JPH05345937A - Production of ti-fe-al type sintered titanium alloy - Google Patents

Production of ti-fe-al type sintered titanium alloy

Info

Publication number
JPH05345937A
JPH05345937A JP9825592A JP9825592A JPH05345937A JP H05345937 A JPH05345937 A JP H05345937A JP 9825592 A JP9825592 A JP 9825592A JP 9825592 A JP9825592 A JP 9825592A JP H05345937 A JPH05345937 A JP H05345937A
Authority
JP
Japan
Prior art keywords
weight
alloy
powder
less
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9825592A
Other languages
Japanese (ja)
Inventor
Hideki Fujii
秀樹 藤井
Takao Horitani
貴雄 堀谷
Tatsuo Yamazaki
達夫 山崎
Kazuhiro Takahashi
一浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9825592A priority Critical patent/JPH05345937A/en
Publication of JPH05345937A publication Critical patent/JPH05345937A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce a Ti-Al-Fe type sintered Ti alloy almost free from segregation and having homogeneous material characteristics. CONSTITUTION:When a sintered Ti alloy contg. Fe and Al as alloying elements is produced by a powder mixing method, Fe-Ti alloy powder consisting of 40-<60wt.% Fe and the balance essentially Ti and Al-Ti alloy powder consisting of 30-<45wt.% Al and the balance essentially Ti are used as mother alloys. Various Ti-Al-Fe alloys almost free from segregation and having homogeneous quality can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金法による焼結
チタン合金の製造方法に関する。さらに詳しくは、素粉
末混合法による焼結チタン合金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered titanium alloy by powder metallurgy. More specifically, it relates to a method for producing a sintered titanium alloy by the elementary powder mixing method.

【0002】[0002]

【従来の技術】軽量、高強度などの優れた特性を有する
反面、加工性、成形性、被削性などが劣るチタン合金
は、より最終形状に近い形状の製品を直接製造するニア
ーネットシェイプ技術により製造コストの低減が試みら
れてきた。粉末冶金法もその一つであるが、Ti−5A
l−2.5Fe合金のように、凝固偏析を起こし易いF
eなどの元素を合金元素として含む場合、溶解−精密鍛
造法や精密鋳造法などでは、偏析起因の材質特性劣化、
例えば疲労強度の低下が避けられず、このような合金の
製造においては粉末冶金法はきわめて有利な方法であ
る。さらに、粉末冶金法の中でも、チタン粉末と合金元
素粉末あるいは母合金粉末を混合し、容器に充填し、成
形し、1100〜1350℃で真空焼結するいわゆる
「素粉末混合法」は、成形性の良い軟質の純チタン粉末
を原料粉末として使用することから、室温で精度の良い
成形が可能であり、また、焼結と合金化を同時に行うこ
とから、製造コストがきわめて安くなるという利点をも
有している。
2. Description of the Related Art Titanium alloy, which has excellent characteristics such as light weight and high strength, but is inferior in workability, formability, and machinability, is a near net shape technology for directly manufacturing products with a shape closer to the final shape. Have attempted to reduce the manufacturing cost. Powder metallurgy is one of them, but Ti-5A
Like the l-2.5Fe alloy, F that easily causes solidification segregation
When an element such as e is included as an alloying element, in melting-precision forging method or precision casting method, deterioration of material properties due to segregation,
For example, a decrease in fatigue strength is unavoidable, and powder metallurgy is an extremely advantageous method for producing such an alloy. Further, among the powder metallurgy methods, the so-called "elementary powder mixing method" in which titanium powder and alloy element powder or mother alloy powder are mixed, filled in a container, molded, and vacuum sintered at 1100 to 1350 ° C. The use of soft and pure pure titanium powder as a raw material powder enables accurate molding at room temperature, and since sintering and alloying are performed at the same time, the manufacturing cost is extremely low. Have

【0003】このような観点から、Ti−Fe−Al系
チタン合金でも素粉末混合法が試みられているが、最も
単純な方法としては、所望の合金組成に対応したAl粉
末とFe粉末をTi粉末と直接混合する方法が容易に考
えられる。しかしながら、この方法には次のような欠点
があり、工業的には実用的方法ではない。まず、真空焼
結の初期段階あるいは焼結温度にまで加熱する途中で、
Al粉末とTi粉末の接触部で金属間化合物合成発熱反
応が起こり、融点が660℃と低いAlは溶解し、Ti
粉末の間へ浸透し、跡に粗大な空隙を生じさせる。その
ため焼結の進行が遅くなり、場合によっては粗大な空隙
が材質特性を劣化させる。また、Ti合金中でのFeの
拡散速度はTi自身に比べて著しく速く、そのため焼結
時には短時間でFe粉からTi粉へFe原子が拡散する
が、一方、体心立方構造のβチタンからは面心立方構造
のFe中へはTi原子はあまり拡散しない。そのため、
Feの流出が一方的に起こり、Fe粉の残部に粗大な空
隙が生成する。その結果、焼結の進行が遅くなったり、
場合によっては疲労特性などの材質特性も劣化する。
From such a point of view, an elementary powder mixing method has been attempted even for a Ti-Fe-Al titanium alloy, but the simplest method is to mix Al powder and Fe powder corresponding to a desired alloy composition with Ti powder. A method of directly mixing with the powder is easily conceivable. However, this method has the following drawbacks and is not industrially practical. First, during the initial stage of vacuum sintering or during heating to the sintering temperature,
An intermetallic compound synthesis exothermic reaction occurs at the contact portion between the Al powder and the Ti powder, and Al having a low melting point of 660 ° C. is melted,
Penetrates between powders, creating coarse voids in the traces. Therefore, the progress of sintering is delayed, and in some cases coarse voids deteriorate the material properties. Further, the diffusion rate of Fe in the Ti alloy is remarkably faster than that of Ti itself, so that Fe atoms diffuse from the Fe powder to the Ti powder in a short time during sintering, while the β-titanium of the body-centered cubic structure Does not diffuse much Ti atoms into Fe having a face-centered cubic structure. for that reason,
Outflow of Fe occurs unilaterally, and coarse voids are generated in the balance of Fe powder. As a result, the progress of sintering is delayed,
In some cases, material properties such as fatigue properties also deteriorate.

【0004】このような欠点は、Al粉およびFe粉を
数μmの粒径にまで小さくすればある程度回避できる
が、活性な金属粉末の取扱いがさらに難しくなるだけで
なく、不可避的な振動などのため、通常数十μm程度の
粒径で使用されるTi粉と合金元素粉末の分離が起こ
り、大きな偏析を引き起こす危険性がある。
Although such a drawback can be avoided to some extent by reducing the particle size of Al powder and Fe powder to several μm, it is not only difficult to handle the active metal powder, but also unavoidable vibration and the like occur. Therefore, there is a risk that the Ti powder and the alloying element powder, which are usually used with a particle diameter of about several tens of μm, are separated from each other, causing a large segregation.

【0005】一方、Al−Fe合金を母合金として使用
する方法も考えられるが、AlとFeが特定の比率で含
まれている場合以外は、この合金は延性に富むため、粉
砕し難く、粉末を得にくいという欠点がある。このよう
な、欠点を解消する方法として、特開平2−17583
1号公報記載のTi−Al−Feの三元合金を母合金と
して使用する方法がある(以下このような母合金を三元
母合金と記す)。この方法では、AlとFeの比が5:
2.5で、さらに5重量%以上50重量%未満のTiを
含む合金を母合金とする方法であり、粉砕性も良く、母
合金粉末を得易い。
On the other hand, a method of using an Al-Fe alloy as a mother alloy is also conceivable. However, except when Al and Fe are contained in a specific ratio, this alloy is rich in ductility and is difficult to pulverize, so that powder There is a drawback that it is difficult to obtain. As a method for solving such a defect, Japanese Patent Laid-Open No. 17583/1990.
There is a method of using a ternary alloy of Ti-Al-Fe described in Japanese Patent No. 1 as a master alloy (hereinafter, such a master alloy is referred to as a ternary master alloy). In this method, the ratio of Al to Fe is 5:
This is a method in which an alloy containing 2.5% by weight and less than 50% by weight of Ti is used as the master alloy, the pulverizability is good, and the master alloy powder is easily obtained.

【0006】この方法では、TiとAlはすでに金属間
化合物となっているため、Al粉とTi粉を直接混合し
た場合のような欠点は確かに解消できる。しかし、金属
間化合物相はα相やβ相のような固溶金属相に比べて元
素の拡散は著しく遅いという欠点がある。この三元合金
においても、Tiの量が少ない場合には、Al3 Ti金
属間化合物が主相となるため、AlがTi粉末に拡散し
てAlの濃度が減少しても、さらに別の金属間化合物相
であるTiAl相が生成し、拡散の速いβ相などの金属
固溶相はなかなか出現しにくい。そのためAlの偏析が
生じ易い。さらに、母合金中に含まれているFeは、き
わめて拡散が速いため、母合金からFe原子が流出した
後、外部からTi原子が十分に供給されず、原子空孔が
多量に生成し、これらは凝集体すなわち、いわゆるカー
ケンドルボイドを形成し、Feが流出した後の母合金と
Ti粉末の接触面積を減少させ、その結果、Alの偏析
を引き起こしたり焼結の進行を妨げるという欠点もあ
る。また、このような不均一組織が起因して疲労強度な
どの材質特性も低下する場合がある。さらに、この三元
合金を母合金として使用する方法は、Ti−5Al−
2.5Fe合金を製造する場合には便利な方法である
が、任意のAlおよびFe量に対応した合金系の製造に
は不向きである。
In this method, since Ti and Al are already intermetallic compounds, the drawbacks such as when Al powder and Ti powder are directly mixed can be eliminated. However, the intermetallic compound phase has a drawback that the diffusion of elements is significantly slower than that of a solid solution metal phase such as α phase or β phase. Also in this ternary alloy, when the amount of Ti is small, the Al 3 Ti intermetallic compound becomes the main phase, so even if Al diffuses into the Ti powder and the concentration of Al decreases, another metal A TiAl phase, which is an intermetallic compound phase, is formed, and a metal solid solution phase such as a β phase having a fast diffusion hardly appears. Therefore, segregation of Al easily occurs. Further, since Fe contained in the mother alloy diffuses extremely quickly, after the Fe atoms flow out from the mother alloy, Ti atoms are not sufficiently supplied from the outside, and a large number of atomic vacancies are generated. Has a drawback that it forms aggregates, that is, so-called Kirkendall voids, and reduces the contact area between the mother alloy and the Ti powder after the outflow of Fe, resulting in the segregation of Al and the prevention of the progress of sintering. .. Further, due to such a non-uniform structure, material properties such as fatigue strength may be deteriorated. Furthermore, the method of using this ternary alloy as a master alloy is Ti-5Al-
Although it is a convenient method for producing a 2.5Fe alloy, it is not suitable for producing an alloy system corresponding to arbitrary amounts of Al and Fe.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記問題点
を解消しようとするものであり、偏析が少なく、均質な
材質特性のTi−Al−Fe系焼結チタン合金の製造方
法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention is intended to solve the above problems and provides a method for producing a Ti-Al-Fe system sintered titanium alloy having less segregation and uniform material characteristics. The purpose is that.

【0008】[0008]

【課題を解決するための手段】本発明者らは、Ti,A
l,Feおよびこれらの化合物の相互の拡散に関する研
究努力を傾注した結果、使用する母合金の組成および種
類を工夫することにより、従来技術の問題点を解消し、
きわめて偏析の少ない、かつ均質な材質特性のTi−A
l−Fe系焼結チタン合金を製造する方法を見いだし
た。
The present inventors have found that Ti, A
As a result of concentrating research efforts on the mutual diffusion of l, Fe and these compounds, the problems of the prior art were solved by devising the composition and type of the mother alloy to be used,
Ti-A with extremely low segregation and uniform material properties
A method for producing an 1-Fe-based sintered titanium alloy was found.

【0009】すなわち本発明は、(1)FeおよびAl
を合金元素として含む焼結チタン合金を素粉末混合法に
て製造する方法において、40重量%以上60重量%未
満のFeを含み残部が実質的にTiであるFe−Ti合
金粉末と、30重量%以上45重量%未満のAlを含み
残部が実質的にTiであるAl−Ti合金粉末を、母合
金として使用することを特徴とするものであり、(2)
4重量%以上6重量%未満のAlと1.5重量%以上
3.5重量%未満のFeを含み残部が実質的にTiであ
る焼結チタン合金を素粉末混合法にて製造する方法にお
いて、40重量%以上60重量%未満のFeを含み残部
が実質的にTiであるFe−Ti合金粉末と、30重量
%以上45重量%未満のAlを含み残部が実質的にTi
であるAl−Ti合金粉末を、母合金として使用するこ
とを特徴とするものであり、(3)1.5重量%以上
3.5重量%未満のAlと0.75重量%以上1.75
重量%未満のFeを含み残部が実質的にTiである焼結
チタン合金を素粉末混合法にて製造する方法において、
40重量%以上60重量%未満のFeを含み残部が実質
的にTiであるFe−Ti合金粉末と、30重量%以上
45重量%未満のAlを含み残部が実質的にTiである
Al−Ti合金粉末を、母合金として使用することを特
徴とするものであり、(4)6重量%以上8重量%未満
のAlと2.5重量%以上4.5重量%未満のFeを含
み、残部が実質的にTiである焼結チタン合金を素粉末
混合法にて製造する方法において、40重量%以上60
重量%未満のFeを含み残部が実質的にTiであるFe
−Ti合金粉末と、30重量%以上45重量%未満のA
lを含み残部が実質的にTiであるAl−Ti合金粉末
を、母合金として使用することを特徴とする。
That is, the present invention provides (1) Fe and Al
In a method for producing a sintered titanium alloy containing as an alloying element by an elementary powder mixing method, an Fe-Ti alloy powder containing 40% by weight or more and less than 60% by weight of Fe and the balance being substantially Ti, and 30% by weight. % Or more and less than 45% by weight of Al and the balance being substantially Ti, Al-Ti alloy powder is used as a mother alloy, (2)
A method for producing a sintered titanium alloy containing 4% by weight or more and less than 6% by weight of Al and 1.5% by weight or more and less than 3.5% by weight of Fe, and the balance of which is substantially Ti, by an elementary powder mixing method. , An Fe-Ti alloy powder containing 40% by weight or more and less than 60% by weight of Fe and the balance being substantially Ti, and an Al-containing Al powder of 30% by weight or more and less than 45% by weight and the balance being substantially Ti.
Is used as a master alloy, and (3) 1.5% by weight or more and less than 3.5% by weight Al and 0.75% by weight or more and 1.75% by weight or more.
In a method for producing a sintered titanium alloy containing less than wt% Fe by weight, the balance being substantially Ti, by the elementary powder mixing method,
Fe-Ti alloy powder containing 40% by weight or more and less than 60% by weight of Fe and the balance substantially Ti, and Al-Ti containing 30% by weight or more and less than 45% by weight of Al and the balance substantially Ti. An alloy powder is used as a master alloy, which comprises (4) 6 wt% or more and less than 8 wt% Al and 2.5 wt% or more and less than 4.5 wt% Fe, and the balance In a method for producing a sintered titanium alloy in which is substantially Ti by a raw powder mixing method, 40% by weight or more and 60% or more
Fe containing less than wt% Fe and the balance essentially Ti
-Ti alloy powder and A of 30% by weight or more and less than 45% by weight
An Al-Ti alloy powder containing 1 and having the balance substantially Ti is used as a master alloy.

【0010】なお、Ti−Al−Fe系チタン合金と
は、Tiを70重量%以上含有し、かつ主要合金元素と
してAlとFeを含有する合金で、例えば、Ti−5A
l−2.5Feなどである。またAl,Fe以外の第3
の合金元素やセラミックス粒子などが1種類以上含まれ
ていても良く、これを制限するものではない。
The Ti-Al-Fe system titanium alloy is an alloy containing 70% by weight or more of Ti and Al and Fe as main alloying elements, for example, Ti-5A.
1-2.5Fe and the like. In addition, the third other than Al, Fe
One or more kinds of alloying elements, ceramic particles, and the like may be contained, but the present invention is not limited thereto.

【0011】[0011]

【作用】以下、本発明について詳細に説明する。本発明
では、焼結の進行を妨げず、かつ偏析を生じにくい母合
金を選択する際に、次の3点をポイントとした。すなわ
ち、第1には、Ti粉との間で激しい発熱反応を起こさ
ないこと、第2には、焼結初期もしくは昇温途中で、拡
散の速い金属固溶相が生じること、第3には、Tiと合
金元素が相互に均等に拡散すること、である。
The present invention will be described in detail below. In the present invention, the following three points were taken as points when selecting a mother alloy that does not hinder the progress of sintering and is resistant to segregation. That is, firstly, a violent exothermic reaction with the Ti powder does not occur, secondly, a metal solid solution phase with fast diffusion occurs at the initial stage of sintering or during the temperature rise, and thirdly. , Ti and alloying elements diffuse into each other uniformly.

【0012】まず、本発明ではFeの添加は、40重量
%以上60重量%未満のFeを含み残部が実質的にTi
であるFe−Ti合金粉末(以下ではこれをFe−Ti
二元合金粉と記す)を使用する。Fe−Ti二元合金粉
は、FeTi金属間化合物相を主とする合金粉末で、少
量のα相あるいはβ相、あるいはTiFe2 相を含んで
いる。きわめて脆弱な金属間化合物相を主相とするた
め、粉砕性に優れており、工業的に使用し易い数十μm
〜100μm程度の粉末は容易に得ることができる。こ
のFe−Ti二元合金粉を母合金として使用すると、焼
結初期あるいは昇温途中にまず拡散の速いFeが周囲の
Ti粉に拡散し、母合金中のFe濃度が減少し、体心立
方構造のβ相が主相に転じる。一方、Feが流入したT
i粉も同様の体心立方構造のβ相であるため、Fe粉を
直接Ti粉と混合した場合に起こるような、Feの一方
的流出は起こらない。すなわち、Fe原子とTi原子の
相互方向への拡散がより均等に起こり、焼結の進行を妨
げる粗大空隙生成を防止することができる。また、β相
は拡散の速い金属固溶相であり、Ti粉とFe−Ti二
元合金粉の間では発熱反応も起きない。すなわち、本発
明の3つのポイントをすべて満たしている。
First, in the present invention, the addition of Fe contains 40% by weight or more and less than 60% by weight of Fe and the balance is substantially Ti.
Fe-Ti alloy powder that is (hereinafter referred to as Fe-Ti
Binary alloy powder). The Fe-Ti binary alloy powder is an alloy powder mainly composed of a FeTi intermetallic compound phase, and contains a small amount of α phase or β phase, or TiFe 2 phase. Since the main phase is an extremely fragile intermetallic compound phase, it has excellent grindability and is easy to use industrially of several tens of μm.
A powder of about 100 μm can be easily obtained. When this Fe-Ti binary alloy powder is used as a master alloy, Fe with fast diffusion diffuses into the surrounding Ti powder at the initial stage of sintering or during the temperature rise, the Fe concentration in the master alloy decreases, and the body-centered cubic The β phase of the structure turns into the main phase. On the other hand, T into which Fe flows
Since i powder is also a β phase having a similar body-centered cubic structure, unilateral outflow of Fe, which occurs when Fe powder is directly mixed with Ti powder, does not occur. That is, the diffusion of Fe atoms and Ti atoms in the mutual direction occurs more evenly, and the formation of coarse voids that hinder the progress of sintering can be prevented. Further, the β phase is a metal solid solution phase with fast diffusion, and an exothermic reaction does not occur between the Ti powder and the Fe—Ti binary alloy powder. That is, all three points of the present invention are satisfied.

【0013】なお、本発明において、Fe−Ti二元合
金粉のFeの量を40%以上60%未満としたのは、4
0%未満では脆弱なFeTi金属間化合物相の割合が少
なくなり、粉砕性が損なわれ、工業的に使用し易い数十
μm〜100μm程度の粉末が得にくくなり、また、6
0%以上では焼結時に体心立方構造で拡散の速いβ相を
得るのに長い時間を要すため、Feの偏析を生じやすく
なり、本発明の効果が十分に達成されないからである。
In the present invention, the amount of Fe in the Fe-Ti binary alloy powder is set to 40% or more and less than 60% as follows:
If it is less than 0%, the proportion of the fragile FeTi intermetallic compound phase decreases, the pulverizability is impaired, and it becomes difficult to obtain a powder of about several tens of μm to 100 μm that is industrially easy to use.
If it is 0% or more, it takes a long time to obtain a β phase having a body-centered cubic structure and rapidly diffusing at the time of sintering, so that segregation of Fe is likely to occur and the effect of the present invention is not sufficiently achieved.

【0014】次に、本発明ではAlの添加は、30重量
%以上45重量%未満のAlを含み残部が実質的にTi
であるAl−Ti合金粉末(以下ではこれをAl−Ti
二元合金粉と記す)を使用する。Al−Ti二元合金
は、AlTi金属間化合物を主相とする合金粉末で、少
量のα2 相あるいはTiAl2 相を含んでいる。きわめ
て脆弱な金属間化合物相を主相とするため、粉砕性に優
れており、工業的に使用し易い数十μm〜100μm程
度の粉末は容易に得ることができる。また、化学的に安
定な金属間化合物相を主相としているため、Al粉を直
接Ti粉と混合した場合のような、化合物合成発熱反応
は起こらない。さらに、拡散の速いFeを含んでいない
ため、三元合金粉を使用した場合のような、Fe原子の
一方的流出にともなう多量の原子空孔の生成およびこれ
らの凝集体の生成は起こらず、安定してAl原子がTi
粉側へ、またTi原子がTi−Al二元母合金粉側へ相
互に拡散することが可能となる。また、このAl−Ti
二元合金粉を母合金として使用すると、焼結初期あるい
は昇温途中にAlが周囲のTi粉に拡散し、母合金中の
Al濃度が減少し、拡散の速い金属固溶相が生成し、A
lおよびTiともに拡散が速くなり、焼結および合金化
が促進される。以上のように、Al−Ti二元合金粉の
使用は、本発明の3つのポイントをすべて満たしてい
る。
Next, in the present invention, the addition of Al contains 30% by weight or more and less than 45% by weight of Al, and the balance is substantially Ti.
Al-Ti alloy powder that is (hereinafter referred to as Al-Ti
Binary alloy powder). The Al-Ti binary alloy is an alloy powder having an AlTi intermetallic compound as a main phase, and contains a small amount of α 2 phase or TiAl 2 phase. Since the extremely fragile intermetallic compound phase is the main phase, it has excellent pulverizability, and powders of several tens of μm to 100 μm that are easy to use industrially can be easily obtained. Further, since the chemically stable intermetallic compound phase is the main phase, the exothermic reaction for compound synthesis, which occurs when Al powder is directly mixed with Ti powder, does not occur. Furthermore, since it does not contain fast-diffusing Fe, the formation of a large number of atomic vacancies and the formation of aggregates thereof due to the unilateral outflow of Fe atoms, which occurs when using a ternary alloy powder, does not occur. Stable Al atoms are Ti
It becomes possible to mutually diffuse to the powder side and to the Ti atom to the Ti-Al binary mother alloy powder side. In addition, this Al-Ti
When the binary alloy powder is used as the master alloy, Al diffuses into the surrounding Ti powder during the initial stage of sintering or during the temperature rise, the Al concentration in the master alloy decreases, and a fast-diffusion metal solid solution phase is generated. A
Both l and Ti diffuse faster and promote sintering and alloying. As described above, the use of the Al-Ti binary alloy powder satisfies all three points of the present invention.

【0015】なお、本発明において、Al−Ti二元合
金粉のAlの量を30%以上45%未満としたのは、3
0%未満では脆弱なAlTi金属間化合物相の割合が少
なくなり、粉砕性が損なわれ、工業的に使用し易い数十
μm〜100μm程度の粉末が得にくくなり、また、4
5%以上では焼結時に拡散の速い金属固溶相が現れにく
く、焼結の進行が遅れたりAlが偏析したりするからで
ある。
In the present invention, the amount of Al in the Al-Ti binary alloy powder is set to 30% or more and less than 45% is 3%.
If it is less than 0%, the proportion of the brittle AlTi intermetallic compound phase decreases, the pulverizability is impaired, and it becomes difficult to obtain a powder of about several tens of μm to 100 μm that is industrially easy to use.
This is because if it is 5% or more, a metal solid solution phase that diffuses quickly is difficult to appear during sintering, the progress of sintering is delayed, and Al segregates.

【0016】本発明2では、本発明を特に、Ti−5A
l−2.5Fe合金、すなわち4重量%以上6重量%未
満のAlと1.5重量%以上3.5重量%未満のFeを
含み残部が実質的にTiである焼結チタン合金を素粉末
混合法にて製造する方法に適用したものである。さら
に、本発明3は、本発明をTi−5Al−2.5Fe合
金の合金元素量を半分に減じた合金、すなわち1.5重
量%以上3.5重量%未満のAlと0.75重量%以上
1.75重量%未満のFeを含み残部が実質的にTiで
ある焼結チタン合金を素粉末混合法にて製造する方法に
適用したものである。また、本発明4は、6重量%以上
8重量%未満のAlと2.5重量%以上4.5重量%未
満のFeを含み残部が実質的にTiである焼結チタン合
金を素粉末混合法にて製造する方法に、特に適用したも
のである。
In the second aspect of the present invention, the present invention is particularly applicable to Ti-5A.
1-2.5Fe alloy, that is, a sintered titanium alloy containing 4% by weight or more and less than 6% by weight of Al and 1.5% by weight or more and less than 3.5% by weight of Fe and the balance being substantially Ti It is applied to the method of manufacturing by the mixing method. Further, the present invention 3 is an alloy obtained by reducing the alloy element amount of the Ti-5Al-2.5Fe alloy by half, that is, 1.5% by weight or more and less than 3.5% by weight Al and 0.75% by weight. The present invention is applied to a method for producing a sintered titanium alloy containing less than 1.75% by weight of Fe and the balance being substantially Ti by the elementary powder mixing method. Further, the present invention 4 is a powdered mixture of a sintered titanium alloy containing 6% by weight or more and less than 8% by weight of Al and 2.5% by weight or more and less than 4.5% by weight of Fe and the balance being substantially Ti. It is particularly applied to the method of manufacturing by the method.

【0017】[0017]

【実施例】以下、本発明についてさらに詳しく説明す
る。表1は、アーク溶解した各種合金組成の鋳塊を、ス
タンプミルで破砕し、さらにディスクミルで1分間粉砕
し、150μm以下の粒径の粉末の割合を調べた結果で
ある。本発明にて使用する、40重量%以上のFeを含
むFe−Ti合金、および30重量%以上のAlを含む
Al−Ti合金はいずれも粉砕性に優れており、80%
以上が所望の粒径の粉末にまで粉砕されている。一方、
40重量%に満たない量のFeしか含まないTi−37
重量%Fe合金、および30重量%に満たない量のAl
しか含まないTi−28重量%Al合金では、粉砕性に
乏しくいずれも60%以下の少量しか所望の粒径にまで
粉砕されていない。これはこれらの合金が脆弱な金属間
化合物相を主相としていないからである。
The present invention will be described in more detail below. Table 1 shows the results of crushing arc-melted ingots of various alloy compositions with a stamp mill and further pulverizing with a disc mill for 1 minute, and examining the proportion of powder having a particle size of 150 μm or less. The Fe-Ti alloy containing 40% by weight or more of Fe and the Al-Ti alloy containing 30% by weight or more of Al used in the present invention have excellent pulverizability and 80%.
The above is pulverized into powder having a desired particle size. on the other hand,
Ti-37 containing less than 40% by weight of Fe
Wt% Fe alloy and less than 30 wt% Al
The Ti-28 wt% Al alloys containing only these are poor in pulverizability, and only a small amount of 60% or less is pulverized to a desired particle size. This is because these alloys do not have a brittle intermetallic compound phase as the main phase.

【0018】[0018]

【表1】 [Table 1]

【0019】表2は、種々の合金元素粉末および母合金
粉末を、平均粒径80μmのチタン粉末と混合し、CI
P(冷間静水圧プレス)によって500MPa の圧力で成
形し、1250℃で4時間真空焼結することにより、T
i−Fe−Al系焼結チタン合金を製造し、焼結後の相
対密度を調べた結果である。一部の試料は、さらにHI
P処理(熱間静水圧プレス)を900℃で行い、回転曲
げ疲労試験を行い、繰り返し数107 回における疲労強
度を調べた。なお、使用したAl粉およびFe粉は平均
粒径44μmであり、その他の母合金粉末はいずれも平
均粒径75μmである。
Table 2 shows that various alloy element powders and mother alloy powders were mixed with titanium powder having an average particle size of 80 μm to obtain CI.
P (cold isostatic press) at a pressure of 500 MPa and vacuum sintering at 1250 ° C. for 4 hours
It is a result of manufacturing an i-Fe-Al-based sintered titanium alloy and examining the relative density after sintering. Some samples have
P treatment (hot isostatic pressing) was performed at 900 ° C., a rotary bending fatigue test was performed, and the fatigue strength after repeating 10 7 times was examined. The Al powder and Fe powder used had an average particle size of 44 μm, and the other master alloy powders all had an average particle size of 75 μm.

【0020】[0020]

【表2】 [Table 2]

【0021】表2において、試験番号1は、Fe粉およ
びAl粉をTi−5Al−2.5Feの組成となるよう
にTi粉と混合した場合であり、焼結後の密度は95%
にも満たない。またHIP材の疲労強度も420MPa と
低い値である。これは、真空焼結の初期段階あるいは焼
結温度にまで加熱途中で、Al粉末とTi粉末の接触部
で金属間化合物合成発熱反応が起こり、溶解したAlが
Ti粉末の間へ浸透し、跡に粗大な空隙を残存させたこ
とと、拡散の速いFeがTi粉末中へ流出した残部に粗
大な空隙が生成したことにより、焼結の進行が遅くな
り、密度が上昇しなかったばかりか、HIP処理を行っ
ても、粗大な空隙が完全には除去されず、疲労特性が劣
化したものである。試験番号2は、三元母合金を使用し
た従来法であり、試験番号1に比べると、焼結密度およ
びHIP材の疲労特性ともにやや向上するが、十分では
ない。これは、拡散の遅いTi−Al系の金属間化合物
相がなかなか消失しなかったことと、拡散の速いFeの
流出にともなうカーケンドルボイドがAlの拡散を阻害
し、その結果Alの偏析が生じたり、焼結の進行が妨げ
られたりして、焼結密度の低下や偏析起因の疲労強度低
下が生じたものである。
In Table 2, Test No. 1 is a case where Fe powder and Al powder were mixed with Ti powder so as to have a composition of Ti-5Al-2.5Fe, and the density after sintering was 95%.
Less than Further, the fatigue strength of the HIP material is a low value of 420 MPa. This is because the intermetallic compound synthesis exothermic reaction occurs at the contact portion between the Al powder and the Ti powder during the initial stage of vacuum sintering or during heating to the sintering temperature, and the dissolved Al permeates between the Ti powder, In addition to the fact that the coarse voids remained in the steel and that the rapidly diffusing Fe flowed out into the Ti powder to form the coarse voids in the remainder, the progress of sintering was slowed and the density did not rise. Even if the treatment is performed, coarse voids are not completely removed, and the fatigue characteristics are deteriorated. Test No. 2 is a conventional method using a ternary mother alloy, and compared with Test No. 1, both the sintered density and the fatigue properties of the HIP material are slightly improved, but they are not sufficient. This is because the Ti-Al-based intermetallic compound phase with slow diffusion did not easily disappear, and Kirkendall voids accompanying the outflow of Fe with fast diffusion hindered the diffusion of Al, resulting in segregation of Al. Or, the progress of sintering is hindered, resulting in a decrease in sintered density and a decrease in fatigue strength due to segregation.

【0022】試験番号3,4,6は本発明により、Ti
−5Al−2.5Fe合金を製造した実施例であり、い
ずれも96.0%以上の高い焼結密度が得られており、
さらには、HIP後の疲労強度も480MPa 以上ときわ
めて高い値を示している。試験番号5および7では、焼
結密度がやや低く、HIP後の疲労強度も低下している
が、これは、使用したFe−Ti母合金およびAl−T
i母合金の組成に問題があったためである。すなわち、
試験番号5では、本発明にて規定されている60重量%
を超える量のFeを含むFe−Ti合金を母合金として
使用しており、試験番号7では、本発明にて規定されて
いる45重量%を超える量のAlを含むAl−Ti合金
を母合金として使用している。そのため、焼結時に拡散
の速いβ相などの金属固溶相が容易に生成せず、焼結の
進行遅延や偏析を生じ、焼結密度低下やHIP後の疲労
強度低下を引き起こしたものである。試験番号8および
9は、本発明をTi−2.5Al−1Fe合金およびT
i−7Al−4Fe合金の製造に適用した場合で、本発
明3および4に相当する。表2に示すが如く、いずれも
97%以上のきわめて高い焼結密度となっている。これ
は、本発明の効果が十分に発揮され、偏析や粗大な空隙
を生じること無く、焼結が進行した効果である。
Test Nos. 3, 4, and 6 are Ti according to the present invention.
-5Al-2.5Fe alloy is an example manufactured, and in each case, a high sintered density of 96.0% or more was obtained.
Furthermore, the fatigue strength after HIP shows an extremely high value of 480 MPa or more. In Test Nos. 5 and 7, the sintered density was slightly low and the fatigue strength after HIP was also low, which was due to the Fe-Ti master alloy and Al-T used.
This is because there was a problem with the composition of the i mother alloy. That is,
In test number 5, 60% by weight specified in the present invention
Fe-Ti alloy containing Fe in an amount exceeding 1.0 is used as a master alloy. In Test No. 7, an Al-Ti alloy containing Al in an amount exceeding 45% by weight specified in the present invention is used as a mother alloy. Is used as. As a result, a solid metal solution phase such as a β phase that diffuses rapidly during sintering is not easily generated, and the progress of sintering is delayed or segregated, resulting in a decrease in sintering density and a decrease in fatigue strength after HIP. .. Test Nos. 8 and 9 test the invention with Ti-2.5Al-1Fe alloys and T
When applied to the production of an i-7Al-4Fe alloy, it corresponds to Inventions 3 and 4. As shown in Table 2, all have an extremely high sintered density of 97% or more. This is an effect that the effect of the present invention was sufficiently exhibited, and sintering proceeded without causing segregation or coarse voids.

【0023】[0023]

【発明の効果】以上説明したように、本発明を適用する
ことにより、偏析が少なく、均質な材質特性のTi−A
l−Fe系焼結チタン合金を製造することができる。
As described above, by applying the present invention, Ti-A having less segregation and uniform material characteristics can be obtained.
An l-Fe-based sintered titanium alloy can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 一浩 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiro Takahashi 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 FeおよびAlを合金元素として含む焼
結チタン合金を素粉末混合法にて製造する方法におい
て、40重量%以上60重量%未満のFeを含み残部が
実質的にTiであるFe−Ti合金粉末と、30重量%
以上45重量%未満のAlを含み残部が実質的にTiで
あるAl−Ti合金粉末を、母合金として使用すること
を特徴とするTi−Fe−Al系焼結チタン合金の製造
方法。
1. A method for producing a sintered titanium alloy containing Fe and Al as alloying elements by an elementary powder mixing method, wherein Fe is 40 wt% or more and less than 60 wt% and the balance is substantially Ti. -Ti alloy powder, 30% by weight
A method for producing a Ti-Fe-Al-based sintered titanium alloy, which comprises using an Al-Ti alloy powder containing less than 45% by weight of Al and the balance being substantially Ti as a master alloy.
【請求項2】 4重量%以上6重量%未満のAlと、
1.5重量%以上3.5重量%未満のFeを含み、残部
が実質的にTiである焼結チタン合金を素粉末混合法に
て製造する方法において、40重量%以上60重量%未
満のFeを含み残部が実質的にTiであるFe−Ti合
金粉末と、30重量%以上45重量%未満のAlを含み
残部が実質的にTiであるAl−Ti合金粉末を、母合
金として使用することを特徴とするTi−Fe−Al系
焼結チタン合金の製造方法。
2. Al of 4% by weight or more and less than 6% by weight,
In a method for producing a sintered titanium alloy containing 1.5% by weight or more and less than 3.5% by weight of Fe, and the balance being substantially Ti, by a powder mixing method, 40% by weight or more and less than 60% by weight An Fe-Ti alloy powder containing Fe and the balance being Ti and an Al-Ti alloy powder containing 30% by weight or more and less than 45% by weight Al and the balance being substantially Ti are used as a mother alloy. A method for producing a Ti-Fe-Al-based sintered titanium alloy, comprising:
【請求項3】 1.5重量%以上3.5重量%未満のA
lと、0.75重量%以上1.75重量%未満のFeを
含み、残部が実質的にTiである焼結チタン合金を素粉
末混合法にて製造する方法において、40重量%以上6
0重量%未満のFeを含み残部が実質的にTiであるF
e−Ti合金粉末と、30重量%以上45重量%未満の
Alを含み残部が実質的にTiであるAl−Ti合金粉
末を、母合金として使用することを特徴とするTi−F
e−Al系焼結チタン合金の製造方法。
3. A of 1.5% by weight or more and less than 3.5% by weight
1 and 0.75% by weight or more and less than 1.75% by weight of Fe, and a balance of 40% by weight or more and 6% by weight in a method for producing a sintered titanium alloy having the balance substantially Ti.
F containing less than 0% by weight of Fe and the balance being essentially Ti
Ti-F, characterized in that an e-Ti alloy powder and an Al-Ti alloy powder containing 30% by weight or more and less than 45% by weight of Al and the balance being substantially Ti are used as a master alloy.
Method for producing e-Al sintered titanium alloy.
【請求項4】 6重量%以上8重量%未満のAlと、
2.5重量%以上4.5重量%未満のFeを含み、残部
が実質的にTiである焼結チタン合金を素粉末混合法に
て製造する方法において、40重量%以上60重量%未
満のFeを含み残部が実質的にTiであるFe−Ti合
金粉末と、30重量%以上45重量%未満のAlを含み
残部が実質的にTiであるAl−Ti合金粉末を、母合
金として使用することを特徴とするTi−Fe−Al系
焼結チタン合金の製造方法。
4. Al of 6% by weight or more and less than 8% by weight,
In a method for producing a sintered titanium alloy containing 2.5% by weight or more and less than 4.5% by weight of Fe, and the balance being substantially Ti, by a powder mixing method, the content of 40% by weight or more and less than 60% by weight is used. An Fe-Ti alloy powder containing Fe and the balance being Ti and an Al-Ti alloy powder containing 30% by weight or more and less than 45% by weight Al and the balance being substantially Ti are used as a mother alloy. A method for producing a Ti-Fe-Al-based sintered titanium alloy, comprising:
JP9825592A 1992-04-17 1992-04-17 Production of ti-fe-al type sintered titanium alloy Withdrawn JPH05345937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9825592A JPH05345937A (en) 1992-04-17 1992-04-17 Production of ti-fe-al type sintered titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9825592A JPH05345937A (en) 1992-04-17 1992-04-17 Production of ti-fe-al type sintered titanium alloy

Publications (1)

Publication Number Publication Date
JPH05345937A true JPH05345937A (en) 1993-12-27

Family

ID=14214856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9825592A Withdrawn JPH05345937A (en) 1992-04-17 1992-04-17 Production of ti-fe-al type sintered titanium alloy

Country Status (1)

Country Link
JP (1) JPH05345937A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004061307A1 (en) * 2002-12-26 2006-05-11 株式会社ヴァレオサーマルシステムズ compressor
WO2011152553A1 (en) * 2010-05-31 2011-12-08 東邦チタニウム株式会社 Titanium alloy compound powder combined with copper powder, chrome powder or iron powder, titanium alloy material using said powder as raw material and production method thereof
WO2013080390A1 (en) * 2011-11-29 2013-06-06 東邦チタニウム株式会社 α+β OR β TITANIUM ALLOY AND METHOD FOR PRODUCING SAME
JP2013170271A (en) * 2012-02-17 2013-09-02 Nippon Steel & Sumitomo Metal Corp Titanium alloy member deformed into same direction as working direction with heat treatment, and method for manufacturing the same
JP2016101425A (en) * 2014-11-28 2016-06-02 キヤノン株式会社 Photoacoustic wave measurement device
CN109732084A (en) * 2019-03-21 2019-05-10 西京学院 A kind of ferrotitanium molybdenum alloy and preparation method thereof
JP2019516021A (en) * 2016-04-14 2019-06-13 エレメント 22 ゲーエムベーハーElement 22 Gmbh Manufacturing method using powder metallurgy of a member composed of titanium or titanium alloy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004061307A1 (en) * 2002-12-26 2006-05-11 株式会社ヴァレオサーマルシステムズ compressor
WO2011152553A1 (en) * 2010-05-31 2011-12-08 東邦チタニウム株式会社 Titanium alloy compound powder combined with copper powder, chrome powder or iron powder, titanium alloy material using said powder as raw material and production method thereof
CN102905822A (en) * 2010-05-31 2013-01-30 东邦钛株式会社 Titanium alloy compound powder combined with copper powder, chrome powder or iron powder, titanium alloy material using said powder as raw material and production method thereof
WO2013080390A1 (en) * 2011-11-29 2013-06-06 東邦チタニウム株式会社 α+β OR β TITANIUM ALLOY AND METHOD FOR PRODUCING SAME
JP2013112856A (en) * 2011-11-29 2013-06-10 Toho Titanium Co Ltd α+β OR β TITANIUM ALLOY AND MANUFACTURING METHOD THEREFOR
US9969004B2 (en) 2011-11-29 2018-05-15 Toho Titanium Co., Ltd. α+β or β titanium alloy and method for producing same
JP2013170271A (en) * 2012-02-17 2013-09-02 Nippon Steel & Sumitomo Metal Corp Titanium alloy member deformed into same direction as working direction with heat treatment, and method for manufacturing the same
JP2016101425A (en) * 2014-11-28 2016-06-02 キヤノン株式会社 Photoacoustic wave measurement device
JP2019516021A (en) * 2016-04-14 2019-06-13 エレメント 22 ゲーエムベーハーElement 22 Gmbh Manufacturing method using powder metallurgy of a member composed of titanium or titanium alloy
CN109732084A (en) * 2019-03-21 2019-05-10 西京学院 A kind of ferrotitanium molybdenum alloy and preparation method thereof
CN109732084B (en) * 2019-03-21 2021-05-11 西京学院 Iron-titanium-molybdenum alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
US5098469A (en) Powder metal process for producing multiphase NI-AL-TI intermetallic alloys
EP0675209B1 (en) High strength aluminum-based alloy
JP5855565B2 (en) Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
JPH05345937A (en) Production of ti-fe-al type sintered titanium alloy
JPH02197535A (en) Manufacture of intermetallic compound
JPH02200743A (en) Method for compacting ti-al series intermetallic compound member
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JPWO2012147998A1 (en) α + β-type or β-type titanium alloy and method for producing the same
JPS5891140A (en) High tensile metal alloy material and production thereof
JPH05148568A (en) High density powder titanium alloy for sintering
JPH0688153A (en) Production of sintered titanium alloy
JPH0633165A (en) Manufacture of sintered titanium alloy
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JPH01242749A (en) Heat-resistant aluminum alloy
CH536672A (en) Consolidating hot-worked complex alloy - particles to from metal articles
JPH03264639A (en) Al alloy product having high strength at high temperature
JPH05302138A (en) Aluminum base alloy laminated and compacted material and its manufacture
JP2002212607A (en) Method for producing high melting point alloy
JPS61159539A (en) Manufacture of shape memory alloy
JP2971720B2 (en) Manufacturing method of oxide dispersion strengthened Cr-based heat resistant sintered alloy
JP2627302B2 (en) Method for producing hydrogen storage alloy molded product
JPH05202437A (en) Production of inter-high-melting-metallic compound-base alloy
JPS63183140A (en) Manufacture of high-toughness aluminum alloy
JP3413921B2 (en) Method for producing Ti-Al based intermetallic compound sintered body
JPS5823450B2 (en) Production method of C↓o-based sintered alloy for decorative parts with good machinability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706