JP3743019B2 - Titanium aluminide for precision casting containing Fe and V - Google Patents
Titanium aluminide for precision casting containing Fe and V Download PDFInfo
- Publication number
- JP3743019B2 JP3743019B2 JP12103195A JP12103195A JP3743019B2 JP 3743019 B2 JP3743019 B2 JP 3743019B2 JP 12103195 A JP12103195 A JP 12103195A JP 12103195 A JP12103195 A JP 12103195A JP 3743019 B2 JP3743019 B2 JP 3743019B2
- Authority
- JP
- Japan
- Prior art keywords
- oxidation
- tial
- titanium aluminide
- precision casting
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、軽量かつ耐熱材料として注目されている金属間化合物TiAl(チタンアルミナイド)に係り、特に、Fe,Vを含む精密鋳造用チタンアルミナイドに関するものである。
【0002】
【従来の技術】
TiAlは、その特徴ゆえに、航空機や自動車のエンジン用の回転部材などに有望とされているが、一方で、常温延性が著しく低く、また成形加工が難しいことなどから実用化されるには至っていない。
【0003】
しかし、最近の研究開発の成果は、常温延性の改善、精密鋳造法による複雑形状部品の試作を可能とし、実用化への気運が高まっている。
【0004】
ところで、高温での比強度(強度を密度で除した値)に優れているとはいえ、700℃以上の高温では期待されていた程の耐酸化性を示さないことが判明し、種々の対策が提案されている。
【0005】
緻密なAl2O3の酸化被膜を形成するはずのAlを、30〜36(質量%)も含むTiAlの耐酸化性が、期待されたほどではない理由として、Al2O3の成長速度よりも、TiO2の成長速度の方が大きいこと、TiAl中のAlの拡散速度が小さいことなどが挙げられる。
【0006】
TiAlの耐酸化性を向上させる手段としては、第三元素の添加、表面処理、あるいは低酸素分圧下での熱処理による予備酸化法などが提案されている。
【0007】
このうち、第三元素を添加する方法について特願昭63-133124号では、第三元素として0.05〜5(質量%)のW,Si,Nb,Moの添加が、粉末冶金法でのTiAlの創生と成形と共に提案され、特願昭61-256941号では、0.2〜1.0(質量%)Siの添加、特願平1-213702号では、0.1〜2.0(質量%)Siの添加が、Nb添加との相乗効果で、優れた耐酸化性を付与することが開示されている。
【0008】
勿論、耐酸化性を改善する第三元素が常温延性に対して有害であれば、実用性を持たないことになるため、添加量の上限が決められたり、粒界強化などによる延性や強度向上に効果を有する元素との組み合わせ、複合添加が提案されている。
【0009】
【発明が解決しようとする課題】
一方、TiAlの適用が期待されている航空機エンジン部品は、薄肉複雑形状であるため、TiAlの精密鋳造による成形が鋭意試みられており、それぞれ0.05〜3.0(質量%)のNi,Siを添加して延性向上、合金の融点降下を図ったり(特願昭62-236609号)、Fe,V,Bを複合添加して鋳造性を向上させる(特願平2-201373号)など、精密鋳造に適したTiAlも提案されている。
【0010】
この先願に係る精密鋳造用チタンアルミナイドは、特に鋳造性、破壊靭性、延性における実用化の検討を進める努力によってなされたものである。
【0011】
すなわち、Alの質量百分率を31〜34%に設定して、常温延性及び常温での破壊靭性値を良好に維持し、鋳造性を損なっていない。また、Bの質量百分率を0.07〜0.30%に設定して、粒界を強化すると共に、ミクロ組織を安定にし、かつ疲労破壊の起点となり得るフレーク状チタンボライドの分散を阻止している。また、Feの質量百分率を1.5〜2.5%に設定して、湯流れ性,鋳造性,靭性を、Vの質量百分率を1.5〜2.0%に設定して、チタンボライドの微細均一分散性を図っている。
【0012】
このように、先願に係る精密鋳造用チタンアルミナイドは、湯流れ性に優れており、また鋳放状態において、高強度及び比較的優れた延性を有している。また、薄肉複雑形状鋳物でも割れが生じにくく、該薄肉複雑形状の部品を高い良品歩留まりで作製することができる。さらに、高温での比強度において優れている。
【0013】
しかしながら、この先願に係る精密鋳造用チタンアルミナイドは、後述する如く耐酸化特性に劣るという欠点を持っている。したがって、ジェットエンジンやタービンなどの軽量耐熱新素材として期待されながら、その耐酸化性が障害となっている点を解決することができれば、産業上極めて有用な精密鋳造用チタンアルミナイドを提供することができるものである。
【0014】
図2に示すように、このFe,Vを含まないTiAl(図中の○,□,△印)は、Fe,Vを含むTiAl(図中の黒塗りの菱形印)よりも、高温(800℃,大気雰囲気)での酸化増量が大きい。また図3に示すように、繰り返し酸化(800℃,大気雰囲気で10Hr放置後、2Hr常温冷却を1サイクルとして繰り返し酸化)という条件では、Fe,Vを含まないTiAl(図中の○,△印)は、酸化後の重量が増しているのに対して、Fe,Vを含むTiAl(図中の■,黒塗りの菱形,▲印)は、酸化スケールの剥離が生じ、酸化後の重量は減っている。
【0015】
図4は、Vの添加量を0,0.5,1.5(質量%)と変化させて酸化増量の変化を実験(800℃,大気雰囲気)したものである。この実験の結果、図4に示すように、Vを添加していないTiAlに比べて、Vを添加したTiAlの酸化増量が大きい原因には、Vが関与しており、Vの添加量が増すにつれて、酸化後の重量が増している。このVに換えて、例えばNbを等量添加すれば、酸化増量は他のTiAlと同等になることが確認されている。また、他のTiAlに比べて、酸化スケールが剥離しやすい原因には、図5に示すように、Feが濃縮された層が形成されることによっている。
【0016】
図5に示すように、Ti,Al,Fe,Vから成るTiAlの表面には、Ti,Al,V,Oの酸化スケールが、Fe,Al,Oから成るFeの濃縮層を介して、層状に積み重なっている。高温酸化に特に弱いFeの濃縮層は、高温状態においては、TiAlとの接合が弱まり、酸化スケールの剥離が生じるものと思われる。
【0017】
本発明の目的は、Fe,V,Bが複合添加された良好な鋳造性を有するチタンアルミナイドの、その特性を損なうことなく、高温での耐酸化性を改善し、実用に供し得るFe,Vを含む精密鋳造用チタンアルミナイドを提供するものである。
【0018】
【課題を解決するための手段】
本発明は、上記の目的を達成するため、質量百分率でAl:31〜34%,Fe:1.5〜2.5%,V:1.5〜2.0%,B:0.07〜0.30%,Si:0.03〜0.08%を含有し、残部がTi及び不可避不純物から成るものである。
【0019】
【作用】
上記の構成によれば、Fe,V,Bが複合添加されたチタンアルミナイドにSiを添加することで、鋳造性に優れているという特性を損なうことなく、高温での耐酸化性を改善できる。
【0020】
本発明に係る、Fe,Vを含む精密鋳造用チタンアルミナイドの組成範囲の限定は、以下の理由による。
【0021】
Alが質量百分率で31%より少ない場合は、鋳造組織中のTi3Alの量が著しく増加し、かつTi−B化合物が粗大化して鋳造割れが生じ易くなる。また同じく34%よりも多いと、Ti3Alの生成量が少なく、熱処理によっても適正な(Ti3Al+TiAl)複合組織を得る事が出来ず、常温延性を付与する点で不都合である。
【0022】
Bは質量百分率で0.07%よりも少ないと、粒界強化や鋳造組織微細化の作用がなく、同じく0.30%よりも多いと、TiAl合金の硬度が高くなる分、靭性を損なう。
【0023】
Feは鋳造性を付与する重要な元素であり、質量百分率で1.5%よりも少ないと、湯流れ性が悪くなり、Ti−B化合物の粗大化をもたらす。同じく2.5%よりも多いと、TiAl合金の硬度が高くなり過ぎ、かつTi−B化合物が凝集し、鋳造割れを生じ易くなる。Vは、耐酸化性を損なう元素ではあるが、Ti−B化合物を微細均一分散させるために不可欠の元素であり、AlやFeが適正に添加されていても、Vが添加されていないとTi−B化合物が微細均一分散した鋳造組織が得られない。Vが質量百分率で1.5%よりも少ないと、この作用も小さく、同じく2.0%よりも多いと、TiAl合金の硬度が高くなり、靭性を損なう。
【0024】
次に、Siの添加量については、0.03(質量%)よりも少ないSi添加では、耐酸化性向上効果は認められず、一方、0.08(質量%)よりも多いSi添加では、Fe,Si濃縮層の形成が認められ、酸化増量はSi無添加の場合より少ないものの、酸化スケールの剥離性があることが推察され、事実、繰り返し酸化試験では、良好な結果は得られなかった。
【0025】
0.03〜0.08(質量%)のSi添加では、Ti5Si3やTi5Si4などの化合物が生成することもなく、さらに鋳造凝固過程で、Siが偏在して低融点相を生成し、凝固割れを発生せしめるということもない。Siの添加はSi単体のほか、Fe−Si(フェロシリコン)などの母合金であってもよい。
【0026】
【実施例】
以下、本発明に係る、Fe,Vを含む精密鋳造用チタンアルミナイドの好適一実施例を詳述する。
【0027】
本発明者等は、先願特許などで提案されている、γTiAl基合金の耐酸化性向上に有効であるとされる添加元素と、その望ましいとされる添加量を参考にして、Ti-32Al-1.9Fe-1.3V-0.11B(質量%)を母材とし、これに各種元素(Hf,W,Re,Y,Zr,Si,Nb,Mo,Cr,Mg)を0.5(質量%)加えた試験材を溶製して、酸化試験を実施した。
【0028】
表1は、その結果の一例である。
【0029】
【表1】
【0030】
表1は、各種元素(Hf,W,Re,Y,Zr,Si,Nb,Mo,Cr,Mg)を加えた試料の酸化増量(mg/cm2)を示し、同時にビッカース硬度(荷重5kg)も併記している。
【0031】
表1において、Hf,W,Re,Zrを含むTiAlは、母材の酸化増量である7.62(mg/cm2)より、酸化特性が劣るか、もしくは同等という結果となった。
【0032】
耐酸化性についてみれば、Nb,Mo,Mgを含むTiAlは、酸化特性は改善できるが、ビッカース硬度(Hv)が300以上となり、靭性を損なう。本発明者等の従前の経験で、硬度上昇をもたらすこれらの添加元素は、常温延性を損なう作用を有することが判っており、たとえ酸化特性は改善できたとしても実用には供し得ない。
【0033】
次に、ビッカース硬度(Hv)が300以下で、酸化増量の比較的少ないSi,Crについて、添加量を大幅に変えた実験を行い、同時に硬度のみが一番低いYについても併せて実験を行ったが、Siだけが0.03〜0.08(質量%)の範囲の添加で、800℃,50Hrの酸化試験後の増量が、図1に示すように、1.30〜3.60(mg/cm2)の範囲となり、著しい耐酸化性向上効果を示すことを見い出した。
【0034】
酸化試験後の試料断面のX線マイクロアナライザーによる観察では、0.03〜0.08(質量%)のSiを添加した場合には、図5に示した様なFeの濃縮層は認められなかった。
【0035】
【発明の効果】
以上述べたように、本発明に係る、Fe,Vを含む精密鋳造用チタンアルミナイドは、次のような優れた効果を有している。
【0036】
(1)Siを添加することで、Fe,Vを含む優れた鋳造性を有するチタンアルミナイドの特性を損なうこと無く、酸化スケールの剥離を阻止し、高温での耐酸化性を改善できる。
【0037】
(2)Si添加による改善方法は、SiをSi単体もしくはFe−Siなどの形で、0.03〜0.08(質量%)添加するものであり、耐酸化コーティングなどの表面処理法に比べてコストの点で有利である。
【0038】
(3)Si添加量が0.03〜0.08(質量%)の範囲内であれば、鋳造割れを惹起させたり、靭性を損なうなどの悪い副作用がない。
【図面の簡単な説明】
【図1】 図1は、本発明におけるFe,Vを含む精密鋳造用チタンアルミナイドの、Si添加量と酸化増量の相関図である。
【図2】 図2は、各種チタンアルミナイドの、高温酸化による重量増加の関係を示す図である。
【図3】 図3は、各種チタンアルミナイドの、繰り返し酸化における重量変化を示す図である。
【図4】 図4は、Fe,Vを含む精密鋳造用チタンアルミナイドの、酸化挙動に及ぼすVの影響を示す図である。
【図5】 図5は、Fe,Vを含む精密鋳造用チタンアルミナイドの、酸化試験後の試料断面の模式図である。[0001]
[Industrial application fields]
The present invention relates to an intermetallic compound TiAl (titanium aluminide) that is attracting attention as a lightweight and heat-resistant material, and more particularly to a titanium aluminide for precision casting containing Fe and V.
[0002]
[Prior art]
TiAl is considered promising for rotating members for aircraft and automobile engines because of its characteristics, but on the other hand, it has not been put to practical use because of its extremely low room temperature ductility and difficulty in molding. .
[0003]
However, recent research and development results have enabled improvements in cold ductility and trial production of complex-shaped parts by precision casting, and there is a growing interest in commercialization.
[0004]
By the way, although it is excellent in specific strength at high temperature (value obtained by dividing strength by density), it has been found that it does not exhibit oxidation resistance as expected at a high temperature of 700 ° C. or higher. Has been proposed.
[0005]
The reason why the oxidation resistance of TiAl containing 30 to 36 ( mass %) of Al, which should form a dense Al 2 O 3 oxide film, is not as expected is that the growth rate of Al 2 O 3 However, the growth rate of TiO 2 is higher and the diffusion rate of Al in TiAl is lower.
[0006]
As means for improving the oxidation resistance of TiAl, a pre-oxidation method by adding a third element, surface treatment, or heat treatment under a low oxygen partial pressure has been proposed.
[0007]
Among them, in Japanese Patent Application No. 63-133124 regarding the method of adding the third element, addition of 0.05 to 5 ( mass %) of W, Si, Nb, and Mo as the third element is the same as that of TiAl in the powder metallurgy method. Proposed along with creation and molding, Japanese Patent Application No. 61-256941 added 0.2 to 1.0 ( mass %) Si, and Japanese Patent Application No. 1-213702 added 0.1 to 2.0 ( mass %) Si. It is disclosed that excellent oxidation resistance is imparted by a synergistic effect with addition.
[0008]
Of course, if the third element that improves oxidation resistance is harmful to room temperature ductility, it will not have practicality, so the upper limit of the addition amount is determined, ductility and strength improvement by grain boundary strengthening etc. In combination with elements having an effect on the above, composite addition has been proposed.
[0009]
[Problems to be solved by the invention]
On the other hand, since aircraft engine parts that are expected to be applied with TiAl have thin and complex shapes, attempts have been made to form TiAl by precision casting, adding 0.05 to 3.0 ( mass %) of Ni and Si, respectively. For precision casting, such as improving ductility, lowering the melting point of alloys (Japanese Patent Application No. 62-236609), and adding Fe, V, and B to improve castability (Japanese Patent Application No. 2-201373) Suitable TiAl has also been proposed.
[0010]
The titanium aluminide for precision casting according to this prior application has been made by an effort to promote practical application particularly in terms of castability, fracture toughness, and ductility.
[0011]
That is, by setting the mass percentage of Al in the 31 to 34%, the fracture toughness values at room temperature ductility and cold well sustained, not impair the castability. Further, by setting the mass percentage of B to 0.07 to 0.30%, to strengthen the grain boundaries, the microstructure was stable, and has prevented the distribution of it to obtain frame over click shaped Chitanboraido a starting point of fatigue fracture. Further, by setting the mass percentage of Fe 1.5 to 2.5% fluidity, castability, toughness, by setting the mass percentage of V in 1.5 to 2.0%, working to fine uniform dispersion of Chitanboraido ing.
[0012]
As described above, the titanium aluminide for precision casting according to the prior application is excellent in molten metal flowability, and has high strength and relatively excellent ductility in the as-cast state. Moreover, even a thin-walled complex-shaped casting is less likely to crack, and the thin-walled complex-shaped part can be produced with a high yield. Furthermore, it is excellent in specific strength at high temperature.
[0013]
However, the titanium aluminide for precision casting according to this prior application has a disadvantage that it is inferior in oxidation resistance as will be described later. Therefore, while being expected as a lightweight heat resistant new materials, such as jet engines and te bottles, their oxidation resistance if it is possible to solve the point that a failure to provide a titanium aluminide for the very useful precision casting industry It is something that can be done.
[0014]
As shown in FIG. 2, the Fe, (○ in the figure, □, △ mark) that does not contain TiAl the V is, Fe, than the including TiAl (black diamond mark in the figure) V, the high-temperature Large increase in oxidation at (800 ° C, air atmosphere). In addition, as shown in FIG. 3, under conditions of repeated oxidation (repeated oxidation at 800 ° C. for 10 hours in an air atmosphere and repeated cooling for 2 hours at room temperature for one cycle), TiAl containing no Fe or V (circles and triangles in the figure) ) is that the gaining weight after oxidation, Fe, ■ in TiAl (FIG containing V, black diamond, ▲ marks), the release occurs in the oxide scale Lumpur, after oxidation Weight is decreasing.
[0015]
FIG. 4 shows the experiment (800 ° C., air atmosphere) of the change in the increase in oxidation by changing the addition amount of V to 0, 0.5, 1.5 ( mass %). As a result of this experiment, as shown in FIG. 4, V is involved in the cause of the increase in oxidation amount of TiAl to which V is added compared to TiAl to which V is not added, and the amount of addition of V increases. As the weight increases, the weight after oxidation increases. For example, if an equal amount of Nb is added instead of V, it is confirmed that the increase in oxidation is equivalent to that of other TiAl. Also, compared to other TiAl, the cause of easily oxidized scale Lumpur is separated, there by, as shown in FIG. 5, a layer Fe enriched is formed.
[0016]
As shown in FIG. 5, Ti, Al, Fe, on the surface of TiAl consisting V, Ti, Al, V, O oxide scale Lumpur is, via a concentrated layer of Fe composed Fe, Al, from O Stacked in layers. Concentrated layer of particularly vulnerable Fe in high-temperature oxidation, in the hot state, weakens the bonding of the TiAl, it is believed that peeling of the oxide scale Lumpur occurs.
[0017]
An object of the present invention is to improve the oxidation resistance at high temperatures of a titanium aluminide having good castability to which Fe, V, and B are added in a composite manner without impairing its characteristics, and can be put to practical use. A titanium aluminide for precision casting containing
[0018]
[Means for Solving the Problems]
The present invention for achieving the above object, Al in mass percentage: 31~34%, Fe: 1.5~2.5% , V: 1.5~2.0%, B: 0.07~0.30%, Si: 0.03~0.08% And the balance consists of Ti and inevitable impurities.
[0019]
[Action]
According to said structure, the oxidation resistance in high temperature can be improved, without impairing the characteristic that it is excellent in castability by adding Si to the titanium aluminide with which Fe, V, and B were added in combination.
[0020]
The limitation of the composition range of the titanium aluminide for precision casting containing Fe and V according to the present invention is as follows.
[0021]
Al is if less than 31% by mass percentage, the amount of Ti 3 Al in the cast structure increases significantly, and Ti-B compound tends to occur casting crack coarsened. Similarly, if it exceeds 34%, the amount of Ti 3 Al produced is small, and an appropriate (Ti 3 Al + TiAl) composite structure cannot be obtained even by heat treatment, which is disadvantageous in that room temperature ductility is imparted.
[0022]
B is the less than 0.07% by mass percentage, there is no effect of the grain boundary strengthening and cast structure finer and also more than 0.30%, min hardness of TiAl alloy becomes high, impairing toughness.
[0023]
Fe is an important element imparting castability and less than 1.5% by mass percentage, fluidity is deteriorated, resulting in coarsening of the Ti-B compounds. Similarly, when the content is more than 2.5%, the hardness of the TiAl alloy becomes too high, and the Ti-B compound is aggregated to easily cause casting cracks . V is an element that impairs oxidation resistance, but is an indispensable element for finely and uniformly dispersing the Ti-B compound. Even if Al or Fe is added properly, if V is not added, Ti is added. A cast structure in which the -B compound is finely and uniformly dispersed cannot be obtained. When V is less than 1.5% by mass percentage, this effect is small, more than well 2.0%, the hardness of TiAl alloy increases, impairing toughness.
[0024]
Next, regarding the addition amount of Si, when Si addition is less than 0.03 ( mass %), the effect of improving oxidation resistance is not observed, whereas when Si addition is more than 0.08 ( mass %), Fe and Si are concentrated. formation of the layer was observed, although the oxidized amount less than that of Si not added, is inferred that there is peeling of the oxide scale Lumpur, in fact, in the cyclic oxidation tests, good results were not obtained.
[0025]
When Si is added in an amount of 0.03 to 0.08 ( mass %), compounds such as Ti 5 Si 3 and Ti 5 Si 4 are not generated, and Si is unevenly distributed in the casting and solidification process to generate a low melting point phase and solidify. There is no such thing as causing cracks. In addition to Si alone, Si may be added to a mother alloy such as Fe-Si (ferrosilicon).
[0026]
【Example】
Hereinafter, a preferred embodiment of a titanium aluminide for precision casting containing Fe and V according to the present invention will be described in detail.
[0027]
The inventors of the present invention have proposed Ti-32Al with reference to an additive element proposed in a prior application patent and the like, which is effective for improving the oxidation resistance of a γTiAl-based alloy, and its desired addition amount. -1.9Fe-1.3V-0.11B (% by mass) as a base material, in addition thereto various elements (Hf, W, Re, Y , Zr, Si, Nb, Mo, Cr, Mg) 0.5 (wt%) The test material was melted and an oxidation test was performed.
[0028]
Table 1 is an example of the results.
[0029]
[Table 1]
[0030]
Table 1, various elements (Hf, W, Re, Y , Zr, Si, Nb, Mo, Cr, Mg) shows the oxidation weight gain of the sample was added (mg / cm 2), at the same time Vickers hardness (load 5 kg) is also shown.
[0031]
In Table 1, TiAl containing Hf, W, Re, and Zr was inferior in oxidation characteristics or equivalent to 7.62 (mg / cm 2 ), which is an increase in the amount of oxidation of the base material.
[0032]
Come to about oxidation resistance, TiAl containing Nb, Mo, and Mg is oxide properties can be improved, Vickers hardness (Hv) is 300 or more, impairs the toughness. In our previous experience, it has been found that these additive elements that cause an increase in hardness have the effect of impairing the room temperature ductility, and even if the oxidation characteristics can be improved, they cannot be put into practical use.
[0033]
Next, in Vickers hardness (Hv) of 300 or less, a relatively low Si oxide bulking, the Cr, performs significantly changed experiments the amount, together also simultaneously low only hardness most Y experiments were subjected to, with the addition of a range only 0.03 to 0.08 (mass%) Si, 800 ° C., is increased after
[0034]
The observation by X ray microanalyzer over of the cross section of the sample after oxidation test, the addition of Si of 0.03 to 0.08 (wt%) is concentrated layer of such Fe shown in FIG. 5 was not observed.
[0035]
【The invention's effect】
As described above, the titanium aluminide for precision casting containing Fe and V according to the present invention has the following excellent effects.
[0036]
(1) The addition of Si, Fe, without impairing the characteristics of the titanium aluminide having a superior castability including V, and resist separating oxide scale Lumpur, can improve the oxidation resistance at high temperatures.
[0037]
(2) improving method by Si addition, the Si in the form of such as Si simple substance or Fe-Si, 0.03 to 0.08 (wt%) is intended to be added, the cost as compared with the surface treatment methods such as oxidation Kako computing This is advantageous.
[0038]
(3) If the amount of Si added is in the range of 0.03 to 0.08 ( mass %), there are no adverse side effects such as causing casting cracks or impairing toughness.
[Brief description of the drawings]
FIG. 1 is a correlation diagram between the amount of Si added and the amount of increase in oxidation of titanium aluminide for precision casting containing Fe and V in the present invention.
FIG. 2 is a graph showing the relationship of weight increase due to high-temperature oxidation of various titanium aluminides.
FIG. 3 is a graph showing changes in weight of various titanium aluminides during repeated oxidation.
FIG. 4 is a diagram showing the influence of V on the oxidation behavior of titanium aluminide for precision casting containing Fe and V.
FIG. 5 is a schematic view of a cross section of a sample after an oxidation test of titanium aluminide for precision casting containing Fe and V.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12103195A JP3743019B2 (en) | 1995-05-19 | 1995-05-19 | Titanium aluminide for precision casting containing Fe and V |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12103195A JP3743019B2 (en) | 1995-05-19 | 1995-05-19 | Titanium aluminide for precision casting containing Fe and V |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08311585A JPH08311585A (en) | 1996-11-26 |
JP3743019B2 true JP3743019B2 (en) | 2006-02-08 |
Family
ID=14801112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12103195A Expired - Lifetime JP3743019B2 (en) | 1995-05-19 | 1995-05-19 | Titanium aluminide for precision casting containing Fe and V |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3743019B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11193431A (en) * | 1997-12-26 | 1999-07-21 | Ishikawajima Harima Heavy Ind Co Ltd | Titanium aluminide for precision casting and its production |
JPH11269584A (en) * | 1998-03-25 | 1999-10-05 | Ishikawajima Harima Heavy Ind Co Ltd | Titanium-aluminide for precision casting |
JP5109217B2 (en) * | 2001-07-31 | 2012-12-26 | 株式会社Ihi | Titanium aluminide casting and crystal grain refinement method thereof |
JP5110199B2 (en) * | 2011-12-15 | 2012-12-26 | 株式会社Ihi | Titanium aluminide casting and crystal grain refinement method thereof |
-
1995
- 1995-05-19 JP JP12103195A patent/JP3743019B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08311585A (en) | 1996-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06256872A (en) | Titanium based composite and production thereof | |
EP2610360A1 (en) | Co-based alloy | |
JP2008520826A (en) | Alloy based on titanium aluminum | |
US5196162A (en) | Ti-Al type lightweight heat-resistant materials containing Nb, Cr and Si | |
JPH0754085A (en) | Creep-resistant aluminized titanium alloy composition and investment casting made of said composition | |
JP2635804B2 (en) | Gamma-titanium-aluminum alloy modified with carbon, chromium and niobium | |
JPH06293928A (en) | Cr containing gamma titanium aluminide and production thereof | |
JP3774758B2 (en) | TiB particle reinforced Ti2AlNb intermetallic compound matrix composite and production method thereof | |
JP7450639B2 (en) | Low stacking fault energy superalloys, structural members and their uses | |
JPH0730419B2 (en) | Chromium and silicon modified .GAMMA.-titanium-aluminum alloys and methods for their production | |
JP3379111B2 (en) | Titanium aluminide for precision casting | |
JP3084764B2 (en) | Method for manufacturing Ni-based superalloy member | |
JPS63171862A (en) | Manufacture of heat resistant ti-al alloy | |
JP3006120B2 (en) | Ti-Al alloy and method for producing the same | |
CN106488993B (en) | Niobium silicide-based composite material and the high-temperature component and high-temperature heat engine for using it | |
JP2000199025A (en) | TiAl INTERMETALLIC COMPOUND BASE ALLOY, ITS PRODUCTION, TURBINE MEMBER AND ITS PRODUCTION | |
JP3743019B2 (en) | Titanium aluminide for precision casting containing Fe and V | |
US11306372B2 (en) | Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body | |
JPH0625774A (en) | Production of tib2-dispersed tial-base composite material | |
WO2021176784A1 (en) | Co-BASED ALLOY STRUCTURE AND PRODUCTION METHOD THEREFOR | |
JPH083665A (en) | Nickel-base superalloy for die excellent in oxidation resistance and high temperature strength | |
JP2732934B2 (en) | Constant temperature forging die made of Ni-base alloy with excellent high-temperature strength and high-temperature oxidation resistance | |
WO2020189214A1 (en) | Titanium aluminide alloy material for hot forging, and method for forging titanium aluminide alloy material | |
JP3078567B2 (en) | Method for producing intermetallic compound | |
JPH05222476A (en) | Deposition-cured nickel chromium alloy containing dispersed and cured oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050726 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050926 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051025 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051107 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081125 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091125 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091125 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101125 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111125 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121125 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131125 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |