JPH05202437A - Production of inter-high-melting-metallic compound-base alloy - Google Patents

Production of inter-high-melting-metallic compound-base alloy

Info

Publication number
JPH05202437A
JPH05202437A JP1163392A JP1163392A JPH05202437A JP H05202437 A JPH05202437 A JP H05202437A JP 1163392 A JP1163392 A JP 1163392A JP 1163392 A JP1163392 A JP 1163392A JP H05202437 A JPH05202437 A JP H05202437A
Authority
JP
Japan
Prior art keywords
powder
solid solution
bcc
intermetallic compound
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1163392A
Other languages
Japanese (ja)
Inventor
Tetsuo Fujiwara
徹男 藤原
Yasuo Kondo
保夫 近藤
Takeshi Yasuda
健 安田
Hideyo Kodama
英世 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1163392A priority Critical patent/JPH05202437A/en
Publication of JPH05202437A publication Critical patent/JPH05202437A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an inter-high-melting-metallic compound-base alloy represented by Nb3Al and excellent in formability and sintering characteristics and further to obtain a homogeneous inter-high-melting-metallic compound-base alloy containing the third high-melting element and excellent in strength at high temp. and toughness. CONSTITUTION:In a method for producing an (inter-high-melting-metallic compound Nb3Al)-base alloy, mechanical deformation is applied to a Nb3Al intermetallic compound having A15 type crystal structure to form a powder of nonequilibrium supersaturated solid solution with bcc type crystal structure by >=50% by volume ratio. The resulting bcc nonequilibrium supersaturated solid solution powder is compacted at a temp. not higher than the temp., 700 deg.C, at which transformation into A15 type crystal structure is brought about and is then heated at >=700 deg.C to undergo sintering and also transformation of a sintered compact into a stable structure. By this method. the (inter-high-melting- metallic compound Nb3Al)-base alloy composed essentially of A15 phase can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通常の鋳造や粉末焼結
法では、任意形状を有し均一で組成が制御された合金の
合成が困難であるような、Nb3Al に代表される高融
点金属間化合物基合金の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention is represented by Nb 3 Al, which is difficult to synthesize an alloy having an arbitrary shape and a uniform composition by a conventional casting or powder sintering method. The present invention relates to a method for producing a high melting point intermetallic compound-based alloy.

【0002】[0002]

【従来の技術】現在、Ni基超合金にかわる種々の高融
点材料が検討されているが、これらの材料の中で、高温
強度が高く延性付与が期待できる高融点金属間化合物が
注目されている。この中でも特に、2000℃近い高融
点に起因する高温強度,比較的低い比重,変形がある程
度期待できるA15型結晶構造、の3点から、Nb3Al が
Ni基超合金に替わる超高温用耐熱材料として注目され
ている。
2. Description of the Related Art Currently, various high-melting-point materials replacing Ni-base superalloys are being studied. Among these materials, high-melting-point intermetallic compounds, which have high temperature strength and are expected to impart ductility, have been attracting attention. There is. Among these, in particular, from the three points of high-temperature strength due to a high melting point near 2000 ° C., relatively low specific gravity, and A15 type crystal structure in which deformation can be expected to some extent, Nb 3 Al is a heat-resistant material for ultra-high temperature which replaces Ni-base superalloy. Is being watched as.

【0003】しかし、この高融点金属間化合物は、高融
点であること、NbとAlの融点差が2000℃近くあ
ること、NbとAlの比重差が3倍以上と大きいこと等
の理由から、従来の合金製造プロセスの適用が困難な場
合が多い。例えば、通常の鋳造技術でNb3Al 基合金
を得ようとした場合、NbとAlの融点及び比重の違い
から均一で組成の制御された合金が得られにくいだけで
はなく、その脆さから冷却過程での熱応力により合金が
割れるという問題が発生してきた。
However, this refractory intermetallic compound has a high melting point, the melting point difference between Nb and Al is close to 2000 ° C., and the specific gravity difference between Nb and Al is as large as three times or more. It is often difficult to apply conventional alloy manufacturing processes. For example, when trying to obtain an Nb 3 Al-based alloy by a normal casting technique, it is difficult to obtain an alloy having a uniform and controlled composition due to the difference in the melting point and the specific gravity of Nb and Al, and it is difficult to cool the alloy. The problem has arisen that the alloy cracks due to thermal stress during the process.

【0004】そこで、形状を付与し健全な耐熱部品を得
るという観点から、Nb3Al 基合金の製造プロセスと
して粉末冶金法が注目されている。特開平3−229832 号
公報では、Nb−Al金属間化合物製造方法として、N
3Al粉末とNb2Al粉末とNb粉末をNbとAlの
原子比が3:1になるように混合,成形し、Nb2Al が溶
融する温度で焼結を行ない、高密度なNb−Al金属間
化合物が得られることが開示されている。
Therefore, from the viewpoint of giving a shape and obtaining a sound heat-resistant component, powder metallurgy has attracted attention as a manufacturing process of Nb 3 Al-based alloys. In Japanese Patent Laid-Open No. 3-229832, a method for producing an Nb-Al intermetallic compound is described as N.
b 3 Al powder, Nb 2 Al powder, and Nb powder were mixed and molded so that the atomic ratio of Nb and Al was 3: 1, and sintered at a temperature at which Nb 2 Al melts to obtain high-density Nb- It is disclosed that an Al intermetallic compound is obtained.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術では、成
形段階における粉末の延性が改善されておらず、任意の
複雑形状の耐熱部品を製造することが困難である。粉末
を成形する段階では各々の粒子が変形して密着する必要
があるので、粒子の変形能(延性)が高いほど成型性が
よい。上記従来技術では、成型体が主として複雑な結晶
構造を持つNb3Al,Nb2Al粒子により構成されている
ので、粒子自身の延性が不足しており、任意複雑形状へ
の成形は困難であった。
In the above-mentioned prior art, the ductility of the powder at the molding stage has not been improved, and it is difficult to manufacture heat-resistant parts of arbitrary complicated shapes. At the stage of molding the powder, it is necessary for each particle to deform and adhere to each other, so the higher the deformability (ductility) of the particle, the better the moldability. In the above-mentioned conventional technique, since the molded body is mainly composed of Nb 3 Al, Nb 2 Al particles having a complicated crystal structure, the ductility of the particles themselves is insufficient, and it is difficult to mold them into an arbitrarily complicated shape. It was

【0006】また従来技術では、構成粒子の中にNb,
Al、あるいはNb2Al 存在するが、合金化を伴う焼
結段階において、仮に焼結が不十分で、これらの粒子が
少しでも残存した場合、合金の機械的性質を著しく劣化
させる。超高温で融点の低いこれらのNb2Al ,Al
粒子が溶融,流出して著しい高温強度低下を招く。
In the prior art, Nb,
Although Al or Nb 2 Al is present, if the sintering is insufficient in the sintering step accompanied by alloying and some of these particles remain, the mechanical properties of the alloy are significantly deteriorated. These Nb 2 Al and Al having a high melting point and a low melting point
The particles melt and flow out, causing a significant decrease in high-temperature strength.

【0007】さらに、従来技術では、実用材料として使
用する場合に必須である第三元素を添加した場合の材料
内の組成均質性が考慮されていない。Nb3Al 合金の
脆性あるいは耐酸化性を改善するには第三元素による合
金化が必要である。第三元素としてCr,Tiを1〜2
0at.%添加することにより、Nb3Al合金の脆性が
ある程度改善されるが、同時に強度低下を伴い、超高温
耐熱材料としての魅力を低下させる。強度低下を最小限
に押さえ脆性を改善するためには、原子間の結合エネル
ギが大きいZr,Mo,Hf,Ta,W等の高融点遷移
金属の添加が適していると考えられる。しかし、このよ
うな高融点の第三元素を含んだNb−Al基合金を通常
の鋳造法で得ようとした場合、融点の低いAlがいち早
く沸点に達し蒸発するため、目的の組成の金属間化合物
基合金を得ることが困難であり、さらに凝固の過程で目
的とする組成以外の化合物が析出,偏析してしまい均一
な合金が得られない。また元素単体粉末あるいはNb−
Al合金粉末と高融点第三元素粉末を混合して単純に熱
エネルギによって合金化させる場合、高融点の第三元
素、例えばZr,Mo,Hf,Ta,W等を、Nb−A
l金属間化合物中に完全に固溶させることが困難な場合
があった。
Further, the prior art does not consider the composition homogeneity in the material when the third element, which is essential when used as a practical material, is added. In order to improve the brittleness or oxidation resistance of the Nb 3 Al alloy, alloying with a third element is necessary. 1 to 2 of Cr and Ti as the third element
By adding 0 at.%, The brittleness of the Nb 3 Al alloy is improved to some extent, but at the same time, the strength is reduced and the attractiveness as an ultrahigh temperature heat resistant material is reduced. In order to minimize the strength reduction and improve the brittleness, it is considered that addition of a high melting point transition metal such as Zr, Mo, Hf, Ta, W having a large interatomic bond energy is suitable. However, when an Nb-Al-based alloy containing such a high melting point third element is to be obtained by a usual casting method, Al having a low melting point reaches the boiling point quickly and evaporates, so that an intermetallic compound having a desired composition is formed. It is difficult to obtain a compound-based alloy, and compounds other than the intended composition are precipitated and segregated during the solidification process, so that a uniform alloy cannot be obtained. In addition, elemental element powder or Nb-
When the Al alloy powder and the high melting point third element powder are mixed and simply alloyed by thermal energy, the high melting point third element, for example, Zr, Mo, Hf, Ta, W, etc., is added to Nb-A.
In some cases, it was difficult to form a solid solution in the intermetallic compound.

【0008】本発明の目的は成形性に優れた、Nb3
l に代表される高融点金属間化合物基合金の製造方法
を提供することにある。また高温強度,靭性に優れた、
高融点第三元素を含んだ均質な高融点金属間化合物基合
金の製造方法を提供することにある。
The object of the present invention is to provide Nb 3 A having excellent moldability.
It is an object of the present invention to provide a method for producing a high melting point intermetallic compound-based alloy represented by 1 2. It also has excellent high temperature strength and toughness.
It is intended to provide a method for producing a homogeneous high melting point intermetallic compound-based alloy containing a high melting point third element.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、高融点金属間化合物Nb3Al 基合金の製造法にお
いて、主にA15型結晶構造を有するNb3Al 金属間
化合物粉末に機械的変形を与えることによってbcc型
結晶構造の非平衡過飽和固溶体粉末を体積比50%以上
形成させ、得られたbcc非平衡過飽和固溶体粉末を、
A15型結晶構造に変態する温度700℃以下で加圧成
型した後に、700℃以上の温度で加熱することによっ
て焼結成型させると同時に、成型体すべてを安定なA1
5型結晶構造相,bcc相,σ相に変態させ、最終的に
主としてA15相から構成される高融点金属間化合物N
3Al 基合金を製造する。
In order to achieve the above object, in a method for producing a refractory intermetallic compound Nb 3 Al-based alloy, Nb 3 Al intermetallic compound powder mainly having an A15 type crystal structure is mechanically produced. The non-equilibrium supersaturated solid solution powder having a bcc type crystal structure is formed in a volume ratio of 50% or more by applying deformation, and the obtained bcc non-equilibrium supersaturated solid solution powder is
After pressure molding at a temperature of 700 ° C. or lower that transforms into an A15 type crystal structure, sintering is performed by heating at a temperature of 700 ° C. or higher, and at the same time, all of the molded products are stable A1.
A high melting point intermetallic compound N which is transformed into a 5 type crystal structure phase, a bcc phase, and a σ phase, and is finally composed mainly of the A15 phase.
b 3 Al-based alloy is manufactured.

【0010】また、上記目的を達成するために金属間化
合物Nb3A l基合金の製造法において、上記方法によ
って生成されたbcc非平衡過飽和固溶体粉末と添加元
素粉末とを機械的混合によって合金化させ、添加元素が
均一に固溶分布したbcc過飽和固溶体粉末を作製し、
高融点金属間化合物Nb3Al 基合金を作製するもので
ある。
In order to achieve the above object, in the method for producing an intermetallic compound Nb 3 Al based alloy, the bcc non-equilibrium supersaturated solid solution powder produced by the above method is alloyed by mechanical mixing. To produce a bcc supersaturated solid solution powder in which the additive element is uniformly distributed in solid solution,
A high melting point intermetallic compound Nb 3 Al based alloy is produced.

【0011】また、Nb3Al 基合金のみでなく、A1
5型結晶構造を有する高融点金属間化合物Mo3Al,
Ta3Al,V3Al,Mo3Al,Nb3Si,Mo3
i,Cr3Si,V3Si,Nb3Sn,Nb3Ge、ま
た、複雑な結晶構造を有する高融点金属間化合物MoS
2,WSi2のうちのいずれかの化合物においても、上
記方法が適用可能である。
Not only Nb 3 Al-based alloys but also A1
Refractory intermetallic compound having a type 5 crystal structure Mo 3 Al,
Ta 3 Al, V 3 Al, Mo 3 Al, Nb 3 Si, Mo 3 S
i, Cr 3 Si, V 3 Si, Nb 3 Sn, Nb 3 Ge, and high melting point intermetallic compound MoS having a complicated crystal structure
The above method can be applied to any one of i 2 and WSi 2 .

【0012】[0012]

【作用】本発明による高融点金属間化合物基合金製造方
法は、成型段階で非平衡bcc過飽和固溶体の粉末を用
いる。bcc固溶体はA15型構造に比べて結晶構造が
単純であり、室温において延性,変形能が良い。粉末を
成形する段階においては、各々の粒子が変形して密着す
る必要があるので、粒子自身の変形能が高いほど成型性
がよい。bcc固溶体は、焼結前の成型段階で容易に成
型が可能であり、任意の形状の耐熱部品に対して成型が
可能となる。
In the method for producing a refractory intermetallic compound-based alloy according to the present invention, a non-equilibrium bcc supersaturated solid solution powder is used in the molding step. The bcc solid solution has a simpler crystal structure than the A15 type structure, and has good ductility and deformability at room temperature. At the stage of molding the powder, it is necessary for each particle to deform and adhere to each other, so the higher the deformability of the particle itself, the better the moldability. The bcc solid solution can be easily molded in a molding step before sintering, and can be molded into a heat-resistant component having an arbitrary shape.

【0013】本発明では、混合機を用い、A15型化合
物粉末に機械的に変形を与えることによって、bcc過
飽和固溶体粉末を得る。従来、Nb3Al 基合金のbc
c過飽和固溶体を得るには、急冷凝固法とメカニカルア
ロイング法の二つの方法が考えられてきた。本発明によ
る方法は、急冷凝固法に比べ、終始固相状態のプロセス
であることから、Al蒸発やるつぼからの混入等による
組成変動がほとんどない点で優れている。また、前者は
溶解,急冷と2種類の大きな設備が必要であるのに対
し、本発明では主に混合器のみの設備で十分であり、経
済的にも大きな利点を有する。
In the present invention, a Bcc supersaturated solid solution powder is obtained by mechanically deforming the A15 type compound powder using a mixer. Conventionally, bc of Nb 3 Al-based alloy
In order to obtain a c-saturated solid solution, two methods, a rapid solidification method and a mechanical alloying method, have been considered. The method according to the present invention is superior to the rapid solidification method in that it is a solid phase process from beginning to end, so that there is almost no change in composition due to Al evaporation or mixing from a crucible. Further, the former requires two kinds of large equipments for melting and quenching, whereas in the present invention, the equipment mainly for the mixer is sufficient, which is a great economical advantage.

【0014】一方のメカニカルアロイング法(Mechanic
al Alloying Method:以下MA法)とは、2種以上の粉
末材料を混合機により混合して固相拡散を生じさせる合
金化処理方法である。おもに元素粉末を原料とし、それ
を合金化させることにより、単体状態よりエネルギの安
定な非平衡相あるいは金属間化合物相を生成する手法と
して用いられてきた。NbとAlの粉末をMA法により
合金化させ、bcc過飽和固溶体を得る手法も報告され
ている。しかし本発明では、NbとAlという構成元素
粉末を出発原料とせずに、最も安定でエネルギの低い金
属間化合物粉末を出発原料とするところに特徴があり、
構成元素から合金化させる場合が発熱反応であるのに対
して、エネルギのより高い状態へ遷移させる本プロセス
は吸熱反応である。したがって、同じ混合器を用いたプ
ロセスであるが、本発明は過剰な発熱が抑止される。酸
素濃度増加は材料の機械的性質を著しく劣化させるの
で、酸化は極力低減させる必要があるが、混合のプロセ
ス中に温度を低く押さえられれば酸化防止に非常に効果
がある。本発明は吸熱反応を利用しているので、化学反
応による発熱が無く、温度上昇を抑制できる。また、構
成元素よりbcc固溶体を生成しようとする場合、bc
c固溶体の生成率が100%でないと、最終的に焼結し
た製品の中にA15結晶構造相ではないNb相,Al相
あるいは他のNb−Al合金相が存在してしまう。その
場合、耐熱部品としての十分な特性が発揮されない。そ
れに対して本発明による方法では、bcc固溶体の生成
率がたとえ100%に満たない場合でも、残存相はA1
5相であるために焼結後の最終的な製品中にNbあるい
はAlといった残存相は認められず、優れた高温強度が
期待できる。この場合の残存A15相は、体積比50%
以下であれば成型の際に問題を生じない。
One of the mechanical alloying methods (Mechanic
al Alloying Method: hereinafter referred to as MA method) is an alloying treatment method in which two or more kinds of powder materials are mixed by a mixer to cause solid phase diffusion. It has been mainly used as a method for producing a non-equilibrium phase or an intermetallic compound phase with more stable energy than a simple substance state by alloying the elemental powder as a raw material. A method of alloying Nb and Al powders by the MA method to obtain a bcc supersaturated solid solution has also been reported. However, the present invention is characterized in that the most stable and lowest energy intermetallic compound powder is used as the starting material, without using the constituent element powders of Nb and Al as the starting material.
Whereas alloying from the constituent elements is an exothermic reaction, the present process for transitioning to a higher energy state is an endothermic reaction. Therefore, although the process uses the same mixer, the present invention suppresses excessive heat generation. Since increasing the oxygen concentration significantly deteriorates the mechanical properties of the material, it is necessary to reduce the oxidation as much as possible, but if the temperature is kept low during the mixing process, it is very effective in preventing oxidation. Since the present invention utilizes the endothermic reaction, there is no heat generation due to the chemical reaction, and the temperature rise can be suppressed. In addition, when trying to form a bcc solid solution from the constituent elements, bc
If the production rate of the c solid solution is not 100%, Nb phase, Al phase or other Nb-Al alloy phase which is not the A15 crystal structure phase exists in the finally sintered product. In that case, sufficient characteristics as a heat resistant component cannot be exhibited. On the contrary, in the method according to the present invention, even if the production rate of the bcc solid solution is less than 100%, the residual phase is A1.
Since there are five phases, no residual phase such as Nb or Al is observed in the final product after sintering, and excellent high temperature strength can be expected. In this case, the remaining A15 phase is 50% by volume.
If it is below, there will be no problem in molding.

【0015】本発明は、高融点金属間化合物基合金の第
三元素添加による合金化に対しても極めて有効である。
添加元素とは、すべての金属元素を対象とするが、特に
通常の粉末焼結方法では十分に拡散せず合金化しにくい
ようなCr,Ti,Zr,Mo,Hf,Ta,Wの高融
点第三元素を添加する際に本発明は好適である。MA法
は機械的エネルギで強制的に合金化させるため、このよ
うなことが可能になるのである。その場合、MAを行な
う出発原料粉末がbcc過飽和固溶体粉末と第三元素粉
末であることが重要である。それは、前述したようにb
cc過飽和固溶体はA15型結晶構造に比べて結晶構造
が単純で変形能に優れるので、MAによる粉末同志の混
合が密に行なわれ、高融点の第三元素でも非常に合金化
が容易になる。Nb,Al,第三元素の粉末を出発原料
としてMAを行なった場合、前述の場合と同様、最終的
に焼結した製品の中にA15結晶構造相ではないNb
相,Al相あるいは他のNb−Al合金相が存在してし
まうため不適である。
The present invention is also extremely effective for alloying a refractory intermetallic compound-based alloy by adding a third element.
The additive element covers all metal elements, but especially high melting point Cr, Ti, Zr, Mo, Hf, Ta, W which does not diffuse sufficiently and is difficult to alloy by a normal powder sintering method. The present invention is suitable when the three elements are added. This is possible because the MA method forces the alloying with mechanical energy. In that case, it is important that the starting material powders for MA be the bcc supersaturated solid solution powder and the third element powder. It is b
Since the cc supersaturated solid solution has a simple crystal structure and is excellent in deformability as compared with the A15 type crystal structure, the powders are mixed with each other by MA, and the third element having a high melting point is very easily alloyed. When MA is performed using Nb, Al, and a powder of the third element as a starting material, Nb which is not the A15 crystal structure phase in the finally sintered product is similar to the above case.
Phase, Al phase, or other Nb-Al alloy phase exists, which is not suitable.

【0016】[0016]

【実施例】【Example】

〈実施例1〉以下、本発明であるNb3Al 金属間化合
物製造法を図1のフローチャートに従って説明する。
<Example 1> The following describes the Nb 3 Al intermetallic compound preparation is the invention according to the flowchart of FIG.

【0017】粒径10μm以下の主にA15相からなる
Nb3Al 金属間化合物粉末を遊星型ボールミルの容器
に入れる。このNb3Al 金属間化合物粉末は、プラズ
マアーク溶解等でえられたインゴットを粉砕するか、ま
たはガスアトマイズ法により得られたものを用いる。容
器及び混合に用いるボールは、タングステン,タングス
テンカーバイド、あるいはメノウ製等の硬質な金属ある
いは化合物を用い、容器、ボールから試料への不純物の
混入を防ぐ。試料中の酸素濃度が増大すると、合金の機
械的性質を大きく劣化させる。金属粉末は空気中で容易
に酸化してしまうので、MAはグローブボックスを用い
て真空置換した後、不活性ガス雰囲気中で行なう。ま
た、原料粉末に水素還元処理等の脱酸素処理を施すこと
も酸素濃度低減に有効である。混合中の試料の異常加熱
を防ぐために、容器の水冷をするか、もしくはボールミ
ルに停止時間を設ける。例えば、15分間ボールミルを
回転運動させた後に、3分間の停止時間を設けて、それ
を繰り返す。ボールミルの回転速度及び回転時間は、試
料の組成,重量等の条件に依存し、その都度適性条件を
求める必要があるが、ボールミルのポットの回転速度は
100〜780rpm,ディスクが50〜360rpm ,実質
回転時間は1時間〜50時間が好ましい範囲である。M
A10時間後の粉末のX線回折結果を図2に示すが、ほ
とんどがbcc過飽和固溶体相に変化していることが分
かる。この粉末をCIPで固化成型し、その後熱処理に
より焼結を行なう。焼結温度はbcc過飽和固溶体がA
15型相に変態するような温度、すなわち700℃以上
で行なう。あるいは、このbcc過飽和固溶体粉末をカ
プセルに真空封入した後、HIP処理をして耐熱部品に
成形する。この際も、HIP温度は700℃以上で行な
う。
Nb 3 Al intermetallic compound powder mainly composed of A15 phase having a particle size of 10 μm or less is put in a container of a planetary ball mill. As the Nb 3 Al intermetallic compound powder, one obtained by crushing an ingot obtained by plasma arc melting or the like or by a gas atomizing method is used. A hard metal or compound such as tungsten, tungsten carbide, or agate is used for the container and the balls used for mixing to prevent impurities from being mixed into the sample from the container and the balls. Increasing the oxygen concentration in the sample significantly degrades the mechanical properties of the alloy. Since the metal powder easily oxidizes in air, MA is vacuum-substituted using a glove box, and then the MA is performed in an inert gas atmosphere. It is also effective to reduce the oxygen concentration by subjecting the raw material powder to deoxidation treatment such as hydrogen reduction treatment. To prevent abnormal heating of the sample during mixing, cool the container with water or provide a ball mill with a down time. For example, after rotating the ball mill for 15 minutes, a stop time of 3 minutes is provided and this is repeated. The rotation speed and rotation time of the ball mill depend on the conditions such as the composition and weight of the sample, and it is necessary to determine the appropriate conditions each time. The rotation speed of the ball mill pot is 100 to 780 rpm, the disk is 50 to 360 rpm, and The rotation time is preferably in the range of 1 hour to 50 hours. M
The X-ray diffraction result of the powder after 10 hours of A is shown in FIG. 2, and it can be seen that most of the powder has changed to the bcc supersaturated solid solution phase. This powder is solidified and molded by CIP, and then sintered by heat treatment. Sintering temperature is bcc supersaturated solid solution is A
It is performed at a temperature at which it is transformed into a 15-type phase, that is, at 700 ° C. or higher. Alternatively, this bcc supersaturated solid solution powder is vacuum-encapsulated in a capsule and then subjected to HIP processing to be molded into a heat-resistant part. Also at this time, the HIP temperature is 700 ° C. or higher.

【0018】〈実施例2〉図3のフローチャートは、本
発明による第三元素を含んだNb3Al 基合金の製造方
法である。実施例1で得られたbcc過飽和固溶体粉末
と、粒径10μmの第三元素粉末、例えば、Zr,M
o,Hf,Ta,W等の高融点金属の粉末を実施例1と
同様の方法で遊星ボールミルを用いてMAを行なう。N
b−23at.%Al−9at%TaのMA10時間後の
EPMA面分析結果、粉末の状態でNb3Al マトリッ
クス中にTa原子がほぼ均一に固溶していることが分か
った。このようにbcc過飽和固溶体粉末と第三元素粉
末とをMAすることによって、均一に固溶された合金を
得ることが可能になる。
<Embodiment 2> The flowchart of FIG. 3 shows a method for producing an Nb 3 Al-based alloy containing a third element according to the present invention. The bcc supersaturated solid solution powder obtained in Example 1 and a third element powder having a particle size of 10 μm, for example, Zr, M
MA is performed using powders of refractory metals such as o, Hf, Ta and W in the same manner as in Example 1 using a planetary ball mill. N
As a result of EPMA surface analysis of MA of b-23 at.% Al-9 at% Ta after 10 hours, it was found that Ta atoms were almost uniformly solid-dissolved in the Nb 3 Al matrix in a powder state. In this way, by performing MA of the bcc supersaturated solid solution powder and the third element powder, it becomes possible to obtain an alloy in which the solid solution is uniformly formed.

【0019】〈実施例3〉図5は実施例1で得られたb
cc過飽和固溶体粉末のDTA結果である。温度700
℃付近から発熱のピークが見られ、850℃付近で発熱
ピークが鋭くなっている。bcc過飽和固溶体からA1
5相への変態の開始温度は700℃付近であることが分
かる。したがって粉末が変形能に富むbccであるよう
に、成型時は700℃以下の温度で行ない、焼結はA1
5相に変態するために700℃以上の温度で行なうこと
が好ましい。
Example 3 FIG. 5 shows b obtained in Example 1.
It is a DTA result of cc supersaturated solid solution powder. Temperature 700
An exothermic peak is seen from around ℃, and the exothermic peak is sharp around 850 ° C. bcc supersaturated solid solution to A1
It can be seen that the starting temperature of the transformation to the 5 phase is around 700 ° C. Therefore, in order to make the powder bcc rich in deformability, it is performed at a temperature of 700 ° C. or less at the time of molding, and sintering is A1.
It is preferable to carry out at a temperature of 700 ° C. or higher in order to transform into 5 phases.

【0020】〈実施例4〉A15型結晶構造を有する高
融点金属間化合物Mo3Al ,Ta3Al ,V3Al,
Mo3Al,Nb3Si,Mo3Si,Cr3Si,V3
i,Nb3Sn,Nb3Ge 、また、複雑な結晶構造を
有する高融点金属間化合物MoSi2 ,WSi2 に関し
ても実施例1及び実施例2と同様の方法によって、変形
能,焼結性が優れたbcc過飽和固溶体が形成でき、任
意形状で安定な結晶構造を持ち、さらに添加元素による
均一な合金化がなされた高融点金属間化合物基合金製品
の作成が可能である。
Example 4 Refractory intermetallic compounds having A15 type crystal structure Mo 3 Al, Ta 3 Al, V 3 Al,
Mo 3 Al, Nb 3 Si, Mo 3 Si, Cr 3 Si, V 3 S
i, Nb 3 Sn, Nb 3 Ge, and the high-melting point intermetallic compounds MoSi 2 and WSi 2 having a complicated crystal structure have the same deformability and sinterability by the same method as in Examples 1 and 2. It is possible to form a high melting point intermetallic compound-based alloy product that can form an excellent bcc supersaturated solid solution, has a stable crystal structure in an arbitrary shape, and is uniformly alloyed with additional elements.

【0021】[0021]

【発明の効果】本発明によれば、高温強度,靭性が優
れ、組成が制御され均一で、任意形状を有する高融点金
属間化合物基合金が得られ、さらに高融点金属間化合物
基合金を用いて1200℃以上でも使用できる高強度耐
熱部品の製造ができるので、耐熱部品を用いた高温関連
機器の性能向上、及び開発が可能になる。
According to the present invention, a high melting point intermetallic compound-based alloy having excellent high temperature strength and toughness, a controlled composition, a uniform shape and an arbitrary shape can be obtained. Since it is possible to manufacture high-strength heat-resistant parts that can be used even at 1200 ° C or higher, it is possible to improve and develop the performance of high-temperature related equipment using heat-resistant parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明である高融点金属間化合物Nb3Al 基
合金の製造方法のフローチャート。
FIG. 1 is a flowchart of a method for producing a refractory intermetallic compound Nb 3 Al based alloy according to the present invention.

【図2】本発明によって製造された、10時間MA処理
した後のNb−25at. %Al粉末のX線回折結果の
説明図。
FIG. 2 is an explanatory view of an X-ray diffraction result of Nb-25 at.% Al powder manufactured by the present invention after MA treatment for 10 hours.

【図3】本発明である添加元素を含む高融点金属間化合
物Nb3Al 基合金の製造方法のフローチャト。
FIG. 3 is a flow chart of a method for producing a refractory intermetallic compound Nb 3 Al-based alloy containing an additive element according to the present invention.

【図4】本発明によって製造された、10時間MA処理
した後のNb−25at.%Al粉末のDTA分析結果の
説明図。
FIG. 4 shows that Nb-25 at. Explanatory drawing of the DTA analysis result of% Al powder.

フロントページの続き (72)発明者 児玉 英世 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内Front page continued (72) Inventor Hideyo Kodama 4026 Kujimachi, Hitachi City, Hitachi, Ibaraki Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】高融点金属間化合物Nb3Al 基合金の製
造法において、主にA15型結晶構造を有するNb3
l 金属間化合物粉末に機械的変形を与えることによっ
て、bcc型結晶構造の非平衡過飽和固溶体粉末を体積
比50%以上形成させ、成型,焼結して主としてA15
型相から構成される合金を得ることを特徴とする高融点
金属間化合物Nb3Al基合金の製造方法。
1. A method for producing a refractory intermetallic compound Nb 3 Al-based alloy, wherein Nb 3 A mainly having an A15 type crystal structure is used.
l By mechanically deforming the intermetallic compound powder, a nonequilibrium supersaturated solid solution powder having a bcc type crystal structure is formed in a volume ratio of 50% or more, molded and sintered to mainly form A15.
A method for producing a refractory intermetallic compound Nb 3 Al-based alloy, characterized in that an alloy composed of a type phase is obtained.
【請求項2】請求項1において、bcc非平衡過飽和固
溶体粉末をA15型結晶構造に変態する温度700℃以
下で加圧成型した後に、700℃以上の温度で加熱する
ことによって焼結成型させると同時に、成型体すべてを
安定なA15型結晶構造相,bcc相,σ相に変態させ
る高融点金属間化合物Nb3Al 基合金の製造方法。
2. The method according to claim 1, wherein the bcc non-equilibrium supersaturated solid solution powder is pressure-molded at a temperature of 700 ° C. or lower at which it transforms into an A15 type crystal structure, and then sintered and molded by heating at a temperature of 700 ° C. or higher. At the same time, a method for producing a refractory intermetallic compound Nb 3 Al-based alloy in which all of the formed bodies are transformed into stable A15 type crystal structure phase, bcc phase, and σ phase.
【請求項3】請求項1において、作成されたbcc非平
衡過飽和固溶体粉末と添加元素粉末とを機械的混合によ
って合金化させ、添加元素をbcc過飽和固溶体粉末中
に均一に固溶させる工程を成型段階の前に行なう高融点
金属間化合物Nb3Al 基合金の製造方法。
3. The method according to claim 1, wherein the prepared bcc non-equilibrium supersaturated solid solution powder and the additive element powder are alloyed by mechanical mixing, and the additive element is uniformly dissolved in the bcc supersaturated solid solution powder. A method for producing a refractory intermetallic compound Nb 3 Al-based alloy before the step.
【請求項4】請求項1において、Nb−Al合金粉末と
作成されたbcc非平衡過飽和固溶体粉末とを、後者の
体積比が50%以上となるように混合し、前記混合物を
成型,焼結する高融点金属間化合物Nb3Al 基合金の
製造方法。
4. The Nb-Al alloy powder according to claim 1, and the bcc non-equilibrium supersaturated solid solution powder prepared are mixed so that the volume ratio of the latter is 50% or more, and the mixture is molded and sintered. A method for producing a high melting point intermetallic compound Nb 3 Al based alloy.
【請求項5】A15型結晶構造を有する高融点金属間化
合物Mo3Al ,Ta3Al ,V3Al,Mo3Al,N
3Si,Mo3Si,Cr3Si,V3Si,Nb3
n,Nb3Ge 、また、複雑な結晶構造を有する高融点
金属間化合物MoSi2 ,WSi2 のうちのいずれかの
化合物粉末に、機械的変形を与え体積比50%以上のb
cc非平衡過飽和固溶体を形成し、bcc構造から安定
な結晶構造に変態する温度以下で加圧成形した後、変態
温度以上に保持することによって焼結と同時に安定な結
晶構造に変態させる高融点金属間化合物基合金の製造方
法。
5. A refractory intermetallic compound having an A15 type crystal structure, Mo 3 Al, Ta 3 Al, V 3 Al, Mo 3 Al, N.
b 3 Si, Mo 3 Si, Cr 3 Si, V 3 Si, Nb 3 S
n, Nb 3 Ge, or a high melting point intermetallic compound MoSi 2 or WSi 2 having a complicated crystal structure is mechanically deformed to give a b content of 50% or more by volume.
cc A non-equilibrium supersaturated metal that forms a non-equilibrium supersaturated solid solution, press-molds at a temperature below the temperature at which it transforms from a bcc structure into a stable crystal structure, and then holds the temperature above the transformation temperature to transform it into a stable crystal structure simultaneously with sintering. Method for producing intermetallic compound base alloy.
【請求項6】請求項5において、作成されたbcc非平
衡過飽和固溶体粉末と添加元素粉末とを機械的混合によ
って合金化させ、bcc過飽和固溶体粉末中に均一に固
溶させる工程を成型段階の前に行なう高融点金属間化合
物の製造方法。
6. A process according to claim 5, wherein a step of alloying the prepared bcc non-equilibrium supersaturated solid solution powder and the additive element powder by mechanical mixing to uniformly form a solid solution in the bcc supersaturated solid solution powder before the molding step. A method for producing a high-melting point intermetallic compound according to claim 1.
JP1163392A 1992-01-27 1992-01-27 Production of inter-high-melting-metallic compound-base alloy Pending JPH05202437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1163392A JPH05202437A (en) 1992-01-27 1992-01-27 Production of inter-high-melting-metallic compound-base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1163392A JPH05202437A (en) 1992-01-27 1992-01-27 Production of inter-high-melting-metallic compound-base alloy

Publications (1)

Publication Number Publication Date
JPH05202437A true JPH05202437A (en) 1993-08-10

Family

ID=11783353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163392A Pending JPH05202437A (en) 1992-01-27 1992-01-27 Production of inter-high-melting-metallic compound-base alloy

Country Status (1)

Country Link
JP (1) JPH05202437A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252554A (en) * 1994-03-14 1995-10-03 Natl Res Inst For Metals Method for inhibiting high-temperature oxidation of nb-al based alloy and nb-al based alloy obtained thereby
CN101967591A (en) * 2010-11-09 2011-02-09 上海大学 Method for preparing Nb3Al superconducting material by mechanical alloying method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252554A (en) * 1994-03-14 1995-10-03 Natl Res Inst For Metals Method for inhibiting high-temperature oxidation of nb-al based alloy and nb-al based alloy obtained thereby
CN101967591A (en) * 2010-11-09 2011-02-09 上海大学 Method for preparing Nb3Al superconducting material by mechanical alloying method

Similar Documents

Publication Publication Date Title
JP5826219B2 (en) Method for making a metal article having other additive components without melting
US5098469A (en) Powder metal process for producing multiphase NI-AL-TI intermetallic alloys
JPH0617524B2 (en) Magnesium-titanium sintered alloy and method for producing the same
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
SE520561C2 (en) Process for preparing a dispersion curing alloy
JP2002003977A (en) TiB PARTICLE REINFORCED Ti2AlNb INTERMETALLIC COMPOUND MATRIX COMPOSITE MATERIAL AND ITS PRODUCTION METHOD
JPH02197535A (en) Manufacture of intermetallic compound
US5015440A (en) Refractory aluminides
JPH05202437A (en) Production of inter-high-melting-metallic compound-base alloy
EP1428896B1 (en) Method for producing a metallic alloy by dissolution, oxidation and chemical reduction
Dey et al. Micropyretic synthesis of NiAl containing Ti and B
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
JPH05345937A (en) Production of ti-fe-al type sintered titanium alloy
US20050163646A1 (en) Method of forming articles from alloys of tin and/or titanium
Bauer et al. TiAl-based alloys with nickel
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JP4140176B2 (en) Low thermal expansion heat resistant alloy and method for producing the same
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH09287038A (en) Production of composite product of titanium-aluminum alloy and metal fiber
JPS61159539A (en) Manufacture of shape memory alloy
JP3413921B2 (en) Method for producing Ti-Al based intermetallic compound sintered body
JP2006176802A (en) Method for manufacturing high-strength magnesium alloy using solid-state reaction by hydrogenation and dehydrogenation
JP2636114B2 (en) Production of TiAl-based intermetallic compounds by diffusion synthesis
JPH0633165A (en) Manufacture of sintered titanium alloy