JPH01275724A - Manufacture of dispersion strengthened heat-resistant alloy - Google Patents
Manufacture of dispersion strengthened heat-resistant alloyInfo
- Publication number
- JPH01275724A JPH01275724A JP63103520A JP10352088A JPH01275724A JP H01275724 A JPH01275724 A JP H01275724A JP 63103520 A JP63103520 A JP 63103520A JP 10352088 A JP10352088 A JP 10352088A JP H01275724 A JPH01275724 A JP H01275724A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- powder
- oxygen
- weight
- dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 71
- 239000000956 alloy Substances 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000006185 dispersion Substances 0.000 title abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 52
- 239000000843 powder Substances 0.000 claims abstract description 51
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000001301 oxygen Substances 0.000 claims abstract description 50
- 229910052776 Thorium Inorganic materials 0.000 claims abstract description 17
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 17
- 229910052742 iron Inorganic materials 0.000 claims abstract description 9
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 5
- 229910052796 boron Inorganic materials 0.000 claims abstract description 4
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 3
- 229910052804 chromium Inorganic materials 0.000 claims abstract 4
- 239000002131 composite material Substances 0.000 claims description 19
- 239000002994 raw material Substances 0.000 claims description 17
- 238000005551 mechanical alloying Methods 0.000 claims description 14
- 239000011159 matrix material Substances 0.000 claims description 13
- 238000005275 alloying Methods 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 abstract description 3
- 239000007858 starting material Substances 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 238000000034 method Methods 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- 238000005728 strengthening Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000006104 solid solution Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000007872 degassing Methods 0.000 description 3
- 238000001192 hot extrusion Methods 0.000 description 3
- 229910001175 oxide dispersion-strengthened alloy Inorganic materials 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910004369 ThO2 Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 2
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 241000948268 Meda Species 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910011212 Ti—Fe Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、航空機エンジン及びガスタービンの高温高
圧ブレード又は燃焼ライナー等、並びに、高温用加工工
具等に使用される分散強化耐熱合金の製造方法に関し°
、特に、高温強度が優れたNi基又はFe基の分散強化
耐熱合金の製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for manufacturing a dispersion-strengthened heat-resistant alloy used for high-temperature, high-pressure blades or combustion liners of aircraft engines and gas turbines, and high-temperature machining tools. Regarding °
In particular, the present invention relates to a method for producing a Ni-based or Fe-based dispersion-strengthened heat-resistant alloy with excellent high-temperature strength.
[従来の技術]
高温強度が優れたNi基又はFe基の分散強化合金を製
造する方法として、従来、機械的合金化法と称する粉末
冶金技術を用いるものが知られており、例えば、米国特
許3,776.704号、3.728,088号、3,
926,568号等に開示されている。この方法におい
ては、Ni。[Prior Art] As a method for manufacturing Ni-based or Fe-based dispersion-strengthened alloys with excellent high-temperature strength, a method using powder metallurgy technology called a mechanical alloying method has been known, for example, as disclosed in U.S. Pat. No. 3,776.704, No. 3.728,088, 3,
No. 926,568, etc. In this method, Ni.
Fe、Mo、W、Nb、Ti、A I、Cr等の金属粉
末原料と、T h O2+ A I 203 (一部
La2O3でもよい)、Y2O3等の微細酸化物粉とを
乾式アトライター型ボールミル等の高衝撃粉砕機で破砕
、混合、再結合させ、制御した均−且つ微細なミクロ組
織を有する複合金属粉末を製造するものが典型的な例と
して示されている。この複合粉末は、脱気処理後、HI
P (熱間静水圧プレス)、熱間押出し等の公知の技術
により固化され、更に焼鈍されて、酸化物が分散した所
望形状の合金となり、使用に供される。このように製造
される分散強化合金は、合金化過程に溶融プロセスを含
まないため、分散酸化物粒子が均一に分散した状態で存
在し、また、金属合金成分も微細且つ均一に分布し、偏
析が生じないという利点を有する。Metal powder raw materials such as Fe, Mo, W, Nb, Ti, AI, Cr, etc. and fine oxide powders such as T h O2+ A I 203 (partly La2O3 may be used) and Y2O3 are processed in a dry attritor type ball mill, etc. As a typical example, a composite metal powder having a controlled uniform and fine microstructure is produced by crushing, mixing, and recombining in a high-impact crusher. After degassing, this composite powder is HI
It is solidified by known techniques such as P (hot isostatic pressing) and hot extrusion, and further annealed to form an alloy in a desired shape with oxides dispersed therein, which is ready for use. Dispersion-strengthened alloys produced in this way do not include a melting process in the alloying process, so the dispersed oxide particles exist in a uniformly dispersed state, and the metal alloy components are also finely and uniformly distributed, preventing segregation. This has the advantage of not causing any
[発明が解決しようとする課題]
ところで、酸化物分散強化合金は、本質的に酸化物、窒
化物等の非金属成分の制御が極めて重要であり、特に、
Ni基超超耐熱合金して利用される場合には特に酸素を
極めて低いレベルに制御する必要がある。しかしながら
、前述した従来の技術では酸素による粉末の汚染及びこ
れに伴う合金中の酸素濃度の上昇が避は得ない。つまり
、機械的合金化処理の際の雰囲気中に酸素が含まれてい
たり、原料粉末粒子表面に酸素が多く付着していると、
その酸素が複合粉末に取込まれてメダ染の原因となるた
め、酸素が極めて少ない雰囲気中で極めて清浄な原料を
用いて機械的合金化処理を実施することが考えられるが
、酸素が全くない雰囲気下では、粉砕容器の内壁に粉末
が付着したり、また、複合粉末粒子が成長して巨大粒子
化し、次工程のHIP等による固化処理の際に粉末粒子
の変形(つまり焼結)が不十分になるといった不都合が
生じてしまう。このようなことを回避するために、金属
粉末等にハロゲン化物又は金属ハロゲン化物等の助剤を
添加して処理する方法も考えられるが、合金中に不純物
を残存させる結果となり好ましくない。従って・、不活
性ガスに微量の酸素ガスを添加した混合ガス雰囲気下で
合金化処理を行なわざるを得ず、このため合金中の酸素
含有量が若干上昇してしまうのである。合金中の酸素含
有量が高いと、合金の靭性の低下及び亀裂伝搬速度の上
昇を招き、ノツチ感受性が拡大し、あるいは高低サイク
ル疲れ強さが低下してしまうので、耐熱合金中の酸素含
有量は300乃至500 ppHlが実用上の上限と考
えられている。[Problems to be Solved by the Invention] By the way, in oxide dispersion strengthened alloys, it is essentially important to control nonmetallic components such as oxides and nitrides, and in particular,
When used as a Ni-based super super heat-resistant alloy, it is particularly necessary to control oxygen to an extremely low level. However, in the conventional techniques described above, contamination of the powder with oxygen and an accompanying increase in the oxygen concentration in the alloy are unavoidable. In other words, if the atmosphere during mechanical alloying treatment contains oxygen or if a large amount of oxygen adheres to the surface of the raw powder particles,
Since that oxygen is taken into the composite powder and causes Meda dyeing, it is possible to carry out mechanical alloying treatment using extremely clean raw materials in an atmosphere with very little oxygen, but there is no oxygen at all. In an atmosphere, the powder may adhere to the inner wall of the grinding container, or the composite powder particles may grow into giant particles, which may prevent deformation (that is, sintering) of the powder particles during the next solidification process such as HIP. This may cause the inconvenience of not having enough. In order to avoid such a problem, a method of adding an auxiliary agent such as a halide or a metal halide to metal powder or the like may be considered, but this is not preferable as it results in impurities remaining in the alloy. Therefore, the alloying treatment must be carried out in a mixed gas atmosphere containing an inert gas and a trace amount of oxygen gas, which results in a slight increase in the oxygen content in the alloy. High oxygen content in the alloy will reduce the toughness of the alloy, increase the crack propagation rate, increase notch susceptibility, or reduce high and low cycle fatigue strength. The practical upper limit is considered to be 300 to 500 ppHl.
これに対し、例えば、Ni基超超耐熱合金相当する成分
金属の混合粉末と、Y2O3粉末とを酸素ガスを0.0
05%含むアルゴンガス雰囲気中で乾式アトライターに
て機械的合金化処理に供すると、複合粉末中の酸素量が
4時間後に500ppIIl、24時間後には1500
ppliも増加してしまう。On the other hand, for example, a mixed powder of component metals corresponding to a Ni-based super super heat-resistant alloy and Y2O3 powder are mixed with 0.0% oxygen gas.
When subjected to mechanical alloying treatment using a dry attritor in an argon gas atmosphere containing 0.5%, the amount of oxygen in the composite powder decreased to 500 ppII after 4 hours and 1500 ppII after 24 hours.
ppli also increases.
現在実用されている高強度の分散強化耐熱合金であるイ
ン5社のインコネルMA6000型合金においても、Y
2O3の酸素を除く母相合金中の酸素含有量は2000
乃至5000 ppn+と極めて多く、このことが、タ
ービンブレードの次世代素材有力候補と目され、長期に
亘って実用化研究が行われながら、未だ航空機エンジン
のブレードとして実用化されていない一因となっている
。Y
The oxygen content in the matrix alloy excluding 2O3 oxygen is 2000
This is one of the reasons why it has not yet been put into practical use as aircraft engine blades, although it has been considered a promising candidate for next-generation materials for turbine blades and research has been carried out over a long period to put it into practical use. ing.
以上説明したように、従来の技術によれば、原料粉末の
酸素量をいかに低レベルに制御したとしても、機械的合
金化過程で粉末の酸素による汚染が進行し、良好な複合
粉末を得ることは困難であり、従って、分散強化耐熱合
金の機械的特性は不十分なものである。As explained above, according to the conventional technology, no matter how low the oxygen content of the raw material powder is controlled, the powder becomes contaminated with oxygen during the mechanical alloying process, making it difficult to obtain a good composite powder. Therefore, the mechanical properties of dispersion-strengthened heat-resistant alloys are insufficient.
この発明はかかる事情に鑑みてなされたものであって、
酸素含有量が少なく、機械的特性が優れた分散強化耐熱
合金の製造方法を提供することを目的とする。This invention was made in view of such circumstances, and
The object of the present invention is to provide a method for manufacturing a dispersion-strengthened heat-resistant alloy with a low oxygen content and excellent mechanical properties.
[課題を解決するための手段]
この発明に係る分散強化耐熱合金の製造方法は、Ni又
はFeを主体とし、0.1乃至1.5重量26のY又は
0.6乃至4,5重量%のThを含有する原料粉を機械
的合金法により合金化してY又はThが酸化した状態で
含まれる複合粉末を生成する工程と、この複合粉末を固
化してNi又はFeを主体とする母相中にY2O3又は
Th02が分散してなる合金を形成する工程とを具備す
ることを特徴とする。[Means for Solving the Problems] The method for producing a dispersion-strengthened heat-resistant alloy according to the present invention mainly contains Ni or Fe, and contains 0.1 to 1.5% by weight of Y or 0.6 to 4.5% by weight. A process of alloying raw material powder containing Th by a mechanical alloying method to produce a composite powder containing Y or Th in an oxidized state, and solidifying this composite powder to form a matrix mainly composed of Ni or Fe. It is characterized by comprising a step of forming an alloy in which Y2O3 or Th02 is dispersed.
[作用]
Ni基又はFe基耐熱合金用の複合粉末を機械的合金化
法により製造する場合に、出発原料に適当量のTh又は
Yを含有させると、合金化処理中に雰囲気中から混入す
る酸素とこれらの元素とが結合して酸化物を形成する。[Function] When producing a composite powder for a Ni-based or Fe-based heat-resistant alloy by a mechanical alloying method, if an appropriate amount of Th or Y is included in the starting material, it will be mixed in from the atmosphere during the alloying process. Oxygen and these elements combine to form oxides.
そして、この複合粉末を固化させることにより微細な酸
化物が均一に分散した耐熱合金が得られる。このように
、雰囲気中の酸素が酸化物分散粒子の形成に消費される
ので、母合金中の酸素含有量を低くすることができる。By solidifying this composite powder, a heat-resistant alloy in which fine oxides are uniformly dispersed can be obtained. In this way, oxygen in the atmosphere is consumed in forming the oxide dispersed particles, so the oxygen content in the master alloy can be reduced.
また、酸化されないTh及びYは母相の固溶強化合金と
して有効に作用する。従って、極めて機械的特性が優れ
た分散強化耐熱合金を得ることができる。In addition, Th and Y, which are not oxidized, effectively act as a solid solution strengthening alloy for the parent phase. Therefore, a dispersion-strengthened heat-resistant alloy with extremely excellent mechanical properties can be obtained.
[実施例]
以下、この発明について詳細に説明する。この発明は酸
化物分散強化型のNi基又はFe基超超耐熱合金適用さ
れる。酸化物分散強化型の超耐熱合金は、米国特許3,
728,088号等にも記載されているように、600
乃至1100℃におけるクリープ強度が著しく高い。こ
の発明は、このような分散強化耐熱合金の利点を保持し
つつ、従来酸素の存在により低い値にならざるを得なか
った疲れ強さ及び靭性等の他の機械的特性を向上させる
ことができるものである。[Example] This invention will be described in detail below. This invention is applied to oxide dispersion strengthened Ni-based or Fe-based super super heat-resistant alloys. Oxide dispersion strengthened super heat-resistant alloys are disclosed in U.S. Patent No. 3,
As stated in No. 728,088, etc., 600
The creep strength at temperatures between 1100°C and 1100°C is extremely high. This invention can improve other mechanical properties such as fatigue strength and toughness, which conventionally had to be low due to the presence of oxygen, while retaining the advantages of dispersion-strengthened heat-resistant alloys. It is something.
この発明はNi−Cr系、Fe−Cr系、Ni−Cr−
Mo系、又はFe−Cr−Mo系等Ni基又はFe基耐
熱合金であれば母合金組成は問わないが、特に、Ni3
Al5Ni3 (Al、Ti)等の所謂γ′相と称
される金属間化合物を母合金中に含むものに対し有効で
ある。This invention is based on Ni-Cr, Fe-Cr, Ni-Cr-
The composition of the mother alloy does not matter as long as it is a Ni-based or Fe-based heat-resistant alloy such as Mo-based or Fe-Cr-Mo-based, but in particular, Ni3
It is effective for parent alloys containing an intermetallic compound called the so-called γ' phase, such as Al5Ni3 (Al, Ti).
この発明の方法においては、先ず、原料粉として、母相
成分であるNi又はFe粉末と、Th又はY粉末と、更
に必要に応じて他の合金成分の粉末とを準備し、これら
を機械的合金化法により合金化して複合粉末を製造する
。即ち、これら粉末をアトライター型ボールミル等の機
械的混合装置にて混合及び破砕し、更に粉末粒子を再結
合させ制御された均−且つ微細なミクロ組織を有する複
合粉末とする。この機械的合金化工程は、前述したよう
に僅かに酸素が含まれた環境下で実施されることが好ま
しい。これにより、原料粉の粉砕容器への付着及び巨大
粒子化を防止することができる。In the method of the present invention, first, as raw material powders, Ni or Fe powder, which is a matrix component, Th or Y powder, and powders of other alloy components as necessary are prepared, and these are mechanically processed. A composite powder is produced by alloying using an alloying method. That is, these powders are mixed and crushed using a mechanical mixing device such as an attritor ball mill, and then the powder particles are recombined to form a composite powder having a controlled uniform and fine microstructure. This mechanical alloying step is preferably carried out in an environment containing a slight amount of oxygen, as described above. Thereby, it is possible to prevent the raw material powder from adhering to the grinding container and from becoming large particles.
このような機械的合金化工程の際に、雰囲気中の酸素及
び原料表面に付着した酸素が選択的にY又はThと結合
して化学的に安定なY2O3又はTh201となり、こ
れら酸化物が複合粉末中に微細な状態で均一に分散する
。During such a mechanical alloying process, oxygen in the atmosphere and oxygen attached to the surface of the raw material selectively combine with Y or Th to form chemically stable Y2O3 or Th201, and these oxides form composite powder. It is evenly dispersed in a fine state.
なお、この際に添加するY又はThの量はYが0.2乃
至1.5重量%で、Thが0.6乃至4.5%である。Note that the amount of Y or Th added at this time is 0.2 to 1.5% by weight for Y and 0.6 to 4.5% for Th.
これらの含有量が前記範囲の下限よりも少ない場合はこ
れら酸化物の分散強化効果が不十分であり、また、上限
を超えると靭性が著しく低下してしまう。If the content of these oxides is less than the lower limit of the above range, the dispersion strengthening effect of these oxides will be insufficient, and if it exceeds the upper limit, the toughness will be significantly reduced.
原料粉としては、主体となるNi又はFe、及び分散相
を形成するY又はThの他に、例えばC「、Mo、W、
Ta5Nb、A l、Ti5Z r。In addition to Ni or Fe, which is the main component, and Y or Th, which forms the dispersed phase, the raw material powder may include, for example, C, Mo, W,
Ta5Nb, Al, Ti5Zr.
C及びBを添加したものを用いることができる。A material to which C and B are added can be used.
これら合金のうち、Crは耐熱合金に耐食性を付与する
元素として最も重要であるが、添加量が重量%で5%未
満ではその効果が不十分であり、25%を超えると脆化
相が母相中に析出する。Among these alloys, Cr is the most important element that imparts corrosion resistance to heat-resistant alloys, but if the amount added is less than 5% by weight, the effect is insufficient, and if it exceeds 25%, the embrittlement phase becomes a matrix. Precipitates in the phase.
Mo及びWは合金の固溶強化に寄与する元素であるが、
添加量が2.5%未満ではこのような効果が不十分であ
り、10%を超えると母相中に脆化相が析出する。Ta
及びNbはγ′相の強化に対し有効な元素であるが、6
%を超えて添加すると合金を脆化させると共に固溶化が
困難となる。Mo and W are elements that contribute to solid solution strengthening of alloys,
If the amount added is less than 2.5%, such effects are insufficient, and if it exceeds 10%, a brittle phase will precipitate in the matrix. Ta
and Nb are effective elements for strengthening the γ′ phase, but 6
If added in excess of %, the alloy becomes brittle and it becomes difficult to form a solid solution.
AI及びTiは母相中に固溶して耐高温酸化特性を向上
させ、また、Ni基合金では前述したようにN i3
(A I、 T i)相等を形成して高温強化に重要
な役割を果たすが、添加量が10%を超えるとγ′の体
積率が65乃至70%にも達してしまい、酸素量の低減
−では改善が困難な程に靭性が低下してしまう。Zr・
、C及びBは炭化物及び硼化物等の形成を通じて粒界及
び粒内の強化に寄与する元素であるが、Zrが0.3%
を超え、C+Bが0.2%を超えると母相が脆化してし
まう。従って、重量%で5≦Cr≦25%、2.5≦M
o+W≦10%、O<Ta+Nb≦6%、O<A l
+T i≦1026.0<ZrS2.3%、0<C+B
≦0.2%であることが好ましい。また、これらの合金
の他に20%以下のCoを添加することもできる。Co
は特にNi基合金中のγ′相の析出量を制御する作用を
自゛しており、20%以下で有効に作用する。なお、0
≦Mo+W≦2.5%、0≦AI+Ti≦2,0%とこ
れらが含まれていないか又は添加量が比較的低い範囲で
は、Crを30%まで添加しても脆化相が発生せず良好
な特性を示す。AI and Ti form a solid solution in the matrix to improve high-temperature oxidation resistance, and in Ni-based alloys, as mentioned above, Ni3
(A I, Ti) plays an important role in high-temperature strengthening by forming phases, but if the amount added exceeds 10%, the volume fraction of γ' reaches 65 to 70%, leading to a reduction in the amount of oxygen. -, the toughness decreases to such an extent that it is difficult to improve it. Zr・
, C and B are elements that contribute to grain boundary and intragranular strengthening through the formation of carbides, borides, etc., but Zr is 0.3%
If C+B exceeds 0.2%, the matrix becomes brittle. Therefore, in weight%, 5≦Cr≦25%, 2.5≦M
o+W≦10%, O<Ta+Nb≦6%, O<A l
+T i≦1026.0<ZrS2.3%, 0<C+B
It is preferable that it is ≦0.2%. In addition to these alloys, 20% or less of Co can also be added. Co
In particular, it has the function of controlling the amount of γ' phase precipitated in the Ni-based alloy, and is effective when the amount is 20% or less. In addition, 0
In the range where these are not included or are added in relatively low amounts, such as ≦Mo+W≦2.5% and 0≦AI+Ti≦2.0%, no brittle phase will occur even if Cr is added up to 30%. Shows good properties.
なお、これら合金元素は全て含まれている必要はなく、
合金の用途に応じてこれら元素を適宜組合わせて添加す
ることもできる。Note that it is not necessary to include all of these alloying elements;
These elements can also be added in appropriate combinations depending on the intended use of the alloy.
以上のような複合粉末の製造の後、この複合粉末をHI
P等の公知の手段により固化し、母相中にY2O3又は
Th2O3の微細粒子が均一に分散した合金を製造する
。その後、必要に応じてこの合金を加工し、焼鈍して使
用に供する。After producing the composite powder as described above, this composite powder is subjected to HI
The alloy is solidified by known means such as P to produce an alloy in which fine particles of Y2O3 or Th2O3 are uniformly dispersed in the matrix. Thereafter, this alloy is processed and annealed if necessary, and then used.
この場合に、酸化物の分散相を形成するY又はThは金
属の状態で添加され、機械的合金化処理の際に雰囲気中
又は原料に吸着した酸素と結合して分散相としての酸化
物を形成するので、従来のように分散相原料として酸化
物を用いる場合よりも、母合金中に取込まれる酸素を少
なくすることができ、合金中の酸素含有量を5’00p
pm以下と極めて少なくすることができる。また、雰囲
気中の酸素ユ又は吸着酸素量等を制御することにより、
酸化物分散相の量を合金の高温強度が最良になるように
調節することができる。更に、酸化されないY及びTh
は母相の固溶強化元素として有効に作用させることがで
きる。In this case, Y or Th, which forms the dispersed phase of the oxide, is added in the state of metal, and during the mechanical alloying process, it combines with oxygen in the atmosphere or adsorbed on the raw material to form the dispersed phase of the oxide. As a result, the amount of oxygen incorporated into the mother alloy can be reduced compared to the conventional case where oxides are used as dispersed phase raw materials, and the oxygen content in the alloy can be reduced to 5'00p.
It can be extremely reduced to pm or less. In addition, by controlling the amount of oxygen or adsorbed oxygen in the atmosphere,
The amount of oxide dispersed phase can be adjusted to optimize the high temperature strength of the alloy. Furthermore, unoxidized Y and Th
can be made to act effectively as a solid solution strengthening element for the matrix phase.
次に、この発明の具体的な実施例について説明する。先
ず、原料粉として第1表に示す組成のものを用いた。第
1表中実施例1乃至5はこの発明の範囲内のもの、また
、比較例1乃至5はこの発明の範囲外のものである。Next, specific embodiments of the present invention will be described. First, raw material powder having the composition shown in Table 1 was used. Examples 1 to 5 in Table 1 are within the scope of the present invention, and Comparative Examples 1 to 5 are outside the scope of the present invention.
第1表中、実施例1乃至3は、夫々機械的合金化法を用
いた既存の分散強化耐熱合金インコネルMA6000、
MA754、MA956組成とほぼ同一の組成を有し、
Y203の代わりに相当量のYを添加したもの、実施例
4はNi基耐熱合金のウディメット500相当組成にT
hO22,0%相当量のThを添加したもの、実施例5
はThO量を酸化されない金利のThが残存するような
量に設定したものである。これに対し、比較例1乃至3
は、夫々インコネルMA6000、MA754、MA9
56組成のもの、比較例4はMA956からY2O3を
除いたもの、比較例5はウディメット500にThO2
を2%添加したものである。In Table 1, Examples 1 to 3 are the existing dispersion-strengthened heat-resistant alloy Inconel MA6000 using the mechanical alloying method,
MA754, has almost the same composition as MA956 composition,
In Example 4, a considerable amount of Y was added instead of Y203, and T was added to a composition equivalent to Udimet 500, a Ni-based heat-resistant alloy.
Added Th equivalent to 2.0% hO2, Example 5
The amount of ThO is set to such an amount that the amount of Th that is not oxidized remains. On the other hand, Comparative Examples 1 to 3
are Inconel MA6000, MA754, MA9 respectively.
56 composition, Comparative Example 4 is MA956 without Y2O3, Comparative Example 5 is Udimet 500 with ThO2
2% was added.
各組成の原料粉を同一条件でプロセッシングした後、乾
式アトライタ型ボールミルにて244時間混合粉砕して
機械的に合金化した。この際に、実施例の場合にはアト
ライタ型ミル中に99.95%アルゴンガス(酸素含有
量的500ppm)を通流させ、比較例の場合には99
.99%のアルボンガス(酸素含有量的10100pp
を通流させた。その後、機械合金化した複合粉末を11
0℃で脱気乾燥処理した。第2表に脱気処理後の各原料
粉の酸素量、酸化物分散相中の酸素量、及び酸化物分散
相中の酸素量を除く合金中の酸素量を示す。After processing the raw material powders of each composition under the same conditions, they were mixed and ground in a dry attritor ball mill for 244 hours and mechanically alloyed. At this time, in the case of the example, 99.95% argon gas (oxygen content 500 ppm) was passed through the attritor type mill, and in the case of the comparative example, 99.95% argon gas (oxygen content 500 ppm) was passed through the attritor type mill.
.. 99% arbon gas (oxygen content 10100pp
was passed through. After that, the mechanically alloyed composite powder was
It was degassed and dried at 0°C. Table 2 shows the amount of oxygen in each raw material powder after degassing, the amount of oxygen in the oxide dispersed phase, and the amount of oxygen in the alloy excluding the amount of oxygen in the oxide dispersed phase.
第 2 表
この第2表から明らかなように、実施例1乃至5はいず
れも酸化物中の酸素量を除く合金中の酸素量がいずれも
0.3%以下であり、比較例の0.5乃至0.7%と比
較して極めて小さい値であった。即ち、実施例1乃至5
の場合には、雰囲気中の酸素及び吸着酸素がY又はTh
の酸化に費やされたので合金中の酸素量が少なくなった
のに対し、比較例では雰囲気中の酸素及び吸着酸素がそ
のまま合金中に人込み酸素含有量が高くなったのである
。比較例4のCr−Al−Ti−Fe系ではAl2O3
が形成され、これが微細な状態で均一に分散されていた
が、実施例のY又はThのような効果を得ることはでき
なかった。Table 2 As is clear from Table 2, in all of Examples 1 to 5, the amount of oxygen in the alloy excluding the amount of oxygen in the oxide was 0.3% or less, and the amount of oxygen in the comparative example was 0.3% or less. This value was extremely small compared to 5% to 0.7%. That is, Examples 1 to 5
In the case of , the oxygen in the atmosphere and the adsorbed oxygen are Y or Th
In contrast, in the comparative example, oxygen in the atmosphere and adsorbed oxygen remained in the alloy, resulting in a high oxygen content in the alloy. In the Cr-Al-Ti-Fe system of Comparative Example 4, Al2O3
were formed and were uniformly dispersed in a fine state, but the effect similar to that of Y or Th in Examples could not be obtained.
なお、この実施例では通常の保管状態(例えばデシケー
タ保管)の原料を用いたが、原料として空気に触れぬよ
うに管理された雰囲気下で作製、貯蔵及び輸送を行なっ
た金属粉を用いた場合には、吸着酸素が実質的に存在し
ないので、酸素量を0.1%にすることができることが
予想される。Note that in this example, raw materials in normal storage conditions (for example, stored in a desiccator) were used, but when metal powder was produced, stored, and transported in a controlled atmosphere to prevent exposure to air, Since there is substantially no adsorbed oxygen, it is expected that the amount of oxygen can be reduced to 0.1%.
また、原料粉のうち、酸化されやすいTa。Also, among the raw material powders, Ta is easily oxidized.
A1% Tt、Zr、Y、Th等はNi−Ta等の中間
化合物粉として添加した。A1% Tt, Zr, Y, Th, etc. were added as intermediate compound powders such as Ni-Ta.
このように機械合金化処理にて生成された複合粉末のう
ち、実施例1及び比較例1について、80メツシユのふ
るいを通過させたものを18%Cr−B%Ni−Feス
テンレス鋼製の缶に装入して500℃で加熱脱気した後
、真空封入し、1050℃にて熱間押出により固化して
微細な分散相が均一に存在する合金を作成した。この合
金を1220℃で1時間溶体化処理した後、%0℃で2
時間及び850℃で24時間時効処理した。Among the composite powders produced by the mechanical alloying treatment, those passed through an 80-mesh sieve for Example 1 and Comparative Example 1 were placed in an 18% Cr-B% Ni-Fe stainless steel can. After heating and degassing at 500°C, the alloy was vacuum sealed and solidified by hot extrusion at 1050°C to produce an alloy in which fine dispersed phases were uniformly present. After solution annealing this alloy at 1220°C for 1 hour,
Aging treatment was performed at 850° C. for 24 hours.
これら合金から平行部において直径1ofilIl及び
長さ30mmの円柱状の試験片を押出し長手方向に採取
し、これらの試験片を高温低サイクル疲れ寿命試験に供
した。その結果を第1図に示す。第1図は横軸に破断ま
での繰返し回数をとり、縦軸に全歪み範囲(ΔεT)を
とって、これらの関係を示すグラフ図であり、白丸は実
施例1の場合であり、黒丸は比較例1の場合である。な
お、試験条件としては温度750℃、振動数0.33H
zした。From these alloys, cylindrical test pieces with a diameter of 1 ofil and a length of 30 mm were extruded from the parallel portion and taken in the longitudinal direction, and these test pieces were subjected to a high temperature low cycle fatigue life test. The results are shown in FIG. FIG. 1 is a graph showing the relationship between these, with the horizontal axis representing the number of repetitions until breakage and the vertical axis representing the total strain range (ΔεT). The white circles are for Example 1, and the black circles are for Example 1. This is the case of Comparative Example 1. The test conditions were a temperature of 750°C and a frequency of 0.33H.
I did it.
この第1図から実施例1のほうが比較例1よりも高温低
サイクル疲れ寿命が大きいことが確認された。From FIG. 1, it was confirmed that Example 1 had a longer high-temperature, low-cycle fatigue life than Comparative Example 1.
また、実施例4及び5と比較例5とについて、同様な試
験片を作成し、温度800℃、振動数0.33Hzの条
件で高温低サイクル疲れ寿命を把握しまた。その結果を
第3表に示す。なお、第3表はΔεが0.7%の場合と
0.5%の場合について示す。In addition, similar test pieces were prepared for Examples 4 and 5 and Comparative Example 5, and the high-temperature, low-cycle fatigue life was determined under the conditions of a temperature of 800° C. and a frequency of 0.33 Hz. The results are shown in Table 3. Note that Table 3 shows cases where Δε is 0.7% and 0.5%.
第 3 表
この第3表から明らかなように、実施例4及び5は比較
例5よりも30乃至40%程度破断繰返し数が上昇した
。即ち、ThO2を添加したものよりもThを添加した
もののほうが疲れ寿命が長いことが確認された。更に、
実施例4及び5を比較すると、酸化されないThが残存
1.ている実施例5のほうが破断繰返し数が大きい。こ
れは酸化されなかったT hの固溶強化作用によるもの
である。Table 3 As is clear from Table 3, Examples 4 and 5 had a 30 to 40% higher number of rupture cycles than Comparative Example 5. In other words, it was confirmed that the fatigue life of the material to which Th was added was longer than that to which ThO2 was added. Furthermore,
Comparing Examples 4 and 5, the amount of unoxidized Th remaining is 1. In Example 5, the number of repetitions of rupture is larger. This is due to the solid solution strengthening effect of unoxidized Th.
次に、実施例1.4及び5と比較例1及び5の組成の分
散強化合金に・ついて靭性試験を行なった。Next, toughness tests were conducted on the dispersion strengthened alloys having the compositions of Examples 1.4 and 5 and Comparative Examples 1 and 5.
合金は前述した方法で製造し、熱間押出し方向を長手方
向にしてVノツチシャルピー試験片を作成した。この試
験片を0 ’Cにおけるシャルピー衝撃試験に洪し、靭
性値を求めた。その結果を第4表に示す。The alloy was manufactured by the method described above, and a V-notch Charpy test piece was prepared with the hot extrusion direction as the longitudinal direction. This test piece was subjected to a Charpy impact test at 0'C to determine the toughness value. The results are shown in Table 4.
第 4 表
第4表中、M A 6000 F[1当材である実施例
1及び比較例1の靭性値を比較すると、実施例1のほう
が靭性値か高かった。また、ウディメット500にTh
O2を添加した系においては実施例4及び5のほうが比
較例5よりも著しく高い靭性値を示した。なお、実施例
5はThの固溶強化に伴う靭性の低ドが認められるもの
の比較例よりも遥かに高い靭性値を示した。Table 4 In Table 4, when comparing the toughness values of Example 1 and Comparative Example 1, which are M A 6000 F[1 materials, Example 1 had a higher toughness value. Also, Th on Udimet 500
In the system in which O2 was added, Examples 4 and 5 showed significantly higher toughness values than Comparative Example 5. Although Example 5 showed a decrease in toughness due to the solid solution strengthening of Th, it exhibited a much higher toughness value than the Comparative Example.
[発明の効果]
この発明によれば、Ni基又はFe基の分散強化耐熱合
金を製造するにあたり、酸化物分散相を形成するY又は
Thを金属の状態で添加し、このY及びT hは機械的
合金化工程の際に選択的に酸化するので、母相合金中に
取込まれる酸素量を極めて少なくすることができ、また
、これら酸化物が母相合金中に微細且つ均一に分散する
。従って、Ni基又はFe基の分散強化耐熱合金の高い
クリープ強さを維持しつつ、疲れ寿命及び靭性等、酸素
が悪影響を及ぼす機械的特性を著しく向上させることが
できる。[Effects of the Invention] According to the present invention, when producing a Ni-based or Fe-based dispersion-strengthened heat-resistant alloy, Y or Th forming an oxide dispersed phase is added in a metallic state, and the Y and Th are Since it is selectively oxidized during the mechanical alloying process, the amount of oxygen taken into the matrix alloy can be extremely reduced, and these oxides are finely and uniformly dispersed in the matrix alloy. . Therefore, while maintaining the high creep strength of the Ni-based or Fe-based dispersion-strengthened heat-resistant alloy, it is possible to significantly improve mechanical properties that are adversely affected by oxygen, such as fatigue life and toughness.
第1図はこの発明に基づいて製造した合金の疲れ寿命を
従来の耐熱合金と比較して示すグラフ図である。
出願人代理人 弁理士 鈴江武彦FIG. 1 is a graph showing the fatigue life of an alloy manufactured according to the present invention in comparison with a conventional heat-resistant alloy. Applicant's agent Patent attorney Takehiko Suzue
Claims (3)
%のY又は0.6乃至4.5重量%のThを含有する原
料粉を機械的合金法により合金化してY又はThが酸化
した状態で含まれる複合粉末を生成する工程と、この複
合粉末を固化してNi又はFeを主体とする母相中にY
_2O_3又はThO_2が分散してなる合金を形成す
る工程とを具備することを特徴とする分散強化耐熱合金
の製造方法。(1) Raw material powder mainly composed of Ni or Fe and containing 0.1 to 1.5% by weight of Y or 0.6 to 4.5% by weight of Th is alloyed with Y or Th by a mechanical alloying method. A step of producing a composite powder containing Y in an oxidized state, and a step of solidifying this composite powder to add Y to a matrix mainly composed of Ni or Fe.
A method for producing a dispersion-strengthened heat-resistant alloy, comprising the step of forming an alloy in which _2O_3 or ThO_2 is dispersed.
l、Ti、Zr、C及びBからなる群から選択される少
なくとも1種の元素を含み、これら元素の含有量はCr
が5乃至30重量%、Mo+Wが2.5乃至10重量%
、Ta+Nbが6重量%以下、Al+Tiが10重量%
以下、Zrが0.3重量%以下、C+Bが0.2重量%
以下であることを特徴とする請求項第1項記載の分散強
化耐熱合金の製造方法。(2) The raw material powder includes Cr, Mo, W, Ta, Nb, A
Contains at least one element selected from the group consisting of Cr, Ti, Zr, C, and B, and the content of these elements is Cr.
is 5 to 30% by weight, and Mo+W is 2.5 to 10% by weight.
, Ta+Nb is 6% by weight or less, Al+Ti is 10% by weight
Below, Zr is 0.3% by weight or less, C+B is 0.2% by weight
The method for producing a dispersion-strengthened heat-resistant alloy according to claim 1, characterized in that:
の酸素含有量が500ppm以下の分散強化耐熱合金。(3) A dispersion-strengthened heat-resistant alloy having an oxygen content of 500 ppm or less in the matrix alloy, which is produced by the production method of item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63103520A JPH01275724A (en) | 1988-04-26 | 1988-04-26 | Manufacture of dispersion strengthened heat-resistant alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63103520A JPH01275724A (en) | 1988-04-26 | 1988-04-26 | Manufacture of dispersion strengthened heat-resistant alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01275724A true JPH01275724A (en) | 1989-11-06 |
Family
ID=14356214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63103520A Pending JPH01275724A (en) | 1988-04-26 | 1988-04-26 | Manufacture of dispersion strengthened heat-resistant alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01275724A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08193202A (en) * | 1995-01-18 | 1996-07-30 | Kubota Corp | Production of yttrium oxide-dispersed chromium-base alloy powder |
CN109180188A (en) * | 2018-10-08 | 2019-01-11 | 中南大学 | A kind of high entropy carbide containing boron ultra-high temperature ceramic powder and preparation method thereof |
WO2020019401A1 (en) * | 2018-07-27 | 2020-01-30 | 中南大学 | Multi-scale and multi-phase dispersion strengthened iron-based alloy, and preparation and representation method therefor |
WO2020019402A1 (en) * | 2018-07-27 | 2020-01-30 | 中南大学 | Oxide dispersion-strengthened iron-based alloy powder and characterization method therefor |
CN118547178A (en) * | 2024-07-29 | 2024-08-27 | 湘潭大学 | Oxide reinforced high-entropy alloy material and preparation method and application thereof |
-
1988
- 1988-04-26 JP JP63103520A patent/JPH01275724A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08193202A (en) * | 1995-01-18 | 1996-07-30 | Kubota Corp | Production of yttrium oxide-dispersed chromium-base alloy powder |
WO2020019401A1 (en) * | 2018-07-27 | 2020-01-30 | 中南大学 | Multi-scale and multi-phase dispersion strengthened iron-based alloy, and preparation and representation method therefor |
WO2020019402A1 (en) * | 2018-07-27 | 2020-01-30 | 中南大学 | Oxide dispersion-strengthened iron-based alloy powder and characterization method therefor |
US11584979B2 (en) | 2018-07-27 | 2023-02-21 | Central South University | Oxide dispersion-strengthened iron-based alloy powder and characterization method thereof |
CN109180188A (en) * | 2018-10-08 | 2019-01-11 | 中南大学 | A kind of high entropy carbide containing boron ultra-high temperature ceramic powder and preparation method thereof |
CN109180188B (en) * | 2018-10-08 | 2021-01-29 | 中南大学 | High-entropy boron-containing carbide ultra-high temperature ceramic powder and preparation method thereof |
CN118547178A (en) * | 2024-07-29 | 2024-08-27 | 湘潭大学 | Oxide reinforced high-entropy alloy material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1925683B1 (en) | Cobalt-base alloy with high heat resistance and high strength and process for producing the same | |
EP0804627B1 (en) | Oxidation resistant molybdenum alloy | |
JP3027200B2 (en) | Oxidation resistant low expansion alloy | |
US5989491A (en) | Oxide dispersion strengthened heat resisting powder metallurgy alloy and process for producing the same | |
US3902862A (en) | Nickel-base superalloy articles and method for producing the same | |
JPH0832934B2 (en) | Manufacturing method of intermetallic compounds | |
JPH01275724A (en) | Manufacture of dispersion strengthened heat-resistant alloy | |
JPS58193335A (en) | Dispersion strengthened type nickel base heat resistant sintered alloy and preparation thereof | |
WO2021176784A1 (en) | Co-BASED ALLOY STRUCTURE AND PRODUCTION METHOD THEREFOR | |
US4798625A (en) | Superalloy with oxide dispersion hardening having improved corrosion resistance and based on nickel | |
JP3067416B2 (en) | Ni-based alloy powder for manufacturing high temperature heat resistant parts | |
JPH02179843A (en) | Tool material for hot tube making | |
US2842439A (en) | High strength alloy for use at elevated temperatures | |
JP3743019B2 (en) | Titanium aluminide for precision casting containing Fe and V | |
US3695868A (en) | Preparation of powder metallurgy compositions containing dispersed refractory oxides and precipitation hardening elements | |
RU2771192C1 (en) | Powder of a cobalt-based alloy, sintered body made of a cobalt-based alloy, and method for manufacturing a sintered body from a cobalt-based alloy | |
RU2771192C9 (en) | Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body | |
CN112593161B (en) | High-strength Sc composite nano oxide dispersion strengthening Fe-based alloy and preparation method thereof | |
JPH02129344A (en) | Oxide-dispersed heat resisting steel and its production | |
WO2023157438A1 (en) | Fe-Ni-Cr BASED ALLOY PRODUCT | |
JPH06212324A (en) | Tic grain dispersed sintered ti alloy and its production | |
JPS6353232A (en) | Oxide dispersion-strengthened super heat-resisting alloy | |
Reichman et al. | New developments in superalloy powders | |
JPH1161303A (en) | Oxide dispersion strengthened alloy, production of the alloy, and high temperature heat resistant parts using the alloy | |
JPH05222481A (en) | New high chromium-nickel mechanical alloy and its production |