JPS60159137A - Manufacture of cast aluminum alloy containing dispersed hyperfine ceramic particles - Google Patents
Manufacture of cast aluminum alloy containing dispersed hyperfine ceramic particlesInfo
- Publication number
- JPS60159137A JPS60159137A JP1327684A JP1327684A JPS60159137A JP S60159137 A JPS60159137 A JP S60159137A JP 1327684 A JP1327684 A JP 1327684A JP 1327684 A JP1327684 A JP 1327684A JP S60159137 A JPS60159137 A JP S60159137A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- molten metal
- dispersed
- aluminum
- ceramic particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、アルミニウム又はアルミニウム合金溶湯中に
5μm以下の炭化物系、窒化物系、酸化物系超微細セラ
ミック粒子を体積比で最大50%の量を分散させるのに
好適な超微細セラミック粒子分散アルミニウム合金器金
の製造法に関する。Detailed Description of the Invention [Field of Application of the Invention] The present invention is directed to the use of molten aluminum or aluminum alloy containing ultrafine carbide, nitride, or oxide ceramic particles of 5 μm or less in an amount of up to 50% by volume. The present invention relates to a method for manufacturing an aluminum alloy metal having ultrafine ceramic particles dispersed therein, which is suitable for dispersing ultrafine ceramic particles.
従来の粒子分散材料は次のような方法によって製造され
ている。主な方法として、金属粉・とセラミック粉をボ
ールミル等で混合、成形し焼結する粉末冶金法がある。Conventional particle-dispersed materials are manufactured by the following method. The main method is powder metallurgy, in which metal powder and ceramic powder are mixed in a ball mill, shaped, and sintered.
アルミニウム粉のような表面に酸化被覆を作り、成形、
焼結、加工して製造する表面酸化法(SAPI) 、あ
るいは、アトライタミルなどのボールミルを用いて金属
マトリックス粒子中に分散粒子を埋込み、その後、成形
、押出加工、熱処理等を行なって製造する機械的合金法
(ODS)。これらはいずれも籾数を用いることから、
分散粒子の不均一分布、あるいは金属素地に空孔を生じ
易い上、作業工程が複雑で、量産性にむいていない欠点
がある。また、71ヘリツクス中にマトリックスより酸
化物生成傾向の大きな金属元素を添加し固溶させた合金
を作り、その溶質元素を選択的に酸化させて、酸化物粒
子を分散させる内部酸化法があるが、これは内部深くま
で酸化物を均一に分散させることができない、一方、金
属溶湯中に分散粒子を直接分散する方法として、噴射分
散法あるいはコンポキャスティング法がある。噴射分散
法は金型に鋳込む途中の溶鋼流にArガスとともに粒径
5X10−’co+以下の固体酸化物あるいは固体硫化
物粉末を粉末噴射装置を用いて強制的に噴射分散させ、
急冷凝固させるものである。この方法では噴射量と含有
量とが一定しないこと、分散粒子を多量に分散できない
等の難点がある。他方コンポキャスティング法は、溶湯
を固液共存範囲の半溶融状態に保持し、機械的な撹拌を
行ないつつ粒子を混合するもので、同相の存在により混
合粒子の浮上分離を防止する。この方法の大きな欠点は
、半溶融状態であるために流動性が悪<一般の型鋳造が
不可能であることである。したがってルツボ中凝固する
ことから混合粒子の不均一分布あるいは鋳造欠陥が多く
発生し鋳塊としては使用不可能であるために凝固後の鋳
塊の処理工程が必要であり経済的でない。Creates an oxide coating on the surface of aluminum powder, molds it,
Surface oxidation method (SAPI), which is manufactured by sintering and processing, or mechanical method, which is manufactured by embedding dispersed particles in metal matrix particles using a ball mill such as an attritor mill, and then performing molding, extrusion processing, heat treatment, etc. Alloy method (ODS). Since these all use the number of paddy grains,
This method has disadvantages in that it tends to cause uneven distribution of dispersed particles or pores in the metal substrate, and the work process is complicated, making it unsuitable for mass production. There is also an internal oxidation method in which a metal element with a greater tendency to form oxides than the matrix is added to the 71 helix to create a solid solution, and the solute elements are selectively oxidized to disperse oxide particles. However, this method cannot uniformly disperse the oxide deep inside the metal.On the other hand, methods for directly dispersing dispersed particles in the molten metal include the injection dispersion method and the compocasting method. The injection dispersion method uses a powder injection device to forcibly inject and disperse solid oxide or solid sulfide powder with a particle size of 5 x 10-'co+ or less together with Ar gas into the molten steel flow while it is being poured into a mold.
It is rapidly cooled and solidified. This method has disadvantages, such as the fact that the injection amount and content are not constant, and that a large amount of dispersed particles cannot be dispersed. On the other hand, in the compocasting method, the molten metal is kept in a semi-molten state in the solid-liquid coexistence range, and the particles are mixed while mechanically stirring, and the presence of the same phase prevents the mixed particles from floating and separating. The major drawback of this method is that the material is in a semi-molten state, resulting in poor fluidity and impossibility of general mold casting. Therefore, since solidification occurs in the crucible, nonuniform distribution of mixed particles or many casting defects occur, and the ingot cannot be used as an ingot. Therefore, a processing step for the ingot after solidification is required, which is not economical.
本発明の目的は従来の欠点をなくし、アルミニウム合金
の液相線上30℃以上の溶湯中に超微細セラミック粒子
を直接投入添加分散後、分散溶湯を加圧凝固等の急冷凝
固させることにより炭化物系、窒化物系、酸化物系超微
細セラミック粒子を分散したアルミニウム鋳造合金素材
を安価にかつ容易に製造することを提供することにある
。The purpose of the present invention is to eliminate the drawbacks of the conventional method, and to create a carbide-based material by directly introducing and dispersing ultrafine ceramic particles into a molten aluminum alloy at a temperature of 30°C or higher above the liquidus line, and then rapidly solidifying the dispersed molten metal by pressure solidification. It is an object of the present invention to provide an aluminum casting alloy material in which nitride-based or oxide-based ultrafine ceramic particles are dispersed at a low cost and easily.
金属材料の強度を上げる方法として、従来方法以外に析
出強化法が一般的に行なわれている。析出強化法は、あ
る組成の金属素材を所定熱処理を行なうことにより微細
な化合物を析出させることにより、高温まで硬さあるい
は強度を持続させることができる。しかし、析出した化
合物は熱処理温示以上では分解消失するため硬さあるい
は強度は急激に低下する。このようなことからより高温
まで硬さあるいは強度を持たせるためには、析出物の代
りにマトリックスより融点が高くかつ高温で安定な酸化
物系、窒化物系、炭化物系の微鞄粒子化合物を素地中に
均一に分散できれば熱処理析出法に比べより高温まで耐
える高温材料が製造できる。本発明により、アルミニウ
ムあるいはアルミニウム合金溶湯中にあらかじめCa、
Ti。In addition to conventional methods, precipitation strengthening is commonly used as a method for increasing the strength of metal materials. The precipitation strengthening method can maintain hardness or strength up to high temperatures by precipitating fine compounds by subjecting a metal material of a certain composition to a predetermined heat treatment. However, the precipitated compound decomposes and disappears at temperatures above the heat treatment temperature, resulting in a sharp decrease in hardness or strength. For this reason, in order to have hardness or strength up to higher temperatures, it is necessary to replace the precipitates with oxide-based, nitride-based, or carbide-based fine particle compounds that have a higher melting point than the matrix and are stable at high temperatures. If it can be uniformly dispersed in the matrix, it is possible to produce high-temperature materials that can withstand higher temperatures compared to heat treatment precipitation methods. According to the present invention, Ca is added to aluminum or molten aluminum alloy in advance.
Ti.
Cr、 Mgl v、Zr、あるいはNbから選ばれた
少なくとも一筋を含ませてから酸化物系、窒化物系ある
いは炭化物系の微細粒子をWJ湯表面より投入添加し、
微細粒子分散溶湯を凝固させて微細粒子が均一にかつ多
量に分散した鋳造合金材料が容易にかつ安価に製造でき
ることがわかった。また本発明鋳造合金は再溶解あるい
は再々溶解しても分散粒子は溶湯表面」二に浮上するこ
となく溶湯中に滞地したままとなる。以乍本発明につい
て詳細に説明する。本発明方法手最も重要なことは、溶
湯中に微細セラミック粒子を分散させることである。こ
こで溶湯あるいは溶解とは液相線上30℃以上を意味す
る。通常の方法では溶湯表面より微細粒子を投入添加し
ても投入粒子は溶湯表面上に浮上分離し、分散溶湯はで
きない。これを防止するには溶湯表面より微細粒子を投
入分散する方法において、添加粒子の浮上分離を抑制す
るには、溶湯を粒子とがぬれることがキー・ポイントで
ある。本発明で検討した分散粒子の種類はSiC。After containing at least one line selected from Cr, Mglv, Zr, or Nb, oxide-based, nitride-based or carbide-based fine particles are added from the surface of the WJ hot water,
It has been found that a cast alloy material in which fine particles are uniformly dispersed in large quantities can be easily and inexpensively produced by solidifying a fine particle-dispersed molten metal. Furthermore, even if the cast alloy of the present invention is remelted or melted again, the dispersed particles remain in the molten metal without floating to the surface of the molten metal. The present invention will now be described in detail. The most important aspect of the method of the present invention is to disperse fine ceramic particles in the molten metal. Here, molten metal or melting means a temperature of 30° C. or higher above the liquidus line. In the usual method, even if fine particles are added from the surface of the molten metal, the introduced particles float and separate on the surface of the molten metal, making it impossible to form a dispersed molten metal. To prevent this, in the method of introducing and dispersing fine particles from the surface of the molten metal, the key point in suppressing floating separation of the additive particles is to wet the molten metal with the particles. The type of dispersed particles considered in the present invention is SiC.
T i C,VC,N b G(7)炭化物粒子、AQ
20.。T i C, VC, N b G (7) Carbide particles, AQ
20. .
Cr、O:l、ZrO,、Y2O3の酸化物粒子、St
、N、、AIAN、TiN、BNの窒化物粒子である。Cr, O:l, ZrO, Y2O3 oxide particles, St
, N, , AIAN, TiN, and BN nitride particles.
粒径はいずれも16μm〜0.05μmである。これら
の粒子を用いてアルミニウムあるいはアルミニウム合金
溶湯中ら分散させる方法について種々検討した結果、溶
湯中にあらかじめCa 。The particle sizes are all 16 μm to 0.05 μm. As a result of various studies on methods of dispersing these particles into molten aluminum or aluminum alloy, we found that Ca was present in the molten metal in advance.
T i、Cr、Mg、V、Zr、Nbから選ばれた少な
くとも一種を添加することによって各種セラミック粒子
の浮上が防止されることが再現性よく確められた。つま
り、Ca及びZrを添加した溶湯中には酸化物系、窒化
物系、炭化物系の全粒子が溶湯表面上に浮上分離するこ
となく溶湯中に分散した。またTi、Cr、V及びNb
を添加した溶湯中では酸化物系及び窒化物系が分散した
が、炭化物系粒子には溶湯表面上に浮」二分離した。一
方、Mg添加溶湯中には酸化物系粒子のみが分散し、他
の炭化物系、窒化物系粒子は溶湯表面上に浮上分離した
。It was confirmed with good reproducibility that floating of various ceramic particles was prevented by adding at least one selected from Ti, Cr, Mg, V, Zr, and Nb. In other words, all the oxide-based, nitride-based, and carbide-based particles in the molten metal to which Ca and Zr were added were dispersed in the molten metal without floating and separating on the surface of the molten metal. Also Ti, Cr, V and Nb
Oxide and nitride particles were dispersed in the molten metal to which the molten metal was added, but carbide particles floated on the surface of the molten metal and separated into two. On the other hand, only oxide-based particles were dispersed in the Mg-added molten metal, and other carbide-based and nitride-based particles floated and separated on the surface of the molten metal.
アルミニウム及びアルミニウム合金溶湯中に粒子を分散
させるための金属元素の再加鼠はそ才しぞれZr及びN
bの場合は0.05〜2.0原子%、Ti、Ca、Cr
及びVの場合は0.1−3.0原子%vMgの場合は0
.2〜3.0原子%であることが望ましい。それぞれの
添加金属元素量が下限以下であると粒子を溶湯中に分散
させることができない。またそれぞれの上限量は各種分
散粒子を体積比で50%まで分散するのに十分な量であ
るとともに、上限髪越えるとそれぞれの添加金属元素と
AQの針状化合物が晶出し材料をもろくする。またマト
リックスの融点も1000℃以上となり実用的でない。Re-adding metal elements to disperse particles in molten aluminum and aluminum alloys is effective for Zr and N, respectively.
In the case of b, 0.05 to 2.0 at%, Ti, Ca, Cr
and 0.1-3.0 atom% for V and 0 for vMg
.. The content is preferably 2 to 3.0 at%. If the amount of each added metal element is below the lower limit, particles cannot be dispersed in the molten metal. Further, each upper limit amount is sufficient to disperse various types of dispersed particles up to 50% by volume, and if the upper limit is exceeded, the respective added metal elements and needle-like compounds of AQ will crystallize and make the material brittle. Further, the melting point of the matrix is also higher than 1000°C, which is not practical.
本発明方法で溶湯中に分散できる各種粒子の大きさの選
定に注意を払う必要はないが、本実験では入手できる最
少粒径0.05μmまで検討し、分散することを確認し
た。実際には材料の使用目的によって粒径及び分散粒子
の種類を選ぶべきである。Although it is not necessary to pay attention to the selection of the sizes of the various particles that can be dispersed in the molten metal using the method of the present invention, in this experiment, we investigated down to the smallest available particle size of 0.05 μm and confirmed that the particles could be dispersed. In reality, the particle size and type of dispersed particles should be selected depending on the intended use of the material.
本発明方法で溶湯中に分散できる各種粒子の量は体積比
で50%以下である。50%以上の粒子を溶湯中に投入
分散しても分散溶湯の流動性がほとんどなく、したがっ
て鋳造性が悪く健全鋳塊を溶製することができない。The amount of various particles that can be dispersed in the molten metal by the method of the present invention is 50% or less by volume. Even if 50% or more of the particles are introduced and dispersed in the molten metal, the dispersed molten metal has almost no fluidity, and therefore has poor castability and cannot produce a sound ingot.
また本発明方法で得ら扛た粒子分散溶湯を急冷凝固法、
例えば水冷金型凝固あるいは加圧凝固手法を用いること
によりより健全鋳塊を得ることができる。In addition, the particle-dispersed molten metal obtained by the method of the present invention is subjected to a rapid solidification method.
For example, a more sound ingot can be obtained by using a water-cooled mold solidification method or a pressure solidification method.
以下、本発明の詳細な説明する。 The present invention will be explained in detail below.
実施例1
大気中、黒鉛るつぼ中で750℃に保持した380gの
純アルミニウム溶湯表面より粒径1μmのSiC粒子2
0gをφ6×φ8X60Qアルミナ保護管2本を用い溶
湯を撹拌しながら渦の中央部に流し込むように投入添加
し、SiC粒子の分散性を検討した。検討後の溶湯は溶
湯を撹拌しながら金型に鋳造した。分散性判定は、溶融
中に分散した溶湯状態は一般の溶湯とほとんど変りなく
、分散しない場合は溶湯表面上に添加粒子が浮上分離す
ることから目視観察で簡単に判定できる。その結果、投
入添加したSiC粒子は溶湯中に分散せず、溶湯表面上
に浮上分離した。同様にしてT i C(2〜3 μm
) 、 VC(2−3μm) vNbC(2〜i μm
)、AM203 (1pm。Example 1 SiC particles 2 with a particle size of 1 μm were collected from the surface of 380 g of pure aluminum molten metal held at 750° C. in a graphite crucible in the atmosphere.
Using two φ6×φ8×60Q alumina protection tubes, 0 g of the SiC particles was poured into the center of the vortex while stirring the molten metal, and the dispersibility of the SiC particles was investigated. The molten metal after the study was cast into a mold while stirring the molten metal. Dispersibility can be easily determined by visual observation because the state of the molten metal dispersed during melting is almost the same as that of ordinary molten metal, and when it is not dispersed, the additive particles float and separate on the surface of the molten metal. As a result, the SiC particles added were not dispersed in the molten metal, but floated and separated on the surface of the molten metal. Similarly, T i C (2-3 μm
), VC (2-3 μm) vNbC (2-i μm
), AM203 (1pm.
0.05pmの2種)r Car2ox (1〜2pm
)Z r O、(1〜2 p m ) 、 Y 20.
(2〜3 μm)+S i、N4 (0,5〜0.3.
um)、AQN (4,9〜4.5 μm) 、 T
i N (4,9〜4.0 μm)及びBN(1〜0.
5μm)の各種粒子を投入添加した結果、いずれの粒子
も溶湯中に分散せず、溶湯表面上に浮上分離した。2 types of 0.05pm) r Car2ox (1~2pm
) Z r O, (1-2 p m ), Y 20.
(2-3 μm)+S i, N4 (0.5-0.3.
um), AQN (4.9-4.5 μm), T
i N (4.9-4.0 μm) and BN (1-0.
As a result of adding various particles (5 μm), none of the particles were dispersed in the molten metal, but floated and separated on the surface of the molten metal.
実施例2
大気中、黒鉛るつぼを用いて純アルミニウムを溶解後、
金属Caが1.0原子%になるように添加した380g
の溶湯を750°Cに保持する。保持した溶湯表面より
粒径1μmのSiC粒子20gを実施例1と同様の方法
で投入添加し、SIC粒子の分散性を検討した。その結
果、投入添加したSiC粒子は溶湯表面上に浮上分離す
ることなく溶湯中へ分散した。同様にしてTiCtVC
tNbC,An、03(2種)、Cr2O,、ZrO。Example 2 After melting pure aluminum using a graphite crucible in the atmosphere,
380g of metal Ca added to 1.0 atomic%
The molten metal is maintained at 750°C. 20 g of SiC particles with a particle size of 1 μm were added to the surface of the retained molten metal in the same manner as in Example 1, and the dispersibility of the SIC particles was examined. As a result, the added SiC particles were dispersed into the molten metal without floating to the surface of the molten metal. Similarly, TiCtVC
tNbC, An, 03 (2 types), Cr2O,, ZrO.
Y201 p S 1 a N4 p AQN? T
iN及びBNの各粒子に対してCa添加の効果を検討し
た。その結果、いずれの粒子も溶湯中に分散した。そこ
で各種粒子の分散性に及ぼす添加金属元素の影響を検討
した。添加金属元素はtvlg、Ti、Cr。Y201 p S 1 a N4 p AQN? T
The effect of adding Ca to each particle of iN and BN was investigated. As a result, all particles were dispersed in the molten metal. Therefore, we investigated the effects of added metal elements on the dispersibility of various particles. Additional metal elements are tvlg, Ti, and Cr.
Z r p V v P t M r+ HS i及び
Nbである。なおMg、P、St以外の金属元素はAQ
母合金を用いた。また添加金属量はそれぞれ1.0原子
%一定である。実験方法は実施例1と同様である。表1
は実施例1を含めその結果をまとめたものである。Z r p V v P t M r+ HS i and Nb. Note that metal elements other than Mg, P, and St are AQ.
A mother alloy was used. Further, the amounts of added metals are each constant at 1.0 atomic %. The experimental method was the same as in Example 1. Table 1
is a summary of the results including Example 1.
表中x印は溶湯表面上へ浮上分離、○印は溶湯中へ分散
したことを示す。表1かられかるように純アルミニウム
溶湯中には全ての粒子が浮上分離する。またP、Si、
Mnの各金属元素も分散に効果がないことがわかる。一
方、Ca及びZrの添加溶湯中へは酸化物系、窒化物系
、炭化物系の各粒子に有効であることがわかる。しかし
Ti、V及びNb添加溶湯においては酸化物系、窒化物
系の粒子分散に有効であり、炭化物系粒子には効果がな
いことがわかる。またMg添加溶湯では酸化物系粒子に
有効であり、窒化物系、炭化物系粒子分散には不向きで
ある。In the table, the x mark indicates floating separation on the surface of the molten metal, and the ○ mark indicates dispersion into the molten metal. As can be seen from Table 1, all particles float and separate in pure aluminum molten metal. Also, P, Si,
It can be seen that each metal element of Mn also has no effect on dispersion. On the other hand, it can be seen that addition of Ca and Zr into the molten metal is effective for oxide-based, nitride-based, and carbide-based particles. However, it can be seen that Ti, V and Nb-added molten metals are effective in dispersing oxide and nitride particles, but are not effective in dispersing carbide particles. Moreover, Mg-added molten metal is effective for oxide particles, but is not suitable for dispersing nitride and carbide particles.
実施例3
実施例3は最大分散量に及ぼす分散粒径の影響を検討し
た。粒径は0.5〜16μmまではSiC粒子を、0.
05μmはAΩ、03粒子を用いて検討した0分散溶湯
組成はAQ−3,0原子%Caである。実験方法は、大
気中、黒鉛るつぼを用い純アルミニウムを溶解後、金属
Caが3.0原子%になるように添加した400gの溶
湯を750℃に保持する。保持した溶湯をφG×φsr
;onのアルミナ保護管2本を用いて撹拌し、渦の中央
部に各種粒径粒子1.0 gを入し密むように添加し5
分間保持し、分散性を観察する。これを繰り返しながら
最大分散量をめた。なお最大分散量とは分散溶湯が鋳込
不可能直前までとした。第1図は結果を体積比%に換算
してまとめたものである。Example 3 In Example 3, the influence of the dispersed particle size on the maximum amount of dispersion was investigated. The particle size is 0.5 to 16 μm for SiC particles, 0.5 to 16 μm.
05 μm is AΩ, and the 0-dispersion molten metal composition studied using 03 particles is AQ-3, 0 atomic % Ca. The experimental method involved melting pure aluminum in a graphite crucible in the atmosphere, and then holding 400 g of molten metal at 750° C. to which metallic Ca was added at 3.0 at%. The retained molten metal is φG×φsr
; Stir using two alumina protection tubes turned on, and add 1.0 g of particles of various particle sizes to the center of the vortex so that they are densely packed.
Hold for a minute and observe dispersion. By repeating this process, the maximum amount of dispersion was determined. The maximum amount of dispersion was defined as the time immediately before the dispersed molten metal could not be cast. Figure 1 summarizes the results converted into volume percentages.
第1図かられかるように粒径3μmを境界にそれ以上の
粒径ではほぼ一定量の48%に苅し、°微細粒径になる
ほど分散量は減少し0.05μmでは36%である。As can be seen from FIG. 1, the amount of dispersion is approximately constant at 48% for particles with a particle size of 3 μm or more as a boundary, and as the particle size becomes finer, the amount of dispersion decreases to 36% at 0.05 μm.
実施例4
実i例4は分散性に及ぼすマトリックスの影響を検討し
た。分散粒子は粒径0.5μmのSiCである。マトリ
ックスはA Q −12S i −3Cu −0、3M
g系、AQ−8Sn−2Cu−0,5Mg系。Example 4 In Example 4, the influence of the matrix on dispersibility was investigated. The dispersed particles are SiC with a particle size of 0.5 μm. The matrix is A Q -12S i -3Cu -0, 3M
g series, AQ-8Sn-2Cu-0,5Mg series.
AQ−4Cu−1,5Mg 4Pb系でJIS規格規格
系C系ADC系、AJ系合金である。また粒子分散のた
めの添加元素はZrを用い、添加量は1.0原子%であ
る。実験方法は、大気中、黒鉛るつぼを用い各種マトリ
ックスを溶解後、AQ−9,8%Zr母合金を用いZr
が1.0原子%になるように添加した360gの溶湯を
800°Cに保持する。保持した溶湯をφ6×φ8X6
0Qのアルミナ保護管2本を用いて撹拌しながら渦の中
央部へ流し込むように40gのSiC粒子を投入添加し
、各マトリックスに対するSiC粒子の分散性を検討し
た。その結果、各マトリックスにSiC粒子は浮上分散
することなく溶湯中に分散した。AQ-4Cu-1,5Mg 4Pb-based JIS standard C-based ADC-based and AJ-based alloys. Further, Zr is used as an additive element for particle dispersion, and the amount added is 1.0 atomic %. The experimental method was to melt various matrices in the atmosphere using a graphite crucible, and then melt Zr using AQ-9, 8% Zr master alloy.
360 g of molten metal added so that the amount of molten metal is 1.0 at% is maintained at 800°C. The held molten metal is φ6×φ8×6
Using two 0Q alumina protection tubes, 40 g of SiC particles were poured into the center of the vortex while stirring, and the dispersibility of the SiC particles in each matrix was examined. As a result, the SiC particles in each matrix were dispersed in the molten metal without floating and dispersing.
また、鋳塊中のSiC粒子の分布状態を電子顕微鏡を用
いて観察した結果、マトリックスによる差異は認めら汎
なかった。Further, as a result of observing the distribution state of SiC particles in the ingot using an electron microscope, no difference was observed depending on the matrix.
実施例5
実施例5は実施例2において溶湯中に分散したAQ−L
O原子%Ca−5%SiC鋳塊を用いて再溶解における
SiC粒子の状態と同溶湯を用いて加圧凝固の効果を検
討した。その結果、再溶解時におけるSiC粒子の状態
は、再溶解しても溶湯中のSiC粒子は浮上分離するこ
となく溶湯中に滞留したままであった。また再再溶解し
ても同様であった。一方再溶解溶湯を用いて加圧凝固し
、鋳塊中のSiC粒子分布状態と鋳塊の健全性を検討し
た。加圧凝固方法は、300℃に予熱した割金型に分散
溶湯を撹拌しながら鋳湯し割金型上部よりプランジャー
で600kg/cj加圧しつつ凝固させた。鋳塊断面を
観察した結果、SiC粒子分布状態は鋳塊全面にほぼ均
一に分散し鋳造欠陥も観察されなかった。Example 5 Example 5 shows the AQ-L dispersed in the molten metal in Example 2.
The state of SiC particles during remelting using an O atomic % Ca-5% SiC ingot and the effect of pressure solidification using the same molten metal were investigated. As a result, the state of the SiC particles at the time of remelting was such that even after remelting, the SiC particles in the molten metal did not float and separate and remained in the molten metal. The same result was obtained even when the mixture was re-dissolved. On the other hand, the remelted molten metal was solidified under pressure, and the distribution of SiC particles in the ingot and the soundness of the ingot were examined. In the pressure solidification method, the dispersed molten metal was cast into a split mold preheated to 300° C. while stirring, and solidified while being pressurized at 600 kg/cj from the top of the split mold with a plunger. As a result of observing the cross section of the ingot, the distribution state of SiC particles was almost uniformly distributed over the entire surface of the ingot, and no casting defects were observed.
以−ヒの実施例から明らかなように、アルミニウム及び
アルミニウム合金鋳塊中への酸化物系、窒化物系、炭化
物系微細粒子の分散方法として、溶湯中にCa、Tt、
Cr、Mg、V、’Nb、Mg及びZrの中から選ばれ
た少なくとも一種を添加することにより達成できること
がわかった。As is clear from the examples below, as a method for dispersing oxide-based, nitride-based, and carbide-based fine particles into aluminum and aluminum alloy ingots, Ca, Tt,
It has been found that this can be achieved by adding at least one selected from Cr, Mg, V, 'Nb, Mg and Zr.
本発明によれば、一般的な鋳造法により製造できること
から、粉末冶金手法あるいは内部酸化法に比較して複雑
な工程が省略することができ、複雑形状、大型形状も容
易でかつ大量生産に適している。また分散粒子量も多量
に分散できることから諸特性も向上し、しかし安価に製
造できる効果がある。According to the present invention, since it can be manufactured using a general casting method, complicated processes can be omitted compared to powder metallurgy methods or internal oxidation methods, and complex shapes and large shapes can be easily produced, and it is suitable for mass production. ing. Further, since a large amount of dispersed particles can be dispersed, various properties are improved, and the product can be manufactured at low cost.
Claims (1)
5μm以下の酸化物系、窒化物系、炭化物系超微細各種
セラミック粒子を1〜50体積%の範囲で投入分散させ
る方法において、上記各種セラミック粒子の投入前に上
記溶湯中にCa、Ti。 Cr、Mg+ v、Zr及びN bから選ばわ、かつ溶
湯とセラミック粒子との濡れを生じさせる元素の少なく
とも一種を含ませてから上記セラミック粒子を投入分散
することを特徴とする超微細セラミック粒子の分散アル
ミニウム鋳造合金の製造法。 2、特許請求の範囲第1図において、上記アルミニウム
又アルミニウム合金の溶湯にそれぞれ、0.05−3.
0原子%のCa、Ti、Cr+ Mg+V、Zr及びN
bから選ばれた少なくとも一種を含ませた溶湯中に上記
セラミック超微細セラミックを分散させ、粒子分散溶湯
を液相線上50〜200℃の温度範囲で鋳造することを
特徴とする超微細セラミック粒子分散アルミニウム鋳造
合金の製造法。 3、特許請求の範囲第1項において、上記アルミニウム
あるいはアルミニウム合金溶湯中にCaまたはZrから
選ばれた少なくとも一種を含ませてからS iC,VC
,T ic、NbC,AQz 01゜Cr2O3,Zr
O,、Y、O,、Si3N4+AflN、TiN及びB
Nの超微m粒子を添加分散することは特徴とする超微細
セラミック粒子分散アルミニウム鋳造合金の製造法。 4、特許請求の範囲第1項において、上記アルミニウム
あるいはアルミニウム合金溶湯中にTi。 Cr、V、Nbから選ばれた少なくとも一種を含ませて
からAQz Ox 、Cr2o、、ZrO,。 Y2O5t S i3N4 yΔQN、TiN、BNの
超微細粒子を添加分散することと、−1一記セラミツク
粒子以外としてVを含む溶湯中へはVC粒子、Nbを含
む溶湯中へはNbC粒子を添加分散することを特徴とす
る超微細セラミック粒子分散アルミニラム鋳造合金の製
造法。 5.特許請求の範囲第1項において、上記アルミニウム
あるいはアルミニウム合金溶湯中にMgを含ませてから
Af120.、Cr= o、、ZrO3゜Y20Bの超
微細粒子を添加分散することを特徴とする超微細セラミ
ック粒子分散アルミニウム鋳造合金の制造法。 6、特許請求の範囲第1項において、Cu、Sm。 pbおよびSiの少なくとも1種を含むアルミニウム合
金に刻して上記セラミックを分散させることを特徴とす
る超微細セラミック粒子分散アルミニウム鋳造合金の製
造法。 7、特許請求の範囲第1項において、セラミック分散溶
湯を200〜]、000kg/cnで加圧しつつ凝固さ
せることを特徴とする超微細セラミック粒子分散アルミ
ニウム合金合金の製造法。[Claims] (1) In a method of dispersing oxide-based, nitride-based, and carbide-based ultrafine ceramic particles of 5 μm or less in a range of 1 to 50 volume % into a molten aluminum or aluminum alloy. , Ca and Ti are added to the molten metal before adding the various ceramic particles. Ultrafine ceramic particles selected from Cr, Mg+v, Zr and Nb and containing at least one element that causes wetting of the molten metal and the ceramic particles before adding and dispersing the ceramic particles. Method for producing dispersed aluminum casting alloys. 2. Scope of the Claims In FIG. 1, the molten aluminum or aluminum alloy contains 0.05-3.
0 at% of Ca, Ti, Cr+ Mg+V, Zr and N
Ultrafine ceramic particle dispersion, characterized by dispersing the above-mentioned ultrafine ceramic in a molten metal containing at least one selected from b, and casting the particle-dispersed molten metal in a temperature range of 50 to 200°C above the liquidus line. Method of manufacturing aluminum casting alloy. 3. In claim 1, after containing at least one selected from Ca or Zr in the aluminum or molten aluminum alloy, SiC, VC
,Tic,NbC,AQz 01°Cr2O3,Zr
O,, Y, O,, Si3N4+AflN, TiN and B
A method for producing an aluminum casting alloy in which ultrafine ceramic particles are dispersed, characterized by adding and dispersing ultrafine particles of N. 4. In claim 1, the aluminum or aluminum alloy molten metal contains Ti. AQz Ox , Cr2o, ZrO, after containing at least one selected from Cr, V, and Nb. Adding and dispersing ultrafine particles of Y2O5t Si3N4 yΔQN, TiN, and BN; -1 Adding and dispersing VC particles into the molten metal containing V and NbC particles into the molten metal containing Nb other than the ceramic particles. A method for producing an aluminum ram casting alloy containing ultrafine ceramic particles dispersed therein. 5. In claim 1, after Mg is included in the aluminum or molten aluminum alloy, Af120. , Cr=o, , ZrO3°Y20B A method for producing an aluminum casting alloy containing dispersed ultrafine ceramic particles, characterized by adding and dispersing ultrafine particles of ZrO3°Y20B. 6. In claim 1, Cu, Sm. A method for producing an aluminum casting alloy containing ultrafine ceramic particles dispersed therein, characterized in that the above-mentioned ceramic is dispersed by cutting into an aluminum alloy containing at least one of PB and Si. 7. A method for manufacturing an aluminum alloy alloy in which ultrafine ceramic particles are dispersed, characterized in that the ceramic dispersed molten metal is solidified while being pressurized at 200 to 1,000 kg/cn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1327684A JPS60159137A (en) | 1984-01-30 | 1984-01-30 | Manufacture of cast aluminum alloy containing dispersed hyperfine ceramic particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1327684A JPS60159137A (en) | 1984-01-30 | 1984-01-30 | Manufacture of cast aluminum alloy containing dispersed hyperfine ceramic particles |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60159137A true JPS60159137A (en) | 1985-08-20 |
Family
ID=11828680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1327684A Pending JPS60159137A (en) | 1984-01-30 | 1984-01-30 | Manufacture of cast aluminum alloy containing dispersed hyperfine ceramic particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60159137A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6436744A (en) * | 1987-07-30 | 1989-02-07 | Shinzo Sato | Product and material reinforced by distributing metallic nitrogen compound into total area of copper titanium, aluminum, magnesium as well as alloy of these metallic groups and normal cast iron |
JPH0688154A (en) * | 1992-09-04 | 1994-03-29 | Mitsubishi Kasei Corp | Metal compoisition and production of foamed metal composition |
US5374295A (en) * | 1992-03-04 | 1994-12-20 | Toyota Jidosha Kabushiki Kaisha | Heat resistant aluminum alloy powder, heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material |
US5409661A (en) * | 1991-10-22 | 1995-04-25 | Toyota Jidosha Kabushiki Kaisha | Aluminum alloy |
US5464463A (en) * | 1992-04-16 | 1995-11-07 | Toyota Jidosha Kabushiki Kaisha | Heat resistant aluminum alloy powder heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material |
JPH08188839A (en) * | 1994-12-28 | 1996-07-23 | Seihin Rin | Production of metal matrix composite material formed by mixing reinforcement by forcible aeration |
WO1998026944A1 (en) * | 1996-12-17 | 1998-06-25 | Tomoe Electric Manufacturing Co., Ltd. | Wheel for track travel moving body, moving body provided with same, rail and travelling equipment using rail |
WO2014121384A1 (en) * | 2013-02-11 | 2014-08-14 | National Research Counsil Of Canada | Metal matrix composite and method of forming |
CN104032159A (en) * | 2014-03-26 | 2014-09-10 | 南昌大学 | Preparation method for nanometer aluminum nitride-reinforced aluminum-based composite material |
EP3342897A3 (en) * | 2016-12-30 | 2018-09-19 | University-Industry Foundation(UIF), Yonsei University | Engineered aluminum alloy and method of fabricating the same |
-
1984
- 1984-01-30 JP JP1327684A patent/JPS60159137A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6436744A (en) * | 1987-07-30 | 1989-02-07 | Shinzo Sato | Product and material reinforced by distributing metallic nitrogen compound into total area of copper titanium, aluminum, magnesium as well as alloy of these metallic groups and normal cast iron |
US5409661A (en) * | 1991-10-22 | 1995-04-25 | Toyota Jidosha Kabushiki Kaisha | Aluminum alloy |
US5374295A (en) * | 1992-03-04 | 1994-12-20 | Toyota Jidosha Kabushiki Kaisha | Heat resistant aluminum alloy powder, heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material |
US5464463A (en) * | 1992-04-16 | 1995-11-07 | Toyota Jidosha Kabushiki Kaisha | Heat resistant aluminum alloy powder heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material |
JPH0688154A (en) * | 1992-09-04 | 1994-03-29 | Mitsubishi Kasei Corp | Metal compoisition and production of foamed metal composition |
JPH08188839A (en) * | 1994-12-28 | 1996-07-23 | Seihin Rin | Production of metal matrix composite material formed by mixing reinforcement by forcible aeration |
WO1998026944A1 (en) * | 1996-12-17 | 1998-06-25 | Tomoe Electric Manufacturing Co., Ltd. | Wheel for track travel moving body, moving body provided with same, rail and travelling equipment using rail |
CN1115258C (en) * | 1996-12-17 | 2003-07-23 | 拓磨艾电机工业株式会社 | Wheel for track travel moving body, moving body provided with same, rail and travelling equipment using rail |
WO2014121384A1 (en) * | 2013-02-11 | 2014-08-14 | National Research Counsil Of Canada | Metal matrix composite and method of forming |
US9945012B2 (en) | 2013-02-11 | 2018-04-17 | National Research Council Of Canada | Metal matrix composite and method of forming |
CN104032159A (en) * | 2014-03-26 | 2014-09-10 | 南昌大学 | Preparation method for nanometer aluminum nitride-reinforced aluminum-based composite material |
EP3342897A3 (en) * | 2016-12-30 | 2018-09-19 | University-Industry Foundation(UIF), Yonsei University | Engineered aluminum alloy and method of fabricating the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4916029A (en) | Composites having an intermetallic containing matrix | |
US4774052A (en) | Composites having an intermetallic containing matrix | |
KR950014105B1 (en) | Process for forming metal-second phase composites and product thereof | |
US5897830A (en) | P/M titanium composite casting | |
US4915908A (en) | Metal-second phase composites by direct addition | |
EP0353542B1 (en) | Pressure-sintered polycrystalline composites based on hexagonal boron nitride, oxides and carbides | |
EP0079755A2 (en) | Copper base spinodal alloy strip and process for its preparation | |
JP6880203B2 (en) | Aluminum alloy for additional manufacturing technology | |
JP5703272B2 (en) | Abrasion resistant material | |
US5015534A (en) | Rapidly solidified intermetallic-second phase composites | |
JP2023507928A (en) | heat resistant aluminum powder material | |
JP2021507088A5 (en) | ||
JPS60159137A (en) | Manufacture of cast aluminum alloy containing dispersed hyperfine ceramic particles | |
JP2007527952A5 (en) | ||
EP0540055B1 (en) | High-strength and high-toughness aluminum-based alloy | |
JP2743720B2 (en) | Method for producing TiB2 dispersed TiAl-based composite material | |
EP0964069B1 (en) | Strontium master alloy composition having a reduced solidus temperature and method of manufacturing the same | |
WO2022139629A1 (en) | Powdered material with high heat conductivity | |
SU1650746A1 (en) | Method of producing alloying compositions for aluminium alloys | |
JP2749165B2 (en) | TiA-based composite material and method for producing the same | |
JPS6199606A (en) | Production of composite powder | |
Venkateswaran et al. | The Effect of Trace Elements on the Cooling Curves, Microstructure and Mechanical Properties of Eutectic Aluminium-Silicon Alloy | |
JP3842906B2 (en) | Cast iron having fine graphite on ferrite ground and manufacturing method thereof | |
JPH05214477A (en) | Composite material and its manufacture | |
GB1561746A (en) | Agents for the treatment of molten metal |