having an average particle size of less than 20 μm in which primary crystal grains having an average particle size of 10 μm or less are present. 平均粒径10μm以下の一次結晶粒が内在する平均粒度20μm未満のガスアトマイズ粉を、さらに粉砕した平均粒径10μm以下の粉末であることを特徴とするSb−Te系スパッタリングターゲット製造用粉末。A powder for producing an Sb-Te-based sputtering target, which is obtained by further pulverizing a gas atomized powder having an average particle size of less than 20 μm in which primary crystal grains having an average particle size of 10 μm or less are present, and further pulverized. 平均粒径1μm以下の一次結晶粒が内在する平均粒度20μm未満のガスアトマイズ粉であることを特徴とするSb−Te系スパッタリングターゲット製造用粉末。A powder for producing a Sb-Te-based sputtering target, which is a gas atomized powder having an average particle size of less than 20 μm in which primary crystal grains having an average particle size of 1 μm or less are present. 平均粒径1μm以下の一次結晶粒が内在する平均粒度20μm未満のガスアトマイズ粉を、さらに粉砕した平均粒径1μm以下の粉末であることを特徴とするSb−Te系スパッタリングターゲット製造用粉末。A powder for producing an Sb-Te-based sputtering target, which is obtained by further pulverizing a gas atomized powder having an average particle diameter of less than 20 μm in which primary crystal grains having an average particle diameter of 1 μm or less are present, and further pulverized. 0.5m/g以上の比表面積(BET)を持つ粉末であることを特徴とする請求項8又は9記載のスパッタリングターゲット製造用粉末。The powder for producing a sputtering target according to claim 8, wherein the powder has a specific surface area (BET) of 0.5 m 2 / g or more. 0.7m/g以上の比表面積(BET)を持つ粉末であることを特徴とする請求項12記載のスパッタリングターゲット製造用粉末。13. The powder for producing a sputtering target according to claim 12, wherein the powder has a specific surface area (BET) of 0.7 m 2 / g or more. Ag、In、Ge、Ga、Ti、Au、Pt、Pdから選択した1種以上の元素を含有するSb−Te合金からなることを特徴とする請求項1〜13のいずれかに記載の相変化記録層用スパッタリングターゲット及び同製造用粉末。The phase change according to any one of claims 1 to 13, wherein the phase change is made of an Sb-Te alloy containing at least one element selected from Ag, In, Ge, Ga, Ti, Au, Pt, and Pd. Sputtering target for recording layer and powder for production.
JP2002328368A 2002-11-12 2002-11-12 Sputtering target and powder for producing the same Withdrawn JP2004162109A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002328368A JP2004162109A (en) 2002-11-12 2002-11-12 Sputtering target and powder for producing the same
PCT/JP2003/009857 WO2004044260A1 (en) 2002-11-12 2003-08-04 Sputtering target and powder for production thereof
TW92121356A TWI245077B (en) 2002-11-12 2003-08-05 Sputtering target and power for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328368A JP2004162109A (en) 2002-11-12 2002-11-12 Sputtering target and powder for producing the same

Publications (1)

Publication Number Publication Date
JP2004162109A true JP2004162109A (en) 2004-06-10

Family

ID=32310542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328368A Withdrawn JP2004162109A (en) 2002-11-12 2002-11-12 Sputtering target and powder for producing the same

Country Status (3)

Country Link
JP (1) JP2004162109A (en)
TW (1) TWI245077B (en)
WO (1) WO2004044260A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051736A1 (en) * 2004-11-15 2006-05-18 Nippon Mining & Metals Co., Ltd. Hydrogen separation membrane, sputtering target for forming of hydrogen separation membrane, and process for producing the same
WO2006059429A1 (en) * 2004-11-30 2006-06-08 Nippon Mining & Metals Co., Ltd. Sb-Te BASE ALLOY SINTERED SPATTERING TARGET
WO2006067937A1 (en) * 2004-12-24 2006-06-29 Nippon Mining & Metals Co., Ltd. Sb-Te ALLOY SINTERING PRODUCT TARGET AND PROCESS FOR PRODUCING THE SAME
WO2006077692A1 (en) * 2005-01-18 2006-07-27 Nippon Mining & Metals Co., Ltd. Sb-Te BASED ALLOY POWDER FOR SINTERING AND SINTERED SPUTTERING TARGET PREPARED BY SINTERING SAID POWDER, AND METHOD FOR PREPARING Sb-Te BASED ALLOY POWDER FOR SINTERING
JP2007131941A (en) * 2006-05-26 2007-05-31 Mitsubishi Materials Corp Method for producing sputtering target for forming phase change film having reduced generation of particle
WO2008044626A1 (en) * 2006-10-13 2008-04-17 Nippon Mining & Metals Co., Ltd. Sb-Te BASE ALLOY SINTER SPUTTERING TARGET
WO2009034775A1 (en) * 2007-09-13 2009-03-19 Nippon Mining & Metals Co., Ltd. Method for producing sintered body, sintered body, sputtering target composed of the sintered body, and sputtering target-backing plate assembly
JP2009132962A (en) * 2007-11-29 2009-06-18 Kobelco Kaken:Kk Ag-BASED SPUTTERING TARGET
WO2009107498A1 (en) * 2008-02-26 2009-09-03 日鉱金属株式会社 Sb-te alloy powder for sintering, process for production of the powder, and sintered target
WO2011136120A1 (en) * 2010-04-26 2011-11-03 Jx日鉱日石金属株式会社 Sb-te based alloy sintered compact sputtering target
JP5301530B2 (en) * 2008-03-28 2013-09-25 Jx日鉱日石金属株式会社 Platinum powder for magnetic material target, method for producing the same, method for producing magnetic material target comprising a platinum sintered body, and the same sintered magnetic material target
JP2013209751A (en) * 2009-07-01 2013-10-10 Jx Nippon Mining & Metals Corp Cu-Ga TARGET AND METHOD FOR PRODUCING THE SAME
JP2014029026A (en) * 2011-09-08 2014-02-13 Jx Nippon Mining & Metals Corp SPUTTERING TARGET OF Cu-Te ALLOY SINTERED BODY
TWI458847B (en) * 2009-07-23 2014-11-01 Jx Nippon Mining & Metals Corp Cu-Ga alloy sintered body sputtering target, a method for manufacturing the target, a light absorbing layer made of a Cu-Ga alloy sintered body target, and a CIGS solar cell using the light absorbing layer
TWI458848B (en) * 2009-07-27 2014-11-01 Jx Nippon Mining & Metals Corp Cu-Ga sintered body sputtering target and manufacturing method of the target
US9299543B2 (en) 2009-05-27 2016-03-29 Jx Nippon Mining & Metals Corporation Target of sintered compact, and method of producing the sintered compact
CN110396665A (en) * 2019-06-18 2019-11-01 有研新材料股份有限公司 A kind of sulphur system multicomponent alloy target and its manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070084209A (en) 2004-11-15 2007-08-24 닛코 킨조쿠 가부시키가이샤 Sputtering target for production of metallic glass film and process for producing the same
CN107626929B (en) * 2017-08-04 2021-04-30 领凡新能源科技(北京)有限公司 Method for preparing alloy powder
JP6801768B2 (en) * 2018-11-20 2020-12-16 三菱マテリアル株式会社 Sputtering target
CN110396666B (en) * 2019-06-18 2021-04-06 有研新材料股份有限公司 Germanium-arsenic-selenium-tellurium alloy target and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081962A (en) * 1996-09-06 1998-03-31 Sumitomo Metal Mining Co Ltd Production of ge-te-sb target for sputtering
JP3113639B2 (en) * 1998-10-29 2000-12-04 トヨタ自動車株式会社 Manufacturing method of alloy powder
JP3703648B2 (en) * 1999-03-16 2005-10-05 山陽特殊製鋼株式会社 Method for producing Ge-Sb-Te based sputtering target material
JP2001098366A (en) * 1999-07-26 2001-04-10 Sanyo Special Steel Co Ltd METHOD OF PRODUCING Ge-Sb-Te SPUTTERING TARGET MATERIAL
JP2001123267A (en) * 1999-10-26 2001-05-08 Sanyo Special Steel Co Ltd METHOD OF MANUFACTURING Ge-Sb-Te SPUTTERING TARGET MATERIAL

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673855B2 (en) * 2004-11-15 2011-04-20 Jx日鉱日石金属株式会社 Hydrogen separation membrane, sputtering target for forming hydrogen separation membrane, and method for producing the same
KR100888911B1 (en) * 2004-11-15 2009-03-16 닛코 킨조쿠 가부시키가이샤 Hydrogen separation membrane, sputtering target for forming of hydrogen separation membrane, and process for producing the same
WO2006051736A1 (en) * 2004-11-15 2006-05-18 Nippon Mining & Metals Co., Ltd. Hydrogen separation membrane, sputtering target for forming of hydrogen separation membrane, and process for producing the same
JPWO2006051736A1 (en) * 2004-11-15 2008-05-29 日鉱金属株式会社 Hydrogen separation membrane, sputtering target for forming hydrogen separation membrane, and method for producing the same
JP4708361B2 (en) * 2004-11-30 2011-06-22 Jx日鉱日石金属株式会社 Sb—Te alloy sintered compact sputtering target
US7803209B2 (en) 2004-11-30 2010-09-28 Nippon Mining & Metals Co., Ltd Sb-Te alloy sintered compact sputtering target
JPWO2006059429A1 (en) * 2004-11-30 2008-08-07 日鉱金属株式会社 Sb-Te based alloy sintered body sputtering target
WO2006059429A1 (en) * 2004-11-30 2006-06-08 Nippon Mining & Metals Co., Ltd. Sb-Te BASE ALLOY SINTERED SPATTERING TARGET
EP1829985A1 (en) * 2004-12-24 2007-09-05 Nippon Mining & Metals Co., Ltd. Sb-Te ALLOY SINTERING PRODUCT TARGET AND PROCESS FOR PRODUCING THE SAME
US7943021B2 (en) 2004-12-24 2011-05-17 Jx Nippon Mining & Metals Corporation Sb-Te alloy sintered compact target and manufacturing method thereof
EP1829985A4 (en) * 2004-12-24 2008-06-04 Nippon Mining Co Sb-Te ALLOY SINTERING PRODUCT TARGET AND PROCESS FOR PRODUCING THE SAME
JPWO2006067937A1 (en) * 2004-12-24 2008-06-12 日鉱金属株式会社 Sb-Te based alloy sintered compact target and method for manufacturing the same
WO2006067937A1 (en) * 2004-12-24 2006-06-29 Nippon Mining & Metals Co., Ltd. Sb-Te ALLOY SINTERING PRODUCT TARGET AND PROCESS FOR PRODUCING THE SAME
JP4642780B2 (en) * 2004-12-24 2011-03-02 Jx日鉱日石金属株式会社 Sb-Te based alloy sintered compact target and method for manufacturing the same
JPWO2006077692A1 (en) * 2005-01-18 2008-08-07 日鉱金属株式会社 Sb-Te alloy powder for sintering, sintered sputtering target obtained by sintering this powder, and method for producing Sb-Te alloy powder for sintering
US7947106B2 (en) 2005-01-18 2011-05-24 Jx Nippon Mining & Metals Corporation Sb-Te alloy powder for sintering, sintered compact sputtering target obtained by sintering said powder, and manufacturing method of Sb-Te alloy powder for sintering
KR100947197B1 (en) * 2005-01-18 2010-03-11 닛코 킨조쿠 가부시키가이샤 Sb-Te BASED ALLOY POWDER FOR SINTERING AND SINTERED SPUTTERING TARGET PREPARED BY SINTERING SAID POWDER, AND METHOD FOR PREPARING Sb-Te BASED ALLOY POWDER FOR SINTERING
JP4615527B2 (en) * 2005-01-18 2011-01-19 Jx日鉱日石金属株式会社 Sb—Te alloy powder for sintering, sintered sputtering target obtained by sintering this powder, and method for producing Sb—Te alloy powder for sintering
WO2006077692A1 (en) * 2005-01-18 2006-07-27 Nippon Mining & Metals Co., Ltd. Sb-Te BASED ALLOY POWDER FOR SINTERING AND SINTERED SPUTTERING TARGET PREPARED BY SINTERING SAID POWDER, AND METHOD FOR PREPARING Sb-Te BASED ALLOY POWDER FOR SINTERING
JP2007131941A (en) * 2006-05-26 2007-05-31 Mitsubishi Materials Corp Method for producing sputtering target for forming phase change film having reduced generation of particle
JPWO2008044626A1 (en) * 2006-10-13 2010-02-12 日鉱金属株式会社 Sb-Te based alloy sintered compact sputtering target
US8882975B2 (en) 2006-10-13 2014-11-11 Jx Nippon Mining & Metals Corporation Sb-Te base alloy sinter sputtering target
WO2008044626A1 (en) * 2006-10-13 2008-04-17 Nippon Mining & Metals Co., Ltd. Sb-Te BASE ALLOY SINTER SPUTTERING TARGET
EP2186917A4 (en) * 2007-09-13 2016-07-20 Jx Nippon Mining & Metals Corp Method for producing sintered body, sintered body, sputtering target composed of the sintered body, and sputtering target-backing plate assembly
WO2009034775A1 (en) * 2007-09-13 2009-03-19 Nippon Mining & Metals Co., Ltd. Method for producing sintered body, sintered body, sputtering target composed of the sintered body, and sputtering target-backing plate assembly
KR101175091B1 (en) 2007-09-13 2012-08-21 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for producing sintered body, sintered body, sputtering target composed of the sintered body, and sputtering target-backing plate assembly
KR101552028B1 (en) * 2007-09-13 2015-09-09 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for producing sintered body, sintered body, sputtering target composed of the sintered body, and sputtering target-backing plate assembly
JP5396276B2 (en) * 2007-09-13 2014-01-22 Jx日鉱日石金属株式会社 Sintered body manufacturing method, sintered body target, and sputtering target-backing plate assembly
TWI488984B (en) * 2007-09-13 2015-06-21 Jx Nippon Mining & Metals Corp A sintered body, a sintered body, a sputtering target and a sputtering target-supporting plate assembly
JP2009132962A (en) * 2007-11-29 2009-06-18 Kobelco Kaken:Kk Ag-BASED SPUTTERING TARGET
WO2009107498A1 (en) * 2008-02-26 2009-09-03 日鉱金属株式会社 Sb-te alloy powder for sintering, process for production of the powder, and sintered target
JP5496078B2 (en) * 2008-02-26 2014-05-21 Jx日鉱日石金属株式会社 Sb-Te alloy powder for sintering, method for producing the same, and sintered body target
KR101475133B1 (en) * 2008-02-26 2014-12-22 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Sb-Te ALLOY POWDER FOR SINTERING, PROCESS FOR PRODUCTION OF THE POWDER, AND SINTERED TARGET
JP5301530B2 (en) * 2008-03-28 2013-09-25 Jx日鉱日石金属株式会社 Platinum powder for magnetic material target, method for producing the same, method for producing magnetic material target comprising a platinum sintered body, and the same sintered magnetic material target
US9299543B2 (en) 2009-05-27 2016-03-29 Jx Nippon Mining & Metals Corporation Target of sintered compact, and method of producing the sintered compact
JP2013209751A (en) * 2009-07-01 2013-10-10 Jx Nippon Mining & Metals Corp Cu-Ga TARGET AND METHOD FOR PRODUCING THE SAME
TWI458846B (en) * 2009-07-01 2014-11-01 Jx Nippon Mining & Metals Corp Cu-Ga target and its manufacturing method
TWI458847B (en) * 2009-07-23 2014-11-01 Jx Nippon Mining & Metals Corp Cu-Ga alloy sintered body sputtering target, a method for manufacturing the target, a light absorbing layer made of a Cu-Ga alloy sintered body target, and a CIGS solar cell using the light absorbing layer
TWI458848B (en) * 2009-07-27 2014-11-01 Jx Nippon Mining & Metals Corp Cu-Ga sintered body sputtering target and manufacturing method of the target
TWI493064B (en) * 2010-04-26 2015-07-21 Jx Nippon Mining & Metals Corp Sb-Te based alloy sintered body sputtering target
JP5364202B2 (en) * 2010-04-26 2013-12-11 Jx日鉱日石金属株式会社 Sb-Te based alloy sintered compact sputtering target
US20120279857A1 (en) * 2010-04-26 2012-11-08 Jx Nippon Mining & Metals Corporation Sb-Te-Based Alloy Sintered Compact Sputtering Target
WO2011136120A1 (en) * 2010-04-26 2011-11-03 Jx日鉱日石金属株式会社 Sb-te based alloy sintered compact sputtering target
US11846015B2 (en) 2010-04-26 2023-12-19 Jx Metals Corporation Sb—Te-based alloy sintered compact sputtering target
JP2014029026A (en) * 2011-09-08 2014-02-13 Jx Nippon Mining & Metals Corp SPUTTERING TARGET OF Cu-Te ALLOY SINTERED BODY
CN110396665A (en) * 2019-06-18 2019-11-01 有研新材料股份有限公司 A kind of sulphur system multicomponent alloy target and its manufacturing method

Also Published As

Publication number Publication date
TW200407442A (en) 2004-05-16
WO2004044260A1 (en) 2004-05-27
TWI245077B (en) 2005-12-11

Similar Documents

Publication Publication Date Title
JP2004162109A (en) Sputtering target and powder for producing the same
US7947106B2 (en) Sb-Te alloy powder for sintering, sintered compact sputtering target obtained by sintering said powder, and manufacturing method of Sb-Te alloy powder for sintering
US20210237153A1 (en) Sintered compact target and method of producing sintered compact
JP4965579B2 (en) Sb-Te based alloy sintered compact sputtering target
US7767139B2 (en) AlRu sputtering target and manufacturing method thereof
US7943021B2 (en) Sb-Te alloy sintered compact target and manufacturing method thereof
JPWO2006059429A1 (en) Sb-Te based alloy sintered body sputtering target
TW201219132A (en) Potassium/molybdenum composite metal powders, powder blends, products thereof, and methods for producing photovoltaic cells
JP5496078B2 (en) Sb-Te alloy powder for sintering, method for producing the same, and sintered body target
JP6028714B2 (en) Method for producing Cu-Ga alloy sputtering target

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207