JP2971720B2 - Manufacturing method of oxide dispersion strengthened Cr-based heat resistant sintered alloy - Google Patents

Manufacturing method of oxide dispersion strengthened Cr-based heat resistant sintered alloy

Info

Publication number
JP2971720B2
JP2971720B2 JP5328052A JP32805293A JP2971720B2 JP 2971720 B2 JP2971720 B2 JP 2971720B2 JP 5328052 A JP5328052 A JP 5328052A JP 32805293 A JP32805293 A JP 32805293A JP 2971720 B2 JP2971720 B2 JP 2971720B2
Authority
JP
Japan
Prior art keywords
weight
powder
sintering
less
oxide dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5328052A
Other languages
Japanese (ja)
Other versions
JPH07179903A (en
Inventor
貴宏 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5328052A priority Critical patent/JP2971720B2/en
Publication of JPH07179903A publication Critical patent/JPH07179903A/en
Application granted granted Critical
Publication of JP2971720B2 publication Critical patent/JP2971720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化物分散強化型Cr
基耐熱焼結合金を製造する方法の改良に関する。
The present invention relates to an oxide dispersion strengthened Cr
The present invention relates to an improvement in a method for producing a base heat-resistant sintered alloy.

【0002】[0002]

【従来技術及び問題点】出願人は、以前に、高温におけ
る強度及び耐酸化性にすぐれた酸化物分散強化型Cr基
耐熱焼結合金を提案した(特開平4−325651)。
2. Description of the Related Art The applicant has previously proposed an oxide dispersion-strengthened Cr-based heat-resistant sintered alloy having excellent strength and oxidation resistance at high temperatures (Japanese Patent Application Laid-Open No. 4-325661).

【0003】この耐熱焼結合金は、まず所定成分のCr
基金属粉末とY23の酸化物粉末を、アトライタ装置
(高エネルギー攪拌ボールミル)の中でメカニカルアロイ
ング処理に付し、金属マトリックス中に、平均粒径約0.
1μm以下の酸化物0.2〜2.0重量%を微細分散させた粒子
を作り、その粒子を原料粉末に用いて焼結するものであ
る。
[0003] This heat-resistant sintered alloy first has a predetermined component of Cr.
An attritor device is used to convert the base metal powder and the Y 2 O 3 oxide powder.
(High-energy stirring ball mill) subjected to mechanical alloying treatment, in the metal matrix, the average particle size of about 0.
Particles in which 0.2 to 2.0% by weight of an oxide of 1 μm or less are finely dispersed are produced, and the particles are used as a raw material powder and sintered.

【0004】従来、この種の酸化物分散強化型合金の焼
結には、カプセルHIP法が一般的に採用されている。
この方法は、Cr基金属のマトリックス中に平均粒径0.
1μm以下のY23を0.2〜2.0重量%微細分散させた原料
粉末を、適当な金属カプセルに充填した後、脱気密封
し、約1000〜1300℃の温度にて、約1000〜2000kgf/cm2
の圧力下で熱間静水圧処理(HIP)を行なうものであ
る。原料粉末をカプセル内に充填して圧力エネルギーを
付加するから、1300℃以下の温度でも焼結が可能とな
り、略完全に緻密な焼結品を得ることができる。
Conventionally, a capsule HIP method has been generally employed for sintering this kind of oxide dispersion strengthened alloy.
This method uses an average particle size of 0.
A raw material powder in which Y 2 O 3 of 1 μm or less is finely dispersed in 0.2 to 2.0% by weight is filled in a suitable metal capsule, then degassed and sealed, and at a temperature of about 1000 to 1300 ° C., about 1000 to 2000 kgf / cm 2
The hot isostatic pressure treatment (HIP) is performed under the above pressure. Since the capsule is filled with the raw material powder and pressure energy is applied, sintering can be performed even at a temperature of 1300 ° C. or less, and a nearly perfectly dense sintered product can be obtained.

【0005】ウォーキングビーム式加熱炉用スキッドボ
タンの如き単純なブロック形状の焼結品は、一般的に、
このカプセルHIP焼結法によって製造される。しか
し、例えばタービンブレードの如き複雑形状の場合、そ
の形状に合わせたカプセルを製作することは非常に困難
である。このため、単純形状の焼結品ブロックを作製し
た後、機械加工によって所望形状に切り出していた。こ
のため、複雑形状の焼結品は、材料歩留りが非常に悪
く、製品コストが高くつく問題があった。
[0005] A simple block-shaped sintered product such as a skid button for a walking beam type heating furnace is generally provided by:
The capsule is manufactured by the HIP sintering method. However, in the case of a complicated shape such as a turbine blade, it is very difficult to manufacture a capsule in accordance with the shape. For this reason, after producing a sintered block of a simple shape, it has been cut out into a desired shape by machining. For this reason, there is a problem that a sintered product having a complicated shape has a very low material yield and a high product cost.

【0006】HIP焼結をカプセルなしで実施する場
合、HIP前に予め所定形状に形成しておいた焼結体を
焼結(以下、一次焼結という)することになるが、一次焼
結体の相対密度は約94%以上であることを要する。相対
密度の小さい一次焼結体は、カプセルなしの場合、HI
Pのときに圧力がかからず、略完全に緻密な焼結品を形
成することができないからである。しかし、HIP前に
約94%以上の相対密度を得るには、一次焼結は原料粉末
の融点近傍の温度で行なう必要があるから、Crのよう
に高融点元素が主体として含まれる材料の場合、一次焼
結は少なくとも1500℃を越える温度で行なわねばならな
い。しかし、このような高温で焼結を行なうと、メカニ
カルアロイング処理により金属マトリックス中に分散し
ていたY23が金属結晶の粒界に凝集してしまい、焼結
品はY23の微細分散による強度向上効果を得ることが
できない。
When HIP sintering is performed without a capsule, a sintered body formed in a predetermined shape before HIP is sintered (hereinafter referred to as primary sintering). Should have a relative density of at least about 94%. The primary sintered body with a small relative density is HI
This is because pressure is not applied at the time of P, and it is not possible to form a nearly perfectly dense sintered product. However, in order to obtain a relative density of about 94% or more before HIP, the primary sintering must be performed at a temperature near the melting point of the raw material powder. The primary sintering must be performed at a temperature exceeding at least 1500 ° C. However, when sintering is performed at such a high temperature, the Y 2 O 3 dispersed in the metal matrix is aggregated at the grain boundaries of the metal crystal due to the mechanical alloying treatment, and the sintered product becomes Y 2 O 3 The effect of improving the strength due to the fine dispersion of the particles cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、Cr
基金属、具体的には、Fe20重量%以下を含み、残部実
質的にCrからなる金属、又は、Fe20重量%以下、A
l、Mo、W、Nb、Ta、Hf及びAl−Ti(Al
とTiの金属間化合物)からなる群から選択される少な
くとも一種を合計量で10重量%以下を含み、残部実質的
にCrからなる金属のマトリックスに平均粒径0.1μm以
下のY23を微細分散させた粒子を原料粉末に用いて、
HIP焼結をカプセルなしで実施するに際し、HIP焼
結前に酸化物の凝集が起こらない1500℃以下の温度で一
次焼結を行なったとき、約94%以上の相対密度を有する
一次焼結体が得られるようにすることにある。
SUMMARY OF THE INVENTION The object of the present invention is
A metal containing a base metal, specifically, 20% by weight or less of Fe and the balance substantially consisting of Cr, or 20% by weight or less of Fe, A
1, Mo, W, Nb, Ta, Hf and Al-Ti (Al
And at least one member selected from the group consisting of Ti and an intermetallic compound of Ti) in a total amount of 10% by weight or less, and Y 2 O 3 having an average particle size of 0.1 μm or less in a matrix of a metal substantially composed of Cr. Using the finely dispersed particles as raw material powder,
In performing HIP sintering without a capsule, when primary sintering is performed at a temperature of 1500 ° C. or less at which oxide coagulation does not occur before HIP sintering, a primary sintered body having a relative density of about 94% or more Is to be obtained.

【0008】[0008]

【課題を解決するための手段】本発明の方法は、メカニ
カルアロイング処理工程において、Crと5〜20原子%
で共晶点を有する元素を、Cr基金属粉末100重量部に
対して0.2〜2重量部添加することにより、Cr基金属粉
末の粒子の結晶構造の一部に共晶点を有する組織を形成
し、得られた粉末を焼結するようにしたものである。な
お、Crと5〜20原子%で共晶点を有する元素は、焼結
品の特性に悪影響を及ぼさないことが必要であり、B、
Zr、Si、Pを例示することができる。これら元素の
添加は、単体金属の形でもよいし、他の金属、例えばF
eと合金の形でもよい。なお、Feと合金の形態で添加
する場合、Cr基金属中のFeの含有量が20重量%を越
えないように留意する必要がある。
According to the method of the present invention, in the mechanical alloying process, 5 to 20 atomic% of Cr is added.
By adding 0.2 to 2 parts by weight of an element having a eutectic point to 100 parts by weight of the Cr-based metal powder,
Forming a structure with a eutectic point in part of the crystal structure of the powder particles
Then, the obtained powder is sintered . It is necessary that the element having a eutectic point at 5 to 20 atomic% with Cr does not adversely affect the characteristics of the sintered product.
Zr, Si, and P can be exemplified. The addition of these elements may be in the form of a single metal or another metal, such as F
It may be in the form of an alloy with e. When adding in the form of an alloy with Fe, care must be taken so that the content of Fe in the Cr-based metal does not exceed 20% by weight.

【0009】[0009]

【作用】B、Zr、Si、P等の添加元素が、Cr基金
属と機械的合金化(メカニカルアロイング)する際、bc
c構造のCr結晶中に固溶してCr結晶の一部と置換
し、ミクロ的にCrとの組成比が1:8(原子)とな
る。これらの添加元素は、Crとの組成比1:8(原
子)近傍で共晶点を有しているため、置換した部分では
融点が極端に低下しており、低温での焼結が可能とな
る。焼結は、共晶点近傍の低融点部がまず種となって焼
結を開始し、他の結晶に伝播して進行する。従って、
B、Zr、Si、P等の元素のCr結晶中への固溶は、
Crの結晶全体に及ぶ必要はなく、局部的に行なわれて
いれば十分である。かかる理由から、Crと5〜20原子
%で共晶点を有する元素の添加量は、Cr基金属粉末10
0重量部に対して少なくとも0.2重量部とする。しかし、
あまりに多く含有すると、Cr基合金の特性に影響を及
ぼすことになるため、最大添加量はCr基粉末100重量
部に対して2重量部とする。
When the additive elements such as B, Zr, Si, and P are mechanically alloyed with a Cr-based metal (mechanical alloying), bc
It forms a solid solution in the c-structure Cr crystal and replaces a part of the Cr crystal, and the composition ratio with Cr becomes 1: 8 (atomic) microscopically. Since these additive elements have a eutectic point at a composition ratio of about 1: 8 (atomic) with Cr, the melting point is extremely low in the substituted part, and sintering at a low temperature is possible. Become. In sintering, the low melting point portion near the eutectic point first becomes a seed to start sintering, and propagates to other crystals and proceeds. Therefore,
The solid solution of elements such as B, Zr, Si, and P into the Cr crystal
It is not necessary to cover the entire crystal of Cr, but it is sufficient if it is performed locally. For this reason, the addition amount of the element having a eutectic point at 5 to 20 atomic% with Cr is determined based on the amount of
At least 0.2 parts by weight per 0 parts by weight. But,
If the content is too large, it will affect the properties of the Cr-based alloy. Therefore, the maximum addition amount is 2 parts by weight based on 100 parts by weight of the Cr-based powder.

【0010】[0010]

【発明の効果】Cr基金属のマトリックス中にY23
微細分散した原料粉末の焼結を、1500℃以下の温度で行
なったとき、相対密度約94%以上の焼結体が得られる。
従って、この焼結体をさらにHIP焼結に付すと、気孔
が取り除かれて、略完全に緻密な焼結品を得ることがで
きる。従って、酸化物分散型Cr基耐熱合金のカプセル
フリーHIP焼結が可能となり、材料費の削減、加工工
程の低減等、コストダウンを達成できる。本発明の方法
は、前述の如く、カプセルフリーHIP焼結における一
次焼結に適用するのが最も有用であるが、カプセルHI
P焼結に適用することにより、焼結条件が緩和される利
点があり、同様に適用できることは勿論である。
When the raw material powder in which Y 2 O 3 is finely dispersed in a matrix of a Cr-based metal is sintered at a temperature of 1500 ° C. or less, a sintered body having a relative density of about 94% or more can be obtained. .
Therefore, when this sintered body is further subjected to HIP sintering, pores are removed, and a substantially dense sintered product can be obtained. Therefore, capsule-free HIP sintering of the oxide-dispersed Cr-based heat-resistant alloy becomes possible, and cost reductions such as reduction in material costs and processing steps can be achieved. As described above, the method of the present invention is most useful when applied to primary sintering in capsule-free HIP sintering.
By applying to P sintering, there is an advantage that the sintering conditions are relaxed, and it goes without saying that the same can be applied.

【0011】[0011]

【実施例】以下に示す3種類の供試粉末を準備した。供試粉末1 (発明例) 供試粉末1は、Fe11重量%及び残部実質的にCrから
なるCr−Fe合金粉末100重量部、Y23粉末を0.5重
量部、B20重量%及び残部実質的にFeからなるFe−
B合金粉末を2重量部含んでいる。ここでは、Bが、C
rと5〜20原子%で共晶点を有する元素である。供試粉末2 (発明例) 供試粉末2は、Fe11重量%及び残部実質的にCrから
なるCr−Fe合金粉末100重量部、Y23粉末を0.5重
量部、Zr78重量%及び残部実質的にFeからなるFe
−Zr合金粉末を1重量部含んでいる。ここでは、Zr
がCrと5〜20原子%で共晶点を有する元素である。供試粉末3 (従来例) 供試粉末3は、Fe11重量%及び残部実質的にCrから
なるCr−Fe合金粉末100重量部に対して、Y23
末を0.5重量部含んでいる。
EXAMPLES The following three kinds of test powders were prepared. Subjected試粉powder 1 (Inventive) subjected試粉end 1, FE11 wt% and the balance substantially Cr-Fe alloy powder 100 parts by weight consisting of Cr, Y 2 O 3 powder and 0.5 parts by weight of, B20 wt% and the balance substantially Fe-
Contains 2 parts by weight of B alloy powder. Here, B is C
An element having a eutectic point at 5 to 20 atomic% with r. Subjected試粉powder 2 (Inventive) subjected試粉end 2, FE11 wt% and the balance substantially Cr-Fe alloy powder 100 parts by weight consisting of Cr, Y 2 O 3 powder and 0.5 parts by weight of, Zr78% by weight and the balance substantially Fe composed of Fe
-Contains 1 part by weight of Zr alloy powder. Here, Zr
Is an element having a eutectic point at 5 to 20 atomic% with Cr. Subjected試粉end 3 (conventional example) subjected試粉end 3, to the Cr-Fe alloy powder 100 parts by weight consisting of Fe11 wt% and the balance substantially Cr, containing 0.5 parts by weight of Y 2 O 3 powder.

【0012】これら3種類の供試粉末を、夫々、アトラ
イタ装置の中で機械的合金化した後、CIP(冷間静水
圧加圧)成形した後、一次焼結を行ない、更にHIP焼
結を行なった。CIP成形における加圧力は147MPa、保
持時間は30秒間とした。一次焼結は、電気炉のArとH
2の混合雰囲気ガス中にて、温度1350℃、保持時間4時間
の条件で実施した。HIPは、Arを圧力媒体とし、加
圧力118MPa、保持温度1250℃、保持時間2時間の条件で
実施した。
After mechanically alloying these three kinds of test powders in an attritor device, forming them by CIP (Cold Isostatic Pressing), performing primary sintering, and further performing HIP sintering. Done. The pressing force in CIP molding was 147 MPa, and the holding time was 30 seconds. The primary sintering is performed by Ar and H
In the mixed atmosphere gas of No. 2 , the temperature was 1350 ° C. and the holding time was 4 hours. The HIP was carried out under the conditions of a pressure medium of 118 MPa, a holding temperature of 1250 ° C., and a holding time of 2 hours, using Ar as a pressure medium.

【0013】一次焼結後とHIP焼結後の夫々につい
て、焼結体の密度測定をアルキメデス法に基づいて行な
った。なお、供試粉末は全て、完全緻密体の密度を7.2g
/cm3とみなして、相対焼結密度を算出した。密度の測定
結果を表1に示す。
The density of the sintered body was measured based on the Archimedes method for each of the primary sintering and the HIP sintering. All the test powders had a density of 7.2 g
/ cm 3 and the relative sintered density was calculated. Table 1 shows the measurement results of the density.

【0014】[0014]

【表1】 [Table 1]

【0015】表1の結果から明らかなように、本発明の
実施例である供試粉末1及び2は、HIP前の一次焼結
後の段階で、完全緻密体の94%以上の焼結体が得られて
おり、その後のHIP焼結によって略完全に緻密な焼結
品を得られることがわかる。これに対し、供試粉末3
は、Crと5〜20原子%で共晶点を有する元素を含んで
いないから、HIP前の一次焼結後の段階で得られる相
対密度は、74.3%にすぎない。この供試粉末をさらにH
IPを行なっても、密度向上効果は認められないことが
わかる。
As is clear from the results shown in Table 1, the test powders 1 and 2, which are examples of the present invention, have a sintered compact of 94% or more of the perfect dense body at the stage after the primary sintering before the HIP. It can be seen that almost perfect dense sintered products can be obtained by subsequent HIP sintering. In contrast, test powder 3
Does not contain an element having a eutectic point at 5 to 20 at% with Cr, so that the relative density obtained at the stage after the primary sintering before HIP is only 74.3%. This test powder is further H
It can be seen that the density improvement effect is not recognized even if IP is performed.

【0016】なお、Crと5〜20原子%で共晶点を有す
る元素の添加は、単体金属の形でもよいし、上記実施例
の如く、Fe合金との形でもよいが、Fe合金の形で添
加する方が望ましい。これは、Fe合金の形の方が、分
散性にすぐれるため、Cr中に均一分散し易いこと、ま
た、Feは母合金の構成元素として含まれているため、
金属マトリックスに与える影響が少ないこと、等の理由
による。また、Crと5〜20原子%で共晶点を有する元
素の添加時期は、Cr基金属粉末と酸化物粉末と同時に
添加してもよいし、機械的合金化が既に行なわれた粉末
に添加し、アトライタ装置の中でさらに数時間攪拌処理
を行なって合金化することもできる。
The addition of an element having a eutectic point at 5 to 20 at% with Cr may be in the form of a single metal or in the form of an Fe alloy as in the above embodiment. It is more desirable to add in. This is because the form of the Fe alloy is more excellent in dispersibility, so that it is easy to be uniformly dispersed in Cr, and since Fe is included as a constituent element of the master alloy,
This is because the influence on the metal matrix is small. In addition, when the element having a eutectic point at 5 to 20 atomic% with Cr is added, the element may be added simultaneously with the Cr-based metal powder and the oxide powder, or may be added to the powder already subjected to mechanical alloying. However, the alloying can be performed by further performing a stirring process in the attritor device for several hours.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B22F 1/00 C22C 1/04 C22C 1/10 C22C 27/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) B22F 1/00 C22C 1/04 C22C 1/10 C22C 27/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 メカニカルアロイング処理により、Cr
基金属のマトリックス中に平均粒径0.1μm以下のY23
を微細分散させた粒子を作り、これら粒子を原料粉末に
用いて焼結品の製造を行なう酸化物分散強化型Cr基耐
熱焼結合金の製法であって、Cr基金属は、Fe20重量
%以下を含み、残部実質的にCrからなる金属、又は、
Fe20重量%以下、Al、Mo、W、Nb、Ta、Hf
及びAl−Tiからなる群から選択される少なくとも一
種を合計量で10重量%以下を含み、残部実質的にCrか
らなる金属であり、メカニカルアロイング処理工程にお
いて、Crと5〜20原子%で共晶点を有する元素を、C
r基金属粉末100重量部に対して0.2〜2重量部添加する
ことにより、Cr基金属粉末の粒子の結晶構造の一部に
共晶点を有する組織を形成するようにしており、得られ
た粉末を焼結することを特徴とする、酸化物分散強化型
Cr基耐熱焼結合金の製法。
Claims: 1. A mechanical alloying process for Cr
Y 2 O 3 having an average particle size of 0.1 μm or less in the matrix of the base metal
Is a method of producing an oxide dispersion-strengthened Cr-based heat-resistant sintered alloy in which particles are finely dispersed and a sintered product is produced using these particles as a raw material powder, wherein the Cr-based metal is Fe 20% by weight or less. Including, the remainder substantially composed of Cr, or
Fe 20% by weight or less, Al, Mo, W, Nb, Ta, Hf
And at least one selected from the group consisting of Al-Ti in a total amount of 10% by weight or less, and a metal substantially consisting of Cr. Elements having a eutectic point are represented by C
0.2 to 2 parts by weight per 100 parts by weight of r-base metal powder
As a result, a part of the crystal structure of the particles of the Cr-based metal powder
To form a structure having a eutectic point,
A method for producing an oxide dispersion strengthened Cr-based heat-resistant sintered alloy, characterized by sintering powder .
JP5328052A 1993-12-24 1993-12-24 Manufacturing method of oxide dispersion strengthened Cr-based heat resistant sintered alloy Expired - Lifetime JP2971720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5328052A JP2971720B2 (en) 1993-12-24 1993-12-24 Manufacturing method of oxide dispersion strengthened Cr-based heat resistant sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5328052A JP2971720B2 (en) 1993-12-24 1993-12-24 Manufacturing method of oxide dispersion strengthened Cr-based heat resistant sintered alloy

Publications (2)

Publication Number Publication Date
JPH07179903A JPH07179903A (en) 1995-07-18
JP2971720B2 true JP2971720B2 (en) 1999-11-08

Family

ID=18205979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5328052A Expired - Lifetime JP2971720B2 (en) 1993-12-24 1993-12-24 Manufacturing method of oxide dispersion strengthened Cr-based heat resistant sintered alloy

Country Status (1)

Country Link
JP (1) JP2971720B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114000024A (en) * 2021-11-03 2022-02-01 陕西科技大学 High-strength and high-toughness Laves phase Cr2Ta-based in-situ authigenic composite material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267141A (en) * 1985-09-19 1987-03-26 Manabu Kiuchi Production of metallic composite material
JPH0747793B2 (en) * 1991-04-26 1995-05-24 株式会社クボタ Oxide dispersion strengthened heat resistant sintered alloy

Also Published As

Publication number Publication date
JPH07179903A (en) 1995-07-18

Similar Documents

Publication Publication Date Title
US4946500A (en) Aluminum based metal matrix composites
JP5051168B2 (en) Nitride-dispersed Ti-Al target and method for producing the same
JPS62238344A (en) Mechanical alloying method
US3902862A (en) Nickel-base superalloy articles and method for producing the same
US5145506A (en) Method of bonding metal carbides in non-magnetic alloy matrix
US5000910A (en) Method of manufacturing intermetallic compound
US4432795A (en) Sintered powdered titanium alloy and method of producing same
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
JP2898475B2 (en) Manufacturing method of oxide dispersion strengthened heat-resistant alloy sintered body
JP2971720B2 (en) Manufacturing method of oxide dispersion strengthened Cr-based heat resistant sintered alloy
JP2737498B2 (en) Titanium alloy for high density powder sintering
JP3113144B2 (en) Method for producing high density sintered titanium alloy
CN113249620B (en) Delta-phase reinforced nickel-base high-temperature alloy and preparation method thereof
JP2551285B2 (en) Titanium alloy for high density powder sintering
JP2730284B2 (en) Manufacturing method of Al-Si alloy sintered forged parts
JP2737487B2 (en) Method for producing titanium alloy for high-density powder sintering
JP4140176B2 (en) Low thermal expansion heat resistant alloy and method for producing the same
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JP2001152208A (en) OXIDE DISPERSION STRENGTHENED TYPE Ni BASE ALLOY WIRE AND PRODUCING METHOD THEREFOR
US3695868A (en) Preparation of powder metallurgy compositions containing dispersed refractory oxides and precipitation hardening elements
JPH01275724A (en) Manufacture of dispersion strengthened heat-resistant alloy
WO2023157438A1 (en) Fe-Ni-Cr BASED ALLOY PRODUCT
JP3225252B2 (en) Method for producing particle-dispersed sintered titanium-based composite material
JPS63171847A (en) Molybdenum crucible and its production
JPH04183835A (en) Manufacture of ni-ti alloy member

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817