JPS60228649A - Manufacture of permanent magnet alloy - Google Patents

Manufacture of permanent magnet alloy

Info

Publication number
JPS60228649A
JPS60228649A JP59083180A JP8318084A JPS60228649A JP S60228649 A JPS60228649 A JP S60228649A JP 59083180 A JP59083180 A JP 59083180A JP 8318084 A JP8318084 A JP 8318084A JP S60228649 A JPS60228649 A JP S60228649A
Authority
JP
Japan
Prior art keywords
alloy
powder
powders
sintering
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59083180A
Other languages
Japanese (ja)
Inventor
Kazunori Tawara
田原 一憲
Koichi Oda
光一 小田
Masao Ogata
正男 緒方
Kenichi Kawana
川名 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP59083180A priority Critical patent/JPS60228649A/en
Publication of JPS60228649A publication Critical patent/JPS60228649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the magnetic characteristics by mixing Al-Ni-Co-Fe alloy powder having a specified particle size distribution with powders of the constituent elements, molding the mixture, and sintering it in vacuum or a nonoxidizing atmosphere. CONSTITUTION:Al-Ni-Co-Fe or Al-Ni-Fe alloy powder whose principal part is particles having <=200 mesh particle size is mixed with powders of the constituent elements such as Al and Ni having <=200 mesh or powder of an alloy thereof, and the mixture is press-molded after adding a binder. The molded body is heated at a proper temp. to remove the binder, and it is sintered in vacuum or a nonoxidizing atmosphere to obtain an Al-Ni-Co-Fe or Al-Ni-Fe type sintered magnet alloy. Since powders having <=200 mesh are used as starting materials, reduction in sintering density is prevented, and reduction in Br as one of magnetic characteristics can be also prevented by the uniform diffusion of the constituent atoms during sintering. Accordingly, the magnetic characteristics of the sintered magnet alloy are improved.

Description

【発明の詳細な説明】 本発明は、AL−Ni −Co −F e (アルコニ
)系もし。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an AL-Ni-Co-Fe (alcony) system.

くはAt−Ni−Fg(アルコ)系(以下本系合金と総
At-Ni-Fg (Alco) series (hereinafter referred to as this alloy).

称する)焼結磁石合金の改良に関する。related to improvements in sintered magnet alloys.

この種の本系合金系には1代表的な規格としてアルニコ
1.2,3,4,5,6,7.8などがあり、一般に熔
解鋳造法により製造されているが、特に小物品、複雑形
状品などを対象として粉末冶金的製造法が適用されるこ
ともある。
Typical standards for this type of alloy are Alnico 1.2, 3, 4, 5, 6, 7.8, etc., and they are generally manufactured by the melt casting method, but especially for small items. Powder metallurgy manufacturing methods are sometimes applied to products with complex shapes.

粉末冶金法(焼結法)による本系会金の製造法としては
The method of manufacturing this metal is by powder metallurgy (sintering method).

(1)所定の化学組成となるように成分元素粉末を混合
した後、成形、焼結をおこなう方法、(2)所定の化学
成分を有する合金粉末を成形、焼結する方法。
(1) A method in which component element powders are mixed to have a predetermined chemical composition, and then molded and sintered. (2) A method in which an alloy powder having a predetermined chemical composition is molded and sintered.

(6)酸化防止のたy)、たとえばAiをI”t−AL
の母合金粉末の状態で使用し、これを他の成分元素粉末
と。
(6) For oxidation prevention), for example, Ai is
This is used in the form of a mother alloy powder, which is then mixed with other component element powders.

混合したのち、成形、焼結する方法がある。 。There is a method of mixing, then shaping and sintering. .

これらの内、一般的には、酸化による磁気特性の低下を
防止するために(6)の方法が用いられる。
Among these, method (6) is generally used to prevent deterioration of magnetic properties due to oxidation.

焼結は、真空中もしくはB2中でおこない、同様に酸化
を防止している。
Sintering is performed in vacuum or in B2 to prevent oxidation as well.

また、アルニコ糸磁石合金の焼結密度を極力理論密度に
近づけることによって、磁気特性の内、I□ 特に残留磁束密度Brを向上させる目的で、例えば特開
昭57−194242号公報等に記載の如く、S。
In addition, for the purpose of improving the magnetic properties, especially the residual magnetic flux density Br, by bringing the sintered density of the alnico thread magnet alloy as close to the theoretical density as possible, for example, Like, S.

B、Pなどを微量添加する方法が採用される場合もある
In some cases, a method of adding trace amounts of B, P, etc. is adopted.

アルニコ系磁石に焼結法を適用する利点は、熔解から溶
体化処理までの工程が粉末混合、成形、・焼結の極めて
簡単な工程となり、湯道も不要にな・るため、巷に総合
歩留が向上することが大きな利点となる。
The advantage of applying the sintering method to alnico magnets is that the process from melting to solution treatment is an extremely simple process of powder mixing, molding, and sintering, and there is no need for a runner. A major advantage is that the yield is improved.

しかしながら、一方では、焼結法で製造された、磁石で
は、一般的に焼結密度と磁気特性との間に。
However, on the other hand, in magnets produced by sintering methods, there is generally a difference between sintering density and magnetic properties.

密接な相関があり、焼結体の空孔率の増加に対し。There is a close correlation with the increase in porosity of the sintered body.

て、 Brはほぼ比例して低下する。また、S、B、。Therefore, Br decreases almost proportionally. Also, S, B,.

Pの添加によって、焼結密度を向上させたとして。The addition of P improved the sintered density.

も、これら非磁性元素の添加は同様に磁気特性倶。However, the addition of these non-magnetic elements also improves magnetic properties.

下の要因となる。更に、上記の(1)および(6)の原
料。
This is due to the following factors. Furthermore, the above raw materials (1) and (6).

粉末から焼結磁石を得る場合には、粉末粒度の管。When obtaining sintered magnets from powder, tubes of powder grain size.

埋が重要であり1粒度の犬なる粉末を用いた場合。Burying is important and when using 1-grain powder.

には、焼結時において元素間の相互拡散が阻害さ。In this case, interdiffusion between elements is inhibited during sintering.

れるため、得られた磁石は、成分的なゆらぎないしは偏
析を含むものとなり、磁気特性を低下させる。また%(
2)の方法を採用する場合には、予めインゴットを作成
し、これを機械的に粉砕する方法もしくは、溶湯から水
アトマイズ法あるいはガスアトマイズ法によって原料粉
を得るが、溶湯時に蒸発、揮散、酸化等による成分変動
を伴うことが。
As a result, the obtained magnet contains component fluctuations or segregation, which deteriorates the magnetic properties. Also%(
When using method 2), the raw material powder is obtained by preparing an ingot in advance and mechanically crushing it, or by water atomization or gas atomization from the molten metal, but evaporation, volatilization, oxidation, etc. may be accompanied by component fluctuations due to

あり、成形前に必要とする成分元素ないしは合金を用い
ることによって成分組成の調節をおこなう方法が採用さ
れるため、上記(1) 、 (5)の場合と同様に粉末
粒度によっては磁気特性の低下を生じるこ。
However, since a method is adopted in which the component composition is adjusted by using the necessary component elements or alloys before molding, the magnetic properties may deteriorate depending on the powder particle size, as in cases (1) and (5) above. This will cause

とがある。There is.

そこで、発明者等は、磁石合金用合金粉末にっ。Therefore, the inventors developed an alloy powder for magnet alloys.

いて種々検討した結果、次のようなことを見出し、た。As a result of various studies, we found the following.

まず所要成分になるように原料を鋳込んだの。First, we cast the raw materials to obtain the required components.

ち、放冷した合金を出発物として、これをスタンプミル
、ジヨウクラッシャおよびボールミルにより順次粉砕を
お−こない、100メツシユ以上、 io。
First, using the cooled alloy as a starting material, it is sequentially crushed using a stamp mill, a Joe crusher, and a ball mill to form at least 100 meshes, io.

〜200メツシュおよび200メツク以下の粉末を分級
採取した。これらの粉末を種々の割合で両混合したのち
、必要に応じて、ワックス系バインダーを用いて造粒な
おこない、非酸化性雰囲気下で焼結をおこなった。次い
で、熱処理を施したのち、磁気特性を測定した結果、2
00メツシー以下の粉末を約50チ以上含有する原料か
ら得られた磁石において高特性を得ることができた。更
に、鋳造磁6 ・ 石から出てくる湯道部分を同様な条件下で粉砕し1%こ
れに成分調節用として、 Fg 、FtTi 、 Fa
 −50AL 。
Powders of ~200 mesh and less than 200 mesh were collected by classification. After these powders were mixed in various ratios, granulation was performed again using a wax binder as necessary, and sintering was performed in a non-oxidizing atmosphere. Next, after heat treatment, the magnetic properties were measured and the result was 2.
It was possible to obtain high characteristics in a magnet obtained from a raw material containing about 50 or more pieces of powder with a particle size of 0.00 METSH or less. Furthermore, the runner part coming out of the cast magnetic 6 stone was crushed under the same conditions and 1% was added to it for component adjustment, including Fg, FtTi, and Fa.
-50AL.

などの合金粉をそれぞれ同様に+100’ 、 +20
0〜。
Similarly, alloy powders such as +100' and +20
0~.

=100および−200に分級し、これらを上述の湯。=100 and -200, and these were classified into the above-mentioned hot water.

道粉砕粉末と混合して用いた場合においても、−520
0の粉末を50チ以上°用いて得られた磁石におい。
-520 even when mixed with ground powder
Magnet odor obtained by using 50 degrees or more of powder of 0.

て優れた磁気特性を得ることができた。なお1本。We were able to obtain excellent magnetic properties. In addition, one bottle.

発明で使用するアルニコ系合金粉末の具体的組成。Specific composition of alnico alloy powder used in the invention.

としては1例えば重量比でNi15〜28%、At6〜
For example, Ni15~28%, At6~
.

15% 、 COO〜35% (?1L□〜6@ 、 
Ti o〜9% 、 Zr、。
15%, COO~35% (?1L□~6@,
Tio~9%, Zr.

O〜3優、SiQ〜3%、Mn1チ以下、残部実値的に
Faから成る組成が挙げられる。
Examples of the composition include O~3%, SiQ~3%, Mn less than 1%, and the balance actually consisting of Fa.

以下実施例に基づいて本発明を説明するが、実施例に゛
より本発明の範囲が限定されるものではな()。
The present invention will be explained below based on Examples, but the scope of the present invention is not limited by the Examples.

5 実施例1 アルニコ8系のリターンスクラップ(湯道)をスタンプ
ミル、ジ目つクラッシャー、ボールミルにより順次粉砕
をおこない、振動フルイにより順次−200、+200
〜−1ooおよび+1[]0の粉末な得た。次いで、同
様な手段で%I’s 、 CoA!:I’i 、 I’
eV’i 。
5 Example 1 Alnico 8 series return scrap (runner) was sequentially crushed using a stamp mill, a jig crusher, and a ball mill, and then sequentially crushed to -200 and +200 using a vibrating sieve.
Powders of ~-1oo and +1[]0 were obtained. Then, in a similar manner, %I's, CoA! :I'i, I'
eV'i.

Fe−5Mt、 Ni 、 Co 、 Crbの各粉末
を上記粒度範囲で。
Each powder of Fe-5Mt, Ni, Co, and Crb was in the above particle size range.

それぞれ準備した。これらの各粉末を適宜混合し。Prepared each. Mix each of these powders appropriately.

て1重量比でA18% 、 Ni 15%、 Co 3
5% 、 Cu 2.5゜%、Ti5%残部実値的にF
eから成るアルニコ磁石。
1 weight ratio: A18%, Ni 15%, Co3
5%, Cu 2.5゜%, Ti 5% balance actual value F
Alnico magnet consisting of e.

合金粉末を作成した。第1表に試料番号と粉末混合割合
とを示す。なお、本実施例においては、す。
Alloy powder was created. Table 1 shows the sample numbers and powder mixing ratios. Note that in this embodiment,

ターンスクラップ粉末と、その他の金属および合。Turn scrap powder and other metals and combinations.

金粉末との混合比率は重量比で812に設定した。The mixing ratio with gold powder was set to 812 in terms of weight ratio.

第 1 表 11+ 第1表に示す粉末を条件を極力同一にするため、5バイ
ンダーとしてKAOワックスを重量比で05゜wt%添
加したのち、縦型双ロール(フロイント。
Table 1 11+ In order to make the powders shown in Table 1 as similar as possible to the same conditions, 05% by weight of KAO wax was added as a binder, and then the powders were mixed using vertical twin rolls (Freund rolls).

産業展)にまり造粒をおこなった。次いで、8゜ton
/−の圧力で成形をおこない、1611.5×10t(
#II+)。
(Industrial Exhibition) granulation was performed. Next, 8゜ton
Molding was carried out at a pressure of
#II+).

の成形体を得た。得られた成形体を、真空中にお。A molded body was obtained. Place the obtained molded body in a vacuum.

いて、400℃まで1.5v/JLで加熱し脱バインダ
ー。
Then heat to 400℃ at 1.5v/JL to remove the binder.

をおこない、次いで真空中(10Torr)で1300
℃。
and then in vacuum (10 Torr) at 1300
℃.

X3Jの条件で焼結した。その後1250℃xIJ溶体
Sintering was performed under the conditions of X3J. Then 1250℃ x IJ solution.

化処理をおこない1次いで30000eの磁場中でll
l+830 t:で保持し等温磁場処理後多段時効を施
した。
1 in a magnetic field of 30,000 e.
The sample was held at l+830 t: and subjected to multi-stage aging after isothermal magnetic field treatment.

得られた磁気特性を第2表に示す。The obtained magnetic properties are shown in Table 2.

表から明らかなように、−200メツシーの原料粉−末
を50%以上含む試料では、焼結密度も高く、磁気特性
面でも優れている。一方、 −200メツシー・粉末が
60チ以下になると焼結密度も低下するが、・それより
も、磁気特性の内Bτの低下が著しい。こ1の原因は原
料粉末の粒度が大となるにしたかつで。
As is clear from the table, the samples containing 50% or more of -200 Messy raw material powder had high sintered density and excellent magnetic properties. On the other hand, when the -200 mesh powder becomes less than 60 inches, the sintered density also decreases, but the decrease in Bτ among the magnetic properties is more significant. The reason for this is that the particle size of the raw material powder becomes large.

焼結時において構成原子の均一な拡散が阻害され。Uniform diffusion of constituent atoms is inhibited during sintering.

局所的に成分の不均一さが生じているためと考え。This is thought to be due to local non-uniformity of the components.

られる。It will be done.

実施例2,1゜ 実施例1と同様の組成配分となるように、所要原料を配
合後、大気中で熔解し、鋳込後放冷して得たインゴット
を、実施例1と同様の手段により。
Examples 2 and 1゜ After blending the required raw materials so that the composition distribution was the same as in Example 1, the ingot obtained by melting in the atmosphere, casting and cooling was processed in the same manner as in Example 1. By.

粉砕し、−200メツシユ、+200〜−100メツシ
Crush, -200 mesh, +200 to -100 mesh.

ユおよび+100メツシツの粉末を分級した。これ1つ らの粉末を第3表に示す配合比にしたのち、ショ。The powders of 1 and +100 m were classified. This one After adjusting the powder to the blending ratio shown in Table 3, it was added to the powder.

ウノウのアルコール溶液を粉末対比でショウノウ重量1
%添加し造粒をおこなった。
The weight of camphor is 1 in alcoholic solution of unou compared to powder.
% was added and granulation was performed.

7 。7.

第 5 表 次いで、実施例1と同様の方法で成形、焼結1+、熱処
理を施し、第4表に示す磁気特性を得た。 。
Table 5 Next, molding, sintering 1+, and heat treatment were performed in the same manner as in Example 1 to obtain the magnetic properties shown in Table 4. .

第 4 表 表から明らかなように、原料粉末粒度に対し、磁。Table 4 As is clear from the table, the particle size of the raw material powder differs from the magnetic one.

気特性は実施例1と同様の傾向を示す。更に、Fa、。The chemical properties show the same tendency as in Example 1. Furthermore, Fa.

Ni 、 Co −AL−Ti 、 Fa−50Al 
、 FeTiの金属および合金粉末を100%出発原料
として、実施例1と。
Ni, Co-AL-Ti, Fa-50Al
, Example 1 using FeTi metal and alloy powder as 100% starting materials.

同様の条件下で焼結磁石を製造した場合でも、原1料粉
末粒度に対する磁気特性の挙動は、第2表お。
Even when sintered magnets were manufactured under similar conditions, the behavior of magnetic properties with respect to the particle size of the raw material powder is as shown in Table 2.

よび第4表と略同等の傾向を示す。and shows almost the same trends as in Table 4.

以上述べたように、本発明によれば、磁気特性的に優れ
たAt −Ni −Ce −F e系もしくはΔt−N
i−。
As described above, according to the present invention, At-Ni-Ce-Fe system or Δt-N
i-.

Fa系の磁石合金を粉末冶金法により製造するとIll
とができる。
When Fa-based magnetic alloy is manufactured by powder metallurgy, Ill
I can do that.

Claims (1)

【特許請求の範囲】 1、 200メツシー以下の粒度分を主体とするAt−
・Ni −Co−Fg系もしくはAt −Ni −F 
g系の合金成分から成る粉末と200メツシユ以下の主
成分および。 補助成分を構成する元素ないしはこれらの元素か6ら構
成される合金から成る粉末とを混合゛し、加圧成形した
のち、真空中又は非酸化性雰囲気中にお。 いて焼結して、41− Ni −Co −F を系もし
くはAl −Ni −:yFt系焼結磁石合金を得るこ
とを特徴とする永久磁石合金の型造方法。
[Claims] At-
・Ni-Co-Fg system or At-Ni-F
A powder consisting of a g-based alloy component and a main component of 200 mesh or less. After mixing with a powder consisting of an element constituting an auxiliary component or an alloy consisting of six of these elements and press-forming, the mixture is placed in a vacuum or a non-oxidizing atmosphere. A method for molding a permanent magnet alloy, the method comprising: obtaining a 41-Ni-Co-F-based or Al-Ni-:yFt-based sintered magnet alloy.
JP59083180A 1984-04-25 1984-04-25 Manufacture of permanent magnet alloy Pending JPS60228649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59083180A JPS60228649A (en) 1984-04-25 1984-04-25 Manufacture of permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59083180A JPS60228649A (en) 1984-04-25 1984-04-25 Manufacture of permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS60228649A true JPS60228649A (en) 1985-11-13

Family

ID=13795098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59083180A Pending JPS60228649A (en) 1984-04-25 1984-04-25 Manufacture of permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS60228649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500215A (en) * 1993-07-27 1996-01-09 ポハン・アイアン・アンド・スティール・カンパニー・リミテッド Method for manufacturing alnico-based permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500215A (en) * 1993-07-27 1996-01-09 ポハン・アイアン・アンド・スティール・カンパニー・リミテッド Method for manufacturing alnico-based permanent magnet

Similar Documents

Publication Publication Date Title
EP0215168B1 (en) Method for making rare-earth element containing permanent magnets
US20020106297A1 (en) Co-base target and method of producing the same
JPH0796701B2 (en) Sputtering target and manufacturing method thereof
EP0171798B1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
EP4089200A1 (en) Method for producing sputtering target material
JPS60228649A (en) Manufacture of permanent magnet alloy
JPS62224602A (en) Production of sintered aluminum alloy forging
JPWO2003040421A1 (en) Alloy for Sm-Co magnet, its manufacturing method, sintered magnet and bonded magnet
JP2749165B2 (en) TiA-based composite material and method for producing the same
JPH02259029A (en) Manufacture of aluminide
JP2770248B2 (en) Manufacturing method of rare earth cobalt magnet
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JP2654982B2 (en) Fe-Al-Si alloy and method for producing the same
JPS62188735A (en) Manufacture of tini alloy wire or plate
JP3499142B2 (en) Manufacturing method of iron-based structural materials
JPH02121376A (en) Manufacture of magnetostrictive material
JPH0543775B2 (en)
JPH01208813A (en) Manufacture of rare earth magnet
JPH01301801A (en) Production of ti-al intermetallic compound powder
JPH0123923B2 (en)
JPS58108709A (en) Manufacture of rare earth permanent magnet
JPS63306602A (en) Rare earth co compound magnet and manufacture thereof
JPH04318102A (en) Rare-earth alloy powder and its production