JP3113144B2 - Method for producing high density sintered titanium alloy - Google Patents
Method for producing high density sintered titanium alloyInfo
- Publication number
- JP3113144B2 JP3113144B2 JP06071109A JP7110994A JP3113144B2 JP 3113144 B2 JP3113144 B2 JP 3113144B2 JP 06071109 A JP06071109 A JP 06071109A JP 7110994 A JP7110994 A JP 7110994A JP 3113144 B2 JP3113144 B2 JP 3113144B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- titanium
- sintering
- holding
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/023—Hydrogen absorption
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、粉末冶金法による焼結
チタン合金の製造方法に関するものであり、さらに詳し
くは、純チタン粉末と合金元素添加用粉末を原料粉末と
して用いる、素粉未混合法による焼結チタン合金の製造
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered titanium alloy by a powder metallurgy method, and more particularly, to a method of using a raw titanium powder and a powder for adding an alloy element as raw material powders. The present invention relates to the production of a sintered titanium alloy by a method.
【0002】[0002]
【従来の技術】チタンおよびチタン合金は耐食性に優れ
る上に、軽量・高強度であり、これらの特性が強く要求
される化学工業、宇宙・航空機産業を中心に多用されて
きた。しかし、この材料は原料が高価である上に、熱間
および冷間での加工性や切削性が著しく劣っており、そ
のため、最終製品までの加工コストを加えた総コストが
著しく高く、自動車をはじめとした民生品への積極的な
適用は敬遠されてきた。2. Description of the Related Art Titanium and titanium alloys have excellent corrosion resistance and are lightweight and high-strength, and have been widely used mainly in the chemical industry, space and aircraft industries where these characteristics are strongly required. However, this material is expensive, and its workability and machinability in hot and cold are extremely poor. Therefore, the total cost including the processing cost up to the final product is extremely high, and automobile Active application to consumer goods, including the first, has been avoided.
【0003】そこで、熱間および冷間加工あるいは切削
加工を必ずしも必要としない粉末冶金法の適用が種々検
討されてきた。特に、チタン粉末と合金元素添加用粉末
を混合し、圧粉成形し、真空あるいは不活性雰囲気下に
おいて1000〜1350℃で1時間以上の焼結を行う
「素粉未混合法」は、成形時には軟質で良成形性のチタ
ン粉末が大部分を占めることから、より最終形状に近い
形状の製品を直接製造でき、さらに、焼結時に合金化を
も同時に行うことから、比較的製造コストが安価になる
という利点を有している。[0003] Various applications of powder metallurgy which do not necessarily require hot and cold working or cutting work have been studied. In particular, the "raw powder unmixing method" in which titanium powder and alloy element addition powder are mixed, compacted, and sintered at 1000 to 1350 ° C. for 1 hour or more under vacuum or an inert atmosphere, Since the soft and good-formability titanium powder occupies the majority, products with a shape closer to the final shape can be directly manufactured, and since alloying is performed at the same time as sintering, the manufacturing cost is relatively low. Has the advantage of becoming
【0004】この素粉未混合法では、かつては、「ハン
ター法」と呼ばれるナトリウム還元法によりチタンを製
造する際に副産物として生成する安価な「ハンター法ス
ポンジファイン」が多用されてきたが、最近では、この
ハンター法によりチタンを製造するメーカーがほとんど
なくなり、ハンター法スポンジファインも原料粉末とし
て使用できなくなった。In the unmixed powder method, inexpensive "Hunter sponge fine", which is produced as a by-product when titanium is produced by a sodium reduction method called "Hunter method", has been frequently used. Then, there are almost no manufacturers producing titanium by the Hunter method, and the Hunter method sponge fine can no longer be used as a raw material powder.
【0005】この代替チタン粉末の一つとして、水素化
脱水素チタン粉末を挙げることができる。この水素化脱
水素粉末は、溶製チタン材に水素を吸収させ脆弱な水素
化チタンとし、これを粉末に粉砕し、最後に真空あるい
は不活性雰囲気下で脱水素焼鈍を行うことにより得られ
る粉末である。しかし、この水素化脱水素チタン粉末
は、ハンター法スポンジファインに比べて2倍近い価格
であり、最終的な焼結チタン合金製品の製造コストもそ
の分高くなるという欠点があった。特に、粉砕した水素
化チタン粉末を脱水素する工程では、0.01重量%以
下の水素濃度にまで脱水素するには、真空度や排気能力
にもよるが、600〜800℃において数十時間もの脱
水素焼鈍が必要であり、この際、せっかく粉砕した粉末
が疑似焼結し所望の粒度の粉末が得られなかったり、粉
末を挿入している容器に粉末が付着し歩留まりが大幅に
低下するなどの欠点があり、これらが結果的に水素化脱
水素チタン粉末の価格を大幅に上昇させる原因となって
いた。As one of the alternative titanium powders, there can be mentioned hydrodehydrogenated titanium powders. This hydrodehydrogenated powder is a powder obtained by absorbing hydrogen into a smelted titanium material to form brittle titanium hydride, pulverizing the powder into powder, and finally performing dehydrogenation annealing in a vacuum or an inert atmosphere. It is. However, this hydrodehydrogenated titanium powder is almost twice as expensive as the Hunter sponge fine, and has the disadvantage of increasing the production cost of the final sintered titanium alloy product. In particular, in the step of dehydrogenating the pulverized titanium hydride powder, in order to dehydrogenate to a hydrogen concentration of 0.01% by weight or less, it depends on the degree of vacuum and the evacuation capacity, but at 600 to 800 ° C. for several tens of hours. Dehydrogenation annealing is necessary, and at this time, the powder that has been pulverized is pseudo-sintered and a powder of a desired particle size cannot be obtained, or the powder adheres to a container in which the powder is inserted, and the yield is significantly reduced. However, these have resulted in a significant increase in the price of hydrodehydrogenated titanium powder.
【0006】また、脱水素が不十分で粉末中の0.01
重量%以上の水素が残留している場合、脱水素時間は残
留水素濃度に応じて短縮され、粉末の疑似焼結や容器へ
の付着は減少するが、この粉末を合金元素添加用粉末と
混合し、容器に充填し、圧粉成形し、さらに真空あるい
は不活性雰囲気下で焼結すると、粉末間の空隙に排出さ
れた水素ガスがその圧力により空隙の縮小を妨げるた
め、高密度の焼結体が得られないという欠点があった。
この不十分な密度の焼結体は、その後HIP(熱間静水
圧成形)処理を行うことにより高密度化できるが、製造
コストの大幅な上昇を伴うため、脱水素焼鈍時間の短縮
に伴うコスト低減代は帳消しになってしまうという欠点
があった。[0006] In addition, the dehydrogenation is insufficient and 0.01%
If more than 1% by weight of hydrogen remains, the dehydrogenation time is shortened according to the residual hydrogen concentration, and pseudo-sintering of the powder and adhesion to the vessel are reduced, but this powder is mixed with the powder for alloying element addition. Then, filling in a container, compacting, and sintering in a vacuum or inert atmosphere, the hydrogen gas discharged into the gap between the powders prevents the gap from shrinking due to the pressure, so that high-density sintering is performed. There was a drawback that the body could not be obtained.
The sintered body having the insufficient density can be densified by subsequently performing HIP (Hot Isostatic Pressing) treatment. However, since the production cost is greatly increased, the cost associated with shortening the dehydrogenation annealing time is required. There was a drawback that the reduction fee would be canceled.
【0007】[0007]
【発明が解決しようとする課題】本発明は、上記課題を
解決しようとするものであり、水素化脱水素チタン粉末
を用いた素粉未混合法において、チタン粉末製造から焼
結までの総製造コストが、従来よりも安価でかつ高密度
の焼結チタン合金を製造するための方法を提供しようと
するものである。DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and it is an object of the present invention to provide a method for unmixing raw powder using hydrodehydrogenated titanium powder, which comprises a total production from titanium powder production to sintering. It is an object of the present invention to provide a method for producing a sintered titanium alloy having a lower cost and a higher density than before.
【0008】[0008]
【課題を解決するための手段】本発明者らは、高濃度の
水素を含有するチタン粉末の圧粉成形挙動および焼結挙
動および圧粉成形体の脱水素挙動について鋭意研究を重
ねた結果、特定水素濃度のチタン粉末を原料チタン粉末
として用い、さらに、焼結温度にまで加熱する途中の特
定温度域に特定時間加熱保持する工程を加えることによ
り、水素化脱水素チタン粉末を用いた素粉未混合法にお
いて、従来よりも安価な製造コストで高密度焼結チタン
合金を製造することが可能であることを見いだした。Means for Solving the Problems The present inventors have conducted intensive studies on the compacting behavior and sintering behavior of titanium powder containing a high concentration of hydrogen and the dehydrogenation behavior of the compacted body. Using a titanium powder having a specific hydrogen concentration as a raw material titanium powder, and further adding a step of heating and holding for a specific time in a specific temperature range in the middle of heating to a sintering temperature, the raw powder using the hydrodehydrogenated titanium powder In the unmixed method, it has been found that it is possible to produce a high-density sintered titanium alloy at a lower production cost than before.
【0009】すなわち、本発明では、水素化脱水素法に
より製造したチタン粉末を使用する素粉未混合法におい
て、0.02重量%以上2重量%未満の濃度の水素を含
有するチタン粉末を合金元素添加用粉末と混合し、容器
に充填後圧粉成形し、真空あるいは不活性ガス雰囲気に
て、600℃以上800℃未満の温度域に10時間以上
30時間未満加熱保持し、引き続いて1000℃以上1
350℃以下の温度域に1時間以上加熱保持し、焼結す
ることを特徴とする。That is, according to the present invention, in a raw powder unmixing method using a titanium powder produced by a hydrodehydrogenation method, a titanium powder containing hydrogen at a concentration of 0.02% by weight or more and less than 2% by weight is alloyed. After mixing with the powder for element addition, filling into a container and compacting, heating and holding in a vacuum or an inert gas atmosphere at a temperature range of 600 ° C. or more and less than 800 ° C. for 10 hours or more and less than 30 hours, and subsequently at 1000 ° C. Above 1
It is characterized in that it is heated and held in a temperature range of 350 ° C. or lower for 1 hour or more and sintered.
【0010】[0010]
【作用】以下本発明について詳細に説明する。 〔従来の技術〕の項でも説明したように、粉砕した水素
化チタン粉末を、直接原料粉末として使用できる0.0
1重量%以下の水素濃度にまで脱水素するには、雰囲気
や排気能力にもよるが、600〜800℃において数十
時間もの脱水素焼鈍が必要である。本発明は、この脱水
素工程の一部を焼結温度への昇温途中にて併せて行うこ
とにより、従来長時間の脱水素焼鈍に伴って発生した、
疑似焼結や容器への付着などの欠点を回避し、その結
果、粉末製造から焼結までの総製造コストを低減させる
ことを目的とした技術である。The present invention will be described below in detail. As described in the section of [Background Art], pulverized titanium hydride powder can be used directly as raw material powder.
Dehydrogenation to a hydrogen concentration of 1% by weight or less requires dehydrogenation annealing at 600 to 800 ° C. for several tens of hours, depending on the atmosphere and exhaust capacity. The present invention, by performing a part of the dehydrogenation step in the course of raising the temperature to the sintering temperature, conventionally occurred with long-term dehydrogenation annealing,
This technique aims to avoid disadvantages such as pseudo sintering and adhesion to a container, and as a result, to reduce the total production cost from powder production to sintering.
【0011】しかし、この技術は次の2点の技術的工夫
を行うことにより初めて達成されるものである。まず第
1に、原料チタン粉末中の水素濃度は、0.02重量%
以上で、2重量%以下であることが必要である。これ
は、0.02重量%未満の水素含有量にまで脱水素する
には、0.01重量%程度にまで脱水素を行う場合ほど
ではないが、やはり数十時間オーダーの脱水素焼鈍が必
要であり、その間に疑似焼結や容器への粉末付着が発生
し粉末の歩留まりが低下し、総製造コストが高くなるた
めであり、また、2重量%を超える量の水素を含有する
場合、成形性が著しく低下し圧粉成形中に割れを生じ、
高密度の焼結体を得ることができなくなるためである。However, this technique can only be achieved by making the following two technical improvements. First, the hydrogen concentration in the raw titanium powder is 0.02% by weight.
As described above, the content needs to be 2% by weight or less. This is not so much as when dehydrogenating to a hydrogen content of less than 0.02% by weight but is not as great as when dehydrogenating to about 0.01% by weight, but it still requires dehydrogenation annealing on the order of tens of hours. In the meantime, pseudo-sintering and powder adhesion to the container occur, which lowers the powder yield and increases the total manufacturing cost. In addition, when hydrogen is contained in an amount exceeding 2% by weight, Remarkably deteriorates and cracks occur during compacting,
This is because a high-density sintered body cannot be obtained.
【0012】そして第2に、上記チタン粉末と合金元素
添加用粉末を混合し圧粉成形した後、真空雰囲気あるい
は不活性雰囲気で、焼結(通常1000〜1350℃で
1時間以上加熱保持することにより行う)温度にまで加
熱する途中、600℃以上800℃未満の温度域に10
時間以上30時間未満加熱保持し(以下、途中保持と記
す)、引き続いて1000℃以上1350℃以下の温度
域に1時間以上加熱保持する焼結を行う必要がある。こ
こで、600℃以上800℃未満の温度域で10時間以
上30時間未満の時間加熱保持している間に、圧粉成形
体から水素が排出され脱水素が完了するわけであるが、
このとき、加熱保持温度は必ず600℃以上800℃以
下でなくてはならない。それは、600℃未満の温度で
は脱水素速度が遅く、脱水素に多大な時間を要するた
め、総製造コストがかえって高くなることによるもので
あり、また、800℃を超える温度では、一部の粉末が
焼結し閉空隙を形成しそこに水素が排出されるため、そ
の後の1000〜1350℃における焼結中に空隙の収
縮が阻害され、高密度焼結体が得られないからである。
また、10時間以上30時間未満の時間加熱保持するこ
ととしたのは、10時間以上加熱保持しないと、水素が
圧粉体内に残留するため、その後の焼結過程で空隙内に
排出された水素が空隙の収縮を妨げ高密度焼結体が得ら
れず、また、本発明におけるチタン粉末中の最高水素含
有量である2重量%程度の水素を含有するチタン粉末圧
粉成形体でも、30時間程度で脱水素は完了しており、
これ以上の保持はエネルギー的に無駄であるからであ
る。Second, after the above-mentioned titanium powder and the alloying element-adding powder are mixed and compacted, sintering (usually heating and holding at 1000 to 1350 ° C. for 1 hour or more) is performed in a vacuum atmosphere or an inert atmosphere. In the course of heating to a temperature of 10 to 10 ° C. in a temperature range of 600 ° C. or more and less than 800 ° C.
It is necessary to perform sintering by heating and holding for at least 30 hours but not more than 30 hours (hereinafter referred to as holding in the middle) and subsequently heating and holding at a temperature range of 1000 ° C. to 1350 ° C. for 1 hour or more. Here, while heating and holding for 10 hours to less than 30 hours in a temperature range of 600 ° C. or more and less than 800 ° C., hydrogen is discharged from the green compact and dehydrogenation is completed.
At this time, the heating and holding temperature must be not less than 600 ° C. and not more than 800 ° C. The reason for this is that the dehydrogenation rate is slow at a temperature lower than 600 ° C., and the dehydrogenation requires a great deal of time, so that the total production cost is rather high. Is sintered to form closed voids and hydrogen is discharged therefrom, so that shrinkage of the voids is inhibited during subsequent sintering at 1000 to 1350 ° C., and a high-density sintered body cannot be obtained.
Also, the heating and holding for 10 hours or more and less than 30 hours is because if the heating and holding are not performed for 10 hours or more, the hydrogen remains in the green compact and the hydrogen discharged into the voids during the subsequent sintering process Hampers the shrinkage of the voids, fails to produce a high-density sintered body, and even a compacted titanium powder compact containing about 2% by weight of hydrogen, which is the maximum hydrogen content in the titanium powder in the present invention, is 30 hours. Dehydrogenation is completed by about
This is because holding more than this is wasteful in terms of energy.
【0013】なお、途中保持は、必ずしも一定の温度で
行う必要はなく、例えば焼結温度に加熱する際の昇温速
度を制御し、600℃を超えて800℃に達するまでの
時間が10時間以上30時間未満となるようにしても良
い。The intermediate holding is not necessarily performed at a constant temperature. For example, the heating rate at the time of heating to the sintering temperature is controlled, and the time required to exceed 600 ° C. and reach 800 ° C. is 10 hours. The time may be set to be less than 30 hours.
【0014】[0014]
【実施例】以下、実施例を用いて、本発明についてさら
に詳しく説明する。使用した粉末は、表1に示すように
脱水素時間を変えることにより残留水素濃度を制御した
チタン粉末と60Al40Vの組成の合金元素添加用粉
末で、Ti:Al:Vが重量比で90:6:4になるよ
うに混合し(すなわちTi−6Al−4Vの組成になる
ように混合し)、これをウレタンゴム製の容器に充填
し、CIP(冷間静水圧成形)にて450MPa の圧力で
圧粉成形し、約20mm径×150mm長さの円柱状試験片
を作製した。使用した粉末の粒径は、チタンおよび合金
元素添加用粉末共に10μm以上45μm以下で平均3
0μmである。The present invention will be described in more detail with reference to the following examples. The powder used was a titanium powder in which the residual hydrogen concentration was controlled by changing the dehydrogenation time as shown in Table 1 and a powder for alloying element addition having a composition of 60Al40V, and 90: 6 by weight ratio of Ti: Al: V. : 4 (i.e., a composition of Ti-6Al-4V), filled into a urethane rubber container, and subjected to CIP (cold isostatic pressing) at a pressure of 450 MPa. A compact test piece having a diameter of about 20 mm and a length of 150 mm was produced by compacting. The average particle size of the powder used was 10 μm or more and 45 μm or less for both the titanium and alloy element addition powders.
0 μm.
【0015】これら圧粉成形体を用いて、以下説明する
試験1および試験2を行った。 〔試験1〕圧粉成形体を、通常行われる焼結条件である
1250℃×2時間の真空焼結に供し、密度測定を行っ
たが、表1に示すように、焼結温度への加熱途中で、種
々の温度に種々の時間保持する処理を行った(以下、途
中保持と記す)。途中保持前後の昇温速度は約10℃/
分(100℃当たり10分)で、保持時間に比してきわ
めて短いものであったので、表1記載の途中保持時間に
は考慮せず無視した。なお、焼結密度は同じ組成の溶製
材を1とした場合の相対値(%)で表記した。Using these compacts, Test 1 and Test 2 described below were performed. [Test 1] The green compact was subjected to vacuum sintering at 1250 ° C. for 2 hours, which is a usual sintering condition, and the density was measured. As shown in Table 1, heating to the sintering temperature was performed. On the way, a process of holding at various temperatures for various times was performed (hereinafter, referred to as intermediate holding). The rate of temperature rise before and after the holding is about 10 ° C /
Minutes (10 minutes per 100 ° C.), which was extremely short as compared with the holding time, and was ignored without considering the intermediate holding time shown in Table 1. In addition, the sintering density was represented by a relative value (%) when the ingot material of the same composition was set to 1.
【0016】[0016]
【表1】 [Table 1]
【0017】さて、表1において、試験番号1は0.0
1%の水素を含有するチタン粉末を使用し、途中保持を
行わなかった場合であり、従来法に相当する例である。
焼結密度は99.5%と非常に高い値であるが、チタン
粉末製造の脱水素工程に50時間もの時間を要してお
り、その間に粉末が疑似焼結したり容器に付着するなど
のため、75%の歩留まりしか得られていない。そのた
め総製造コストが高いものとなっている。また、試験番
号2は、0.015重量%の水素を含むチタン粉末を原
料チタン粉末として使用し、試験番号1と同様に直接焼
結を行った場合で、焼結密度は97.8%と低い値しか
得られなかった。これは、0.01重量%を超える量の
水素が残留している粉末を使用したため、粉末間の空隙
に排出された水素ガスがその圧力により空隙の縮小を妨
げたことによる。これと同じ粉末を使用しても、試験番
号3に示すように途中保持を行うと、99.0%以上の
高い焼結密度が得られるようになる。しかし、チタン粉
末製造時の脱水素工程に45時間も要しており、その間
に生じた疑似焼結や容器への粉末の付着のため、歩留ま
りが78%と低くなっており、粉末製造から焼結までの
総製造コストは高いものであった。In Table 1, test number 1 is 0.0
This is a case where a titanium powder containing 1% of hydrogen was used and no intermediate holding was performed, which is an example corresponding to a conventional method.
Although the sintering density is as high as 99.5%, the dehydrogenation process of titanium powder production requires as much as 50 hours, during which time the powder may be pseudo-sintered or adhere to the container. Therefore, only a yield of 75% is obtained. Therefore, the total manufacturing cost is high. Test No. 2 was a case where titanium powder containing 0.015% by weight of hydrogen was used as a raw material titanium powder and directly sintered as in Test No. 1, and the sintered density was 97.8%. Only low values were obtained. This is because the powder containing hydrogen remaining in an amount exceeding 0.01% by weight was used, and the hydrogen gas discharged into the gaps between the powders prevented the reduction of the gaps due to the pressure. Even if the same powder is used, a high sintering density of 99.0% or more can be obtained when the intermediate powder is held as shown in Test No. 3. However, the dehydrogenation step in the production of titanium powder requires 45 hours, and the yield is as low as 78% due to pseudo sintering and powder adhesion to the container during that time. The total manufacturing cost up to the conclusion was high.
【0018】これらの試験結果に対し、0.2重量%以
上の水素を含有するチタン粉末を使用し、焼結温度への
昇温途中の600〜800℃の温度に、10時間以上3
0時間未満保持した本発明の実施例(試験番号4,6,
7,8,11,12)は、いずれも90%以上の高い粉
末製造歩留まりと、99.0%以上の高い焼結密度が得
られており、しかも、粉末製造時の脱水素時間と途中保
持時間の合計も最高で54時間で、従来例(試験番号
1)と比して大きな増加にはなっていない。すなわち、
低い総製造コストと高い焼結密度の両方が達成されてい
る。これは、適度な水素含有量のチタン粉末を使用し、
適度な温度と時間の途中保持を行ったため、十分な成形
性と途中保持中の十分な脱水素が達成されたことによ
る。According to the test results, a titanium powder containing 0.2% by weight or more of hydrogen was used, and the temperature was raised to 600 to 800 ° C. in the course of raising the temperature to the sintering temperature for 10 hours or more.
Examples of the present invention held for less than 0 hours (Test Nos. 4, 6,
7, 8, 11, and 12) all provide a high powder production yield of 90% or more and a high sintering density of 99.0% or more. The total time is also up to 54 hours, which is not a large increase as compared with the conventional example (test number 1). That is,
Both low total manufacturing costs and high sintering densities have been achieved. This uses a titanium powder with a moderate hydrogen content,
This is because sufficient holding properties and sufficient dehydrogenation during the holding during the holding were achieved because the holding was performed in the middle of an appropriate temperature and time.
【0019】一方、本発明の比較例である、試験番号
5,9,10,14はいずれも十分な焼結密度が得られ
ていない。この理由は以下の通りである。試験番号5で
は、途中保持時間が本発明の範囲以下であったため、途
中保持中の脱水素が不十分で水素が圧粉体内に残留した
ため、その後の焼結過程で空隙内に排出された水素が空
隙の収縮を妨げ高密度焼結体が得られなかった。試験番
号9では、途中保持温度が本発明の下限値よりも低かっ
たため、脱水素速度が遅く45時間もの途中保持を行っ
たにも関わらず水素が残留し、高い焼結密度が得られな
かった。この試料では途中保持時間をさらに長くすれば
高い焼結密度が得られる可能性があるが、総脱水素時間
がすでに73時間と多大なものとなっており、これ以上
の途中保持を行うと、総製造コストがかえって高くなる
ため意味をなさない。また、試験番号10では、途中保
持温度が本発明の上限値以上であったため、一部の粉末
が焼結し閉空隙を形成しそこに水素が排出され、その後
の焼結過程で空隙の収縮が阻害され、高密度焼結体が得
られなかった。On the other hand, Test Nos. 5, 9, 10, and 14, which are comparative examples of the present invention, did not provide a sufficient sintered density. The reason is as follows. In Test No. 5, since the halfway holding time was below the range of the present invention, the dehydrogenation during the halfway holding was insufficient and hydrogen remained in the compact, and the hydrogen discharged into the voids during the subsequent sintering process Prevented the shrinkage of the voids, and a high-density sintered body could not be obtained. In Test No. 9, since the intermediate holding temperature was lower than the lower limit of the present invention, hydrogen was retained even though the dehydrogenation rate was slow and the intermediate holding was performed for 45 hours, and a high sintered density was not obtained. . In this sample, if the intermediate holding time is further increased, a high sintering density may be obtained.However, the total dehydrogenation time has already been as large as 73 hours. It makes no sense because the total manufacturing cost is rather high. In Test No. 10, since the holding temperature in the middle was equal to or higher than the upper limit of the present invention, some of the powders were sintered to form closed voids, and hydrogen was discharged there. , And a high-density sintered body could not be obtained.
【0020】さらに、試験番号14では、使用したチタ
ン粉末中の水素濃度が本発明の上限値以上であったた
め、CIP成形時に無数の微細な割れを生じ、そのため
焼結しても高密度焼結体が得られなかった。Further, in Test No. 14, since the hydrogen concentration in the titanium powder used was equal to or higher than the upper limit of the present invention, countless fine cracks were generated during the CIP molding. I couldn't get my body.
【0021】また、試験番号13では、高密度焼結体は
得られているが、同じ水素濃度の粉末を使用し同じ温度
で短時間の途中保持を行った試験番号12ですでに同程
度の焼結密度が得られており、余分な時間途中保持した
ことになり、エネルギー的に無駄である。In Test No. 13, a high-density sintered body was obtained, but in Test No. 12 in which powders of the same hydrogen concentration were used and were held for a short period of time at the same temperature, the same degree was obtained. The sintered density is obtained, and it is held during the extra time, which is wasteful in energy.
【0022】〔試験2〕試験2では、0.5重量%水素
を含有するチタン粉末を用いて成形した圧粉体を、試験
1のように一定温度にて途中保持を行うのではなく、表
2に示すように、昇温速度を変化させることにより、6
00〜800℃の温度域での途中保持を行い、その後通
常行われる焼結条件である1250℃×2時間の真空焼
結に供し、密度測定を行った。[Test 2] In Test 2, instead of holding a green compact formed using titanium powder containing 0.5% by weight of hydrogen at a constant temperature as in Test 1, As shown in FIG. 2, by changing the heating rate, 6
It was held halfway in a temperature range of 00 to 800 ° C., and then subjected to vacuum sintering at 1250 ° C. × 2 hours, which is a usual sintering condition, to measure the density.
【0023】表2に示すように、600℃から800℃
の間に10時間以上30時間未満保持した試験番号16
および17では99.0%以上の高い焼結密度が得られ
ている。この温度域に33時間保持した試験番号18で
も高い焼結密度が得られているが、これよりも保持時間
の短かい試験番号17と同様の結果であることから、余
分な途中保持を行ったことになり、エネルギー的に無駄
である。また試験番号15は、保持時間が本発明の下限
値よりも短かったため、脱水素が不十分で、高い焼結密
度が得られなかった。As shown in Table 2, from 600 ° C. to 800 ° C.
Test number 16 held for 10 hours or more and less than 30 hours during
In Nos. 17 and 17, a high sintered density of 99.0% or more was obtained. A high sintering density was also obtained in Test No. 18 held for 33 hours in this temperature range, but since the results were similar to those of Test No. 17 having a shorter holding time, extra holding was performed. This is wasteful in terms of energy. In Test No. 15, since the holding time was shorter than the lower limit of the present invention, dehydrogenation was insufficient and a high sintering density was not obtained.
【0024】[0024]
【表2】 [Table 2]
【0025】[0025]
【発明の効果】以上説明したように、本発明を適用する
ことにより、水素化脱水素チタン粉末を用いた素粉未混
合法において、チタン粉末製造から焼結までの総製造コ
ストが、従来よりも安価でかつ高密度のチタン合金を製
造することができる。As described above, by applying the present invention, the total production cost from titanium powder production to sintering in the raw powder unmixed method using the hydrodehydrogenated titanium powder is lower than in the past. It is also possible to produce a titanium alloy at a low cost and with a high density.
フロントページの続き (72)発明者 山宮 昌夫 東京都千代田区大手町2−6−3 新日 本製鐵株式会社内 (72)発明者 籠橋 亘 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東 邦チタニウム株式会社内 (72)発明者 深澤 英一 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東 邦チタニウム株式会社内 (72)発明者 河野 通晴 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東 邦チタニウム株式会社内 (58)調査した分野(Int.Cl.7,DB名) B22F 3/10 C22C 1/04 Continued on the front page (72) Inventor Masao Yamamiya 2-6-3 Otemachi, Chiyoda-ku, Tokyo Nippon Steel Corporation (72) Inventor Wataru Kagohashi 3-3-5 Chigasaki, Chigasaki City, Kanagawa Prefecture Kuni Higashi Within Titanium Co., Ltd. (72) Inventor Eiichi Fukasawa 3-3-5 Chigasaki, Chigasaki-shi, Kanagawa Prefecture In-House Titanium Co., Ltd. In-company (58) Field surveyed (Int.Cl. 7 , DB name) B22F 3/10 C22C 1/04
Claims (1)
末を使用する素粉未混合法において、0.02重量%以
上2重量%未満の濃度の水素を含有するチタン粉末を合
金元素添加用粉末と混合し、容器に充填後圧粉成形し、
真空あるいは不活性雰囲気にて、600℃以上800℃
未満の温度域に10時間以上30時間未満加熱保持し、
引き続いて1000℃以上1350℃以下の温度域に1
時間以上加熱保持し、焼結することを特徴とする高密度
焼結チタン合金の製造方法。1. An unmixed powder method using titanium powder produced by a hydrodehydrogenation method, wherein a titanium powder containing hydrogen at a concentration of 0.02% by weight or more and less than 2% by weight is added to an alloy element adding powder. , Mixed into a container and then compacted,
600 ° C or higher and 800 ° C in a vacuum or inert atmosphere
Heating and holding in a temperature range of less than 10 hours to less than 30 hours,
Subsequently, the temperature range from 1000 ° C to 1350 ° C
A method for producing a high-density sintered titanium alloy, comprising heating and holding for at least an hour and sintering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06071109A JP3113144B2 (en) | 1994-04-08 | 1994-04-08 | Method for producing high density sintered titanium alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06071109A JP3113144B2 (en) | 1994-04-08 | 1994-04-08 | Method for producing high density sintered titanium alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07278609A JPH07278609A (en) | 1995-10-24 |
JP3113144B2 true JP3113144B2 (en) | 2000-11-27 |
Family
ID=13451064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06071109A Expired - Fee Related JP3113144B2 (en) | 1994-04-08 | 1994-04-08 | Method for producing high density sintered titanium alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3113144B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8920712B2 (en) | 2007-06-11 | 2014-12-30 | Advanced Materials Products, Inc. | Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen |
US7993577B2 (en) | 2007-06-11 | 2011-08-09 | Advance Materials Products, Inc. | Cost-effective titanium alloy powder compositions and method for manufacturing flat or shaped articles from these powders |
KR101076785B1 (en) * | 2008-07-24 | 2011-10-25 | 박영석 | Injection molding method using powder |
KR101410490B1 (en) * | 2011-03-28 | 2014-06-23 | 박영석 | Injection molding method using powder |
CN102133641B (en) * | 2011-04-19 | 2012-10-24 | 广州有色金属研究院 | Powder metallurgy method of Ti-6Al-4V alloy |
US20210162497A1 (en) * | 2017-12-18 | 2021-06-03 | Hitachi Metals, Ltd. | Method for producing tial intermetallic compound powder and tial intermetallic compound powder |
WO2019124325A1 (en) * | 2017-12-20 | 2019-06-27 | トーホーテック株式会社 | Titanium powder and method for producing same |
CN114015874B (en) * | 2021-09-24 | 2023-05-16 | 攀钢集团攀枝花钢铁研究院有限公司 | Production method of high-quality AlV55 alloy |
-
1994
- 1994-04-08 JP JP06071109A patent/JP3113144B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07278609A (en) | 1995-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5482670A (en) | Cemented carbide | |
US5778301A (en) | Cemented carbide | |
US2809891A (en) | Method of making articles from aluminous metal powder | |
US6231807B1 (en) | Dispersion hardening alloy and method for the production of the alloy | |
EP0203197B1 (en) | Process for producing super-heat-resistant alloy material | |
EP0165409A1 (en) | Method of producing high speed steel products metallurgically | |
JPH01142002A (en) | Alloy steel powder for powder metallurgy | |
JP3113144B2 (en) | Method for producing high density sintered titanium alloy | |
EP0202886B1 (en) | Canless method for hot working gas atomized powders | |
US3578443A (en) | Method of producing oxide-dispersion-strengthened alloys | |
JP3071118B2 (en) | Method for producing NiAl intermetallic compound to which fine additive element is added | |
US2840891A (en) | High temperature structural material and method of producing same | |
JPH0475295B2 (en) | ||
US4536234A (en) | Method for refining microstructures of blended elemental powder metallurgy titanium articles | |
JP2898475B2 (en) | Manufacturing method of oxide dispersion strengthened heat-resistant alloy sintered body | |
US4832760A (en) | Method for refining microstructures of prealloyed titanium powder compacts | |
US3203781A (en) | Method of producing dispersion-hardened metal alloys | |
US3708283A (en) | Process for preparing cemented ferrochrome | |
JPS6043423B2 (en) | Method for manufacturing tool alloy with composite structure | |
JP2932658B2 (en) | Powder sintered titanium and method for producing powder sintered titanium base alloy | |
US3695868A (en) | Preparation of powder metallurgy compositions containing dispersed refractory oxides and precipitation hardening elements | |
JP2928821B2 (en) | Method for producing high-density chromium-based cermet sintered body | |
JPH0633165A (en) | Manufacture of sintered titanium alloy | |
JP2971720B2 (en) | Manufacturing method of oxide dispersion strengthened Cr-based heat resistant sintered alloy | |
JPH0322458B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000815 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080922 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080922 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110922 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110922 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120922 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120922 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130922 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130922 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130922 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130922 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |