JP2749165B2 - TiA-based composite material and method for producing the same - Google Patents

TiA-based composite material and method for producing the same

Info

Publication number
JP2749165B2
JP2749165B2 JP1335782A JP33578289A JP2749165B2 JP 2749165 B2 JP2749165 B2 JP 2749165B2 JP 1335782 A JP1335782 A JP 1335782A JP 33578289 A JP33578289 A JP 33578289A JP 2749165 B2 JP2749165 B2 JP 2749165B2
Authority
JP
Japan
Prior art keywords
tib
composite material
tial
powder
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1335782A
Other languages
Japanese (ja)
Other versions
JPH03193842A (en
Inventor
敬三 橋本
直哉 正橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1335782A priority Critical patent/JP2749165B2/en
Publication of JPH03193842A publication Critical patent/JPH03193842A/en
Application granted granted Critical
Publication of JP2749165B2 publication Critical patent/JP2749165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、TiAl基金属間化合物のマトリクス中にTiB2
粒子を分散させたTiAl基複合材料およびその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention [relates] is, TiB 2 in a matrix of TiAl-based intermetallic compound
The present invention relates to a TiAl-based composite material in which particles are dispersed and a method for producing the same.

〔従来の技術〕[Conventional technology]

TiAl基金属化合物は温度が上昇するに従って強度が上
昇するという正の温度依存性を示し、また比重が3.8と
非常に軽いため、比強度の高い高温耐熱材料、特に航空
機エンジンのブレードやバルブのような高温で高速運動
する部材用として研究開発が進められている。
TiAl-based metal compounds show a positive temperature dependence, in which the strength increases as the temperature rises, and have a very low specific gravity of 3.8, making them highly heat-resistant materials with high specific strength, especially for aircraft engine blades and valves. Research and development for members that move at high speeds at extremely high temperatures is underway.

従来、TiAl基金属間化合物の加工性を向上させるため
の検討は行われてきた(例えばTi−34.1重量%Al−34重
量%V合金〔米国特許第4294625〕、Ti−41.7重量%Al
−10重量%Ag合金〔特開昭58-123847〕、TiAl基金属間
化合物にMnを添加〔特開昭61-41740〕等)。
Conventionally, studies have been made to improve the workability of TiAl-based intermetallic compounds (for example, Ti-34.1% by weight Al-34% by weight V alloy [US Pat. No. 4,294,625], Ti-41.7% by weight Al).
-10 wt% Ag alloy [Japanese Patent Application Laid-Open No. 58-123847], Mn added to TiAl-based intermetallic compound [Japanese Patent Application Laid-Open No. 61-41740], etc.).

一方、TiAl基金属間化合物の高い比強度を利用して、
更に高強度の材料を開発することが要請されているが、
より高強度化するための検討はこれまでほとんどなされ
ていない。
On the other hand, utilizing the high specific strength of TiAl-based intermetallic compounds,
There is a need to develop materials with higher strength,
Up to now, there has been almost no study for increasing the strength.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、TiAl基金属間化合物よりも更に高強度化し
たTiAl基複合材料およびその製造方法を提供することを
目的とする。
An object of the present invention is to provide a TiAl-based composite material having higher strength than a TiAl-based intermetallic compound and a method for producing the same.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的は、本発明によれば、Al30〜40重量%およ
びCr1〜5重量%を含有し残部が実質的にTiから成るTiA
l基金属間化合物のマトリクス中に、複合材料としての
体積に対して20体積%以下のTiB2粒子を分散させたこと
を特徴とするTiAl基複合材料によって達成される。
The object of the invention is to provide, according to the invention, a TiA containing 30 to 40% by weight of Al and 1 to 5% by weight of Cr and the balance substantially consisting of Ti.
This is achieved by a TiAl-based composite material characterized in that 20% by volume or less of TiB 2 particles are dispersed in a matrix of an l-based intermetallic compound with respect to the volume of the composite material.

本発明のTiAl基複合材料は、本発明によれば、Ti粉
末、Al粉末、およびB粉末を混合して第1の混合物を形
成する工程、 上記第1混合物を等方的に加圧して圧縮成形体を形成
する工程、 上記圧縮成形体を不活性ガス雰囲気中で加熱して上記
圧縮成形体中でAlを溶解し且つTiとBとを自己燃焼焼結
させることにより、Alマトリクス中にTiB2粒子が分散し
た焼結体を形成する工程、 上記焼結体を粉砕して粉末状の中間素材を形成する工
程、 上記中間素材、金属Ti、金属Al、および金属Crを混合
した状態で、Tiの融点以上TiB2の融点以下の温度に加熱
することにより、固体TiB2粒子を含む溶融体を形成する
工程、および 上記溶融体を鋳造して鋳塊を形成する工程 を含むことを特徴とする方法によって製造することがで
きる。
According to the present invention, a TiAl-based composite material according to the present invention includes a step of mixing a Ti powder, an Al powder, and a B powder to form a first mixture, and isotropically compressing the first mixture. Forming a compact, heating the compression-molded body in an inert gas atmosphere to dissolve Al in the compression-molded body and self-combustion sintering of Ti and B to form TiB in an Al matrix. 2 step of forming a sintered body in which particles are dispersed, step of pulverizing the sintered body to form a powdery intermediate material, in a state where the intermediate material, metal Ti, metal Al, and metal Cr are mixed, by heating to a temperature below the melting points of more than TiB 2 of Ti, and wherein the step of forming a melt comprising a solid TiB 2 particles, and by casting the melt comprising the step of forming an ingot It can be manufactured by a method.

従来から、Al30〜40重量%含有し残部が実質的にTiか
ら成るTiAl基金属間化合物は比強度の高い高温耐熱材料
として知られていた。本発明者は、このTiAl基金属間化
合物をマトリクスとして用い、その中に硬質のTiB2粒子
を分散させて複合材料とする際に、マトリクス中に更に
Crを1〜5重量%含有させることによって、TiB2粒子を
微細に分散させることができ、それにより高強度化した
複合材料が得られることを見出した。マトリクスのCr量
を1〜5重量%に限定したのは、TiB2粒子をマトリクス
中に微細に分散させる効果がCr量1重量%以上で顕著に
なるが、Cr量が5重量%を超えるとマトリクス自体の延
性が低下して複合材料全体を脆化させる原因になるから
である。ただし、TiB2粒子の量は、複合材料全体の体積
に対して20体積%以下とする必要がある。TiB2粒子の量
が過剰になると、複合材料全体が脆化して高強度化自体
が達成できなくなるからである。
Hitherto, a TiAl-based intermetallic compound containing 30 to 40% by weight of Al and the balance substantially consisting of Ti has been known as a high-temperature heat-resistant material having high specific strength. The present inventor has used this TiAl-based intermetallic compound as a matrix, in a composite material with TiB 2 particles of hard dispersed therein, further in the matrix
It has been found that by containing 1 to 5% by weight of Cr, TiB 2 particles can be finely dispersed, and thereby a composite material having high strength can be obtained. The reason for limiting the Cr content of the matrix in 1 to 5% by weight, the effect to finely disperse the TiB 2 particles in the matrix becomes significant in the Cr content 1 wt% or more, when the Cr amount exceeds 5 wt% This is because the ductility of the matrix itself is reduced, which causes embrittlement of the entire composite material. However, the amount of the TiB 2 particles needs to be 20% by volume or less based on the total volume of the composite material. If the amount of the TiB 2 particles is excessive, the entire composite material becomes brittle and high strength itself cannot be achieved.

本発明のTiAl基複合材料の製造方法において、焼結体
を形成するまでの工程は、米国特許第4751048に開示さ
れたいわゆる「XDプロセス」を用いている。この方法
は、Ti粉末、B粉末、およびAl粉末を混合し、圧縮成形
したものを不活性雰囲気中で加熱することにより、融解
したAl中でTiとBとを自己燃焼焼結させてTiB2粒子を得
る方法であり、焼結により形成されたTiB2粒子に対する
Alの濡れ性を利用したものである。
In the method for producing a TiAl-based composite material of the present invention, the steps up to the formation of a sintered body use the so-called “XD process” disclosed in US Pat. No. 4,751,048. This method, Ti powder, B powder, and Al powder were mixed by a material obtained by compression molding is heated in an inert atmosphere, allowed to self-combustion sintering of Ti and B in a molten Al and TiB 2 This is a method of obtaining particles, which is based on TiB 2 particles formed by sintering.
This is based on the wettability of Al.

本発明の方法においては、得られた焼結体を粉砕して
粉末状の中間素材とし、この中間素材、金属Ti、金属A
l、および金属Crを混合した状態でTiの融点(1720℃)
以上TiB2融点(2900℃)未満の温度に加熱することによ
り液相中に固体のTiB2粒子を含む形の溶融体とし、これ
を鋳造する。
In the method of the present invention, the obtained sintered body is pulverized into a powdery intermediate material, and this intermediate material, metal Ti, metal A
l, and melting point of Ti mixed with metallic Cr (1720 ° C)
By heating to a temperature lower than the melting point of TiB 2 (2900 ° C.), a melt containing solid TiB 2 particles in a liquid phase is cast and cast.

中間素材中に含まれていたTiB2粒子は、溶融および鋳
造の工程中にも固体状態で存在するが、固体として粗大
化あるいは微細化する反応が起きる。本発明において
は、液相中にCrを存在させることにより、最終的に鋳塊
中に存在するTiB2粒子を微細に分散した状態にすること
ができる。
The TiB 2 particles contained in the intermediate material exist in a solid state during the melting and casting steps, but undergo a reaction to become coarse or fine as a solid. In the present invention, the presence of Cr in the liquid phase allows the TiB 2 particles present in the ingot to be finally finely dispersed.

溶解は、溶解中の不純物混入を極力少なくできるアル
ゴン雰囲気下でのアーク溶解等によって行うことが望ま
しい。
The melting is desirably performed by arc melting or the like in an argon atmosphere that can minimize impurity contamination during melting.

TiとAlの溶解・鋳造(凝固)に際しては、それぞれの
融点が1720℃、660℃と著しく異なるため、特別な配慮
が必要である。すなわち、マトリクス組成をできるだけ
均一化するためには、数回にわたって水冷銅製ハース上
で溶解・凝固を繰り返すことが望ましい。
In melting and casting (solidifying) Ti and Al, special considerations are required because their melting points are significantly different from 1720 ° C and 660 ° C. That is, in order to make the matrix composition as uniform as possible, it is desirable to repeat the dissolution and solidification on a water-cooled copper hearth several times.

以下に、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

〔実施例1〕 Ti粉末、Al粉末、およびB粉末を重量比で49.2:28.6:
22.2の割合で通常の粉末混合機中で混合して混合物を形
成した。
[Example 1] Ti powder, Al powder, and B powder were mixed at a weight ratio of 49.2: 28.6:
The mixture was mixed at 22.2 in a conventional powder mixer to form a mixture.

この混合物を粉末プレス機により圧力29.4kg/mm2で等
方的に加圧して圧縮成形体とした。
This mixture was pressurized isotropically with a powder press at a pressure of 29.4 kg / mm 2 to obtain a compression molded body.

圧縮成形体をアルゴン雰囲気中で660℃に加熱して、
その温度で着火させ、自己燃焼反応により焼結体とし
た。
The compression molded body is heated to 660 ° C in an argon atmosphere,
Ignition was performed at that temperature, and a sintered body was formed by a self-combustion reaction.

この焼結体をボールミル装置により粉砕して粉末状
(100メッシュ以下)の中間素材を形成した。
The sintered body was pulverized by a ball mill to form a powdery (100 mesh or less) intermediate material.

重量比で、中間素材16.47%、金属Al24.53%、金属Cr
3.60%、残部Tiの割合でアーク溶解炉中に装入した。同
炉内でアルゴン雰囲気下でアーク溶解して固体TiB2粒子
を含む溶融体を形成した後、これを同炉内の水冷銅ハー
ス上で冷却凝固させて鋳塊を得た。
16.47% intermediate material, 24.53% metal Al, Cr metal
3.60%, the balance of Ti was charged into the arc melting furnace. After by arc melting under an argon atmosphere at the same furnace to form a melt comprising a solid TiB 2 particles were it allowed to cool solidify on a water-cooled copper hearth in the furnace to obtain an ingot.

〔実施例2〕 Ti粉末、Al粉末、およびB粉末を重量比で49.2:28.6:
22.2の割合で通常の粉末混合機中で混合して混合物を形
成した。
Example 2 Ti powder, Al powder, and B powder were mixed at a weight ratio of 49.2: 28.6:
The mixture was mixed at 22.2 in a conventional powder mixer to form a mixture.

実施例1と同様の手順で、混合、加圧成形、焼結、お
よび粉砕を行い、粉末状の中間素材を得た。
Mixing, pressure molding, sintering, and pulverization were performed in the same procedure as in Example 1 to obtain a powdery intermediate material.

重量比で、中間素材32.94%、金属Al16.50%、金属Cr
2.40%、残部Tiの割合でアーク溶解炉中に装入し、実施
例1と同様の手順で溶解および鋳造を行い鋳塊を得た。
By weight, intermediate material 32.94%, metal Al 16.50%, metal Cr
It was charged into an arc melting furnace at a ratio of 2.40% with the balance being Ti, and was melted and cast in the same procedure as in Example 1 to obtain an ingot.

〔比較例1〕 Ti粉末、Al粉末、およびB粉末を重量比で49.2:27.6:
22.2の割合で通常の粉末混合機中で混合して混合物を形
成した。
[Comparative Example 1] Ti powder, Al powder, and B powder in a weight ratio of 49.2: 27.6:
The mixture was mixed at 22.2 in a conventional powder mixer to form a mixture.

実施例1と同様の手順で、混合、加圧成形、焼結、お
よび粉砕を行い、粉末状の中間素材を得た。
Mixing, pressure molding, sintering, and pulverization were performed in the same procedure as in Example 1 to obtain a powdery intermediate material.

重量比で、中間素材19.40%、金属Al20.20%、残部Ti
の割合でアーク溶解炉中に装入し、実施例1と同様の手
順で溶解および鋳造を行い鋳塊を得た。
By weight, intermediate material 19.40%, metal Al 20.20%, balance Ti
, And melted and cast in the same procedure as in Example 1 to obtain an ingot.

〔比較例2〕 Al32.1重量%、Ti67.9重量%を含有するTiAl基金属間
化合物を製造した。
Comparative Example 2 A TiAl-based intermetallic compound containing 32.1% by weight of Al and 67.9% by weight of Ti was produced.

残留酸素量200ppm以下の高純度Tiと純度99.99%のAl
を母材として用い、多極アーク溶解炉中でアルゴン雰囲
気下で溶解および凝固を行った。エメリー研磨後アセト
ンによって清浄化した純銅製水冷ハースを用いて炉材か
らの不純物混入を最小限に抑制し、溶解中のTiをTiゲッ
ターとして作用させて雰囲気アルゴン中の不要なガス成
分を除去した。数回にわたって銅製ハース上で溶解・凝
固を繰り返し、最終的に銅製ハース上で凝固させてイン
ゴットとした。
High-purity Ti with residual oxygen content of 200ppm or less and Al with 99.99% purity
Was used as a base material to perform melting and solidification in a multipolar arc melting furnace under an argon atmosphere. After emery polishing, a pure copper water-cooled hearth cleaned with acetone was used to minimize the contamination of impurities from the furnace material, and the dissolved Ti was used as a Ti getter to remove unnecessary gas components in the argon atmosphere. . Melting and solidification were repeated several times on a copper hearth, and finally solidified on a copper hearth to obtain an ingot.

実施例1、2および比較例1、2で製造した鋳塊から
採取した試料について、マトリクス組成、TiB2体積比、
および硬度の測定結果を第1表に示す。なお、比較例2
は複合材料ではなく、TiAl基金属間化合物単体材料であ
る。また、実施例2については、参考のためにマトリク
ス硬度(上段の数値)の他にTiB2粒子部分の硬度(下段
の数値)も併せて示す。
For samples collected from the ingots produced in Examples 1 and 2 and Comparative Examples 1 and 2, the matrix composition, TiB 2 volume ratio,
Table 1 shows the measurement results of hardness and hardness. Comparative Example 2
Is not a composite material but a TiAl-based intermetallic compound simple substance. In Example 2, the hardness of the TiB 2 particle portion (lower value) is also shown in addition to the matrix hardness (upper value) for reference.

第1表の結果から、Crを含まない従来のTiAl基金属間
化合物マトリクス中にTiB2粒子を分散させた比較例1
は、TiAl基金属間化合物単体の比較例2に比べればかな
り高い硬度が得られるが、そのレベルはHV500程度であ
る。
From the results of Table 1, Comparative Example 1 in which TiB 2 particles were dispersed in a conventional TiAl-based intermetallic compound matrix containing no Cr was used.
Has a considerably higher hardness than that of Comparative Example 2 of TiAl-based intermetallic compound alone, but the level is about HV500.

これに対し、本発明に従ってマトリクス中にCrを含有
する実施例1および2は、HV600前後の硬度が得られ、
著しく高強度化された。
In contrast, Examples 1 and 2 containing Cr in the matrix according to the present invention have a hardness of around HV600,
The strength was significantly increased.

第1図および第2図に、それぞれ実施例1および比較
例1の試料について鋳造組織を示す。Crをマトリクス中
に含む本発明のTiAl基複合材料は、Crを含まない従来の
TiAl基複合材料に比べてTiB2粒子(両図中、黒い輪郭で
囲まれた白色の斑点状に見える)が微細に分散している
ことによって、複合材料としての硬度が著しく高められ
る。
FIG. 1 and FIG. 2 show the cast structures of the samples of Example 1 and Comparative Example 1, respectively. The TiAl-based composite material of the present invention containing Cr in the matrix is a conventional Cr-free composite material.
TiB 2 particles as compared with the TiAl-based composite material by (in these figures, white looks patchy surrounded by black outline) are dispersed finely, the hardness of the composite material is significantly enhanced.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、TiAl基金属間
化合物よりも強度を著しく高めたTiAl基複合材料が得ら
れる。
As described above, according to the present invention, a TiAl-based composite material having significantly higher strength than a TiAl-based intermetallic compound can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明に従ってマトリクス中にCrを含有する
TiAl基複合材料の鋳造組織を示す金属組織写真(倍率:5
0倍)、および 第2図は、Crを含有しないTiAl基複合材料の鋳造組織を
示す金属組織写真(倍率:50倍)である。
FIG. 1 contains Cr in a matrix according to the invention
Metallic structure photograph showing the cast structure of TiAl-based composite material (magnification: 5
FIG. 2 is a microstructure photograph (magnification: 50 times) showing a cast structure of a TiAl-based composite material containing no Cr.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Al30〜40重量%およびCr1〜5重量%を含
有し残部が実質的にTiから成るTiAl基金属間化合物のマ
トリクス中に、複合材料の体積に対して20体積%以下の
TiB2粒子を分散させたことを特徴とするTiAl基複合材
料。
In a matrix of a TiAl-based intermetallic compound containing 30 to 40% by weight of Al and 1 to 5% by weight of Cr and the balance substantially consisting of Ti, not more than 20% by volume based on the volume of the composite material.
A TiAl-based composite material having TiB 2 particles dispersed therein.
【請求項2】Ti粉末、Al粉末、およびB粉末を混合して
混合物を形成する工程、 上記混合物を等方的に加圧して圧縮成形体を形成する工
程、 上記圧縮成形体を不活性ガス雰囲気中で加熱して上記圧
縮成形体中でTiとBとを自己燃焼焼結させ且つAlを溶解
することにより、Alマトリクス中にTiB2粒子が分散した
焼結体を形成する工程、 上記焼結体を粉砕して粉末状の中間素材を形成する工
程、 上記中間素材、金属Ti、金属Al、および金属Crを混合し
た状態で、Tiの融点以上TiB2の融点未満の温度に加熱す
ることにより、固体TiB2粒子を含む溶融体を形成する工
程、および 上記溶融体を鋳造して鋳塊を形成する工程 を含むことを特徴とする請求項1記載のTiAl基複合材料
の製造方法。
2. A step of mixing a Ti powder, an Al powder, and a B powder to form a mixture, a step of isotropically pressing the mixture to form a compression molded body, by heated in an atmosphere to dissolve and Al Ti and B is self-combustion sintering at the compression molded body to form a sintered body TiB 2 particles are dispersed in the Al matrix, the sintered A step of pulverizing the aggregate to form a powdery intermediate material, heating the intermediate material, metal Ti, metal Al, and metal Cr to a temperature equal to or higher than the melting point of Ti and lower than the melting point of TiB 2 by forming a melt comprising a solid TiB 2 particles, and a manufacturing method of TiAl-based composite material according to claim 1, wherein the by casting the melt comprising the step of forming an ingot.
JP1335782A 1989-12-25 1989-12-25 TiA-based composite material and method for producing the same Expired - Lifetime JP2749165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1335782A JP2749165B2 (en) 1989-12-25 1989-12-25 TiA-based composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1335782A JP2749165B2 (en) 1989-12-25 1989-12-25 TiA-based composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03193842A JPH03193842A (en) 1991-08-23
JP2749165B2 true JP2749165B2 (en) 1998-05-13

Family

ID=18292386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1335782A Expired - Lifetime JP2749165B2 (en) 1989-12-25 1989-12-25 TiA-based composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2749165B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354351A (en) * 1991-06-18 1994-10-11 Howmet Corporation Cr-bearing gamma titanium aluminides and method of making same
JP2743720B2 (en) * 1992-07-03 1998-04-22 トヨタ自動車株式会社 Method for producing TiB2 dispersed TiAl-based composite material
CN102126023B (en) * 2011-03-11 2012-09-05 北京航空航天大学 Powder hot isostatic pressing (HIP) forming method for titanium (Ti) alloy blisk
CN116200622B (en) * 2023-04-27 2023-08-04 西安稀有金属材料研究院有限公司 Preparation method of superfine crystal TiAl alloy and composite material thereof

Also Published As

Publication number Publication date
JPH03193842A (en) 1991-08-23

Similar Documents

Publication Publication Date Title
CA1329023C (en) Process for forming metal-second phase composites and product thereof
CA1304962C (en) Composites having an intermetallic containing matrix
US5093148A (en) Arc-melting process for forming metallic-second phase composites
US4916029A (en) Composites having an intermetallic containing matrix
CN110904363B (en) Preparation method of ABX alloy
WO1989010982A1 (en) Arc-melting process for forming metallic-second phase composites and product thereof
JP2800137B2 (en) Master alloy for alloy based on beta 21S titanium and method of manufacturing the master alloy
JP2749165B2 (en) TiA-based composite material and method for producing the same
US4726843A (en) Aluminum alloy powder product
JPS60159137A (en) Manufacture of cast aluminum alloy containing dispersed hyperfine ceramic particles
JP2787617B2 (en) Nickel alloy for hydrogen storage battery electrode
US3203781A (en) Method of producing dispersion-hardened metal alloys
SU1650746A1 (en) Method of producing alloying compositions for aluminium alloys
JPH05214477A (en) Composite material and its manufacture
CN114686717B (en) Preparation method of high-entropy alloy
JPH0742530B2 (en) Manufacturing method of low oxygen alloy compact
KR100259334B1 (en) Producing method of a true-density ti5si3-based intermetallic compound alloy by elemental powder metallurgy
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH04371536A (en) Production of tial intermetallic compound powder
CN118639070A (en) Nickel-niobium intermediate alloy for high-temperature alloy and preparation method thereof
JPS62116736A (en) Production of electrode for vacuum valve circuit breaker
JPH06248372A (en) Production of al3ti intermetallic compound, production of alloy powder worked in this production process, alloy powder and al3ti intermetallic compound
CN117926103A (en) MgAlCuZnGd light high-entropy alloy material and preparation method thereof
JPS60228649A (en) Manufacture of permanent magnet alloy
JPH06248371A (en) Production of al3ti intermetallic compound, production of alloy powder worked in this production process, alloy powder and al3ti intermetallic compound