JPS63201067A - Manufacture of metal diboride base ceramics - Google Patents

Manufacture of metal diboride base ceramics

Info

Publication number
JPS63201067A
JPS63201067A JP62031268A JP3126887A JPS63201067A JP S63201067 A JPS63201067 A JP S63201067A JP 62031268 A JP62031268 A JP 62031268A JP 3126887 A JP3126887 A JP 3126887A JP S63201067 A JPS63201067 A JP S63201067A
Authority
JP
Japan
Prior art keywords
powder
sintering
sintered body
hfb
zrb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62031268A
Other languages
Japanese (ja)
Other versions
JPH0427186B2 (en
Inventor
忠彦 渡辺
一久 菖蒲
甲斐 由紀夫
秀樹 山本
須藤 英一
柳下 紀
早川 順四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62031268A priority Critical patent/JPS63201067A/en
Publication of JPS63201067A publication Critical patent/JPS63201067A/en
Publication of JPH0427186B2 publication Critical patent/JPH0427186B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、低温での普通焼結でも、耐食性に優れた二硼
化金属系セラミックスを得ることが出来る方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for obtaining metal diboride ceramics having excellent corrosion resistance even by normal sintering at low temperatures.

〈従来の技術〉 ニー化金属、特にTiJ、 ZrB2. HfB2は、
溶融金属に対する耐食性に優れている為に、溶融金属用
容器、溶融金属接触型のセンサ一部材あるいは溶融金属
用Ti極等多くの用途に用いられている。
<Prior art> Niated metals, especially TiJ, ZrB2. HfB2 is
Since it has excellent corrosion resistance against molten metal, it is used in many applications such as containers for molten metal, components of molten metal contact type sensors, and Ti electrodes for molten metal.

しかし乍ら、これらのニー化金属の殆どがその融点は約
3000℃と高く、難焼結性であり、高密度焼結を得る
為には、例えば特公昭54−43966号公報で示され
る様に1000気圧もの高圧下焼結法を採用したり、又
は例えば特公昭58−3997号公報で示される様な低
融点物質を添加する焼結法を採用しなければならず、設
備の大型化に伴う製法上の難点があったり、又は異種低
融点物質を加左る事で得られる焼結体の組成が変化し、
その結果二硼化合属が本来有する優れた特性が損なわれ
る、更には焼結体中に上記低融点物質がそのま\の形態
で残留し、この残留部に溶融金イが接触し、そこから腐
食が生起するという様な問題があった。
However, most of these nimate metals have a high melting point of about 3000°C and are difficult to sinter, and in order to obtain high-density sintering, it is necessary to It is necessary to adopt a sintering method under high pressure of 1,000 atmospheres, or to use a sintering method in which a low melting point substance is added, as shown in Japanese Patent Publication No. 58-3997, which increases the size of the equipment. There may be difficulties in the manufacturing process, or the composition of the sintered body may change due to the addition of different low melting point substances.
As a result, the excellent properties originally possessed by diboron metals are impaired, and furthermore, the above-mentioned low melting point substance remains in the sintered body as it is, and the molten metal comes into contact with this residual part, and from there. There were problems such as corrosion.

〈発明が解決しようとする問題点〉 本発明は、上記高圧下焼結法の製法上の難点あるいは得
られろ製品の寸法上の制約(大形状物は得難い)や、異
種低融点物質添加法の製品特性の低下という問題を解決
し、低温焼結で高密度焼結体が得られ、しかも該焼結体
中にその特性を低下せしめろ要因となる他の物質を含ま
ない様な方法を提供することを目的とする。
<Problems to be Solved by the Invention> The present invention solves the above-mentioned difficulties in the manufacturing process of the high-pressure sintering method, limitations in the dimensions of the resulting product (large-sized products are difficult to obtain), and the method of adding different low-melting substances. To solve the problem of deterioration of product properties, we have developed a method that allows high-density sintered bodies to be obtained by low-temperature sintering, and that does not contain other substances that may cause deterioration of the properties of the sintered bodies. The purpose is to provide.

く問題点を解決する為の手段〉 本発明の上記目的は、下記の如き手段を採用する事で達
成出来る。
Means for Solving the Problems> The above object of the present invention can be achieved by employing the following means.

即ち、焼結後の焼結体の組成に、B原子を65〜67原
子%含有する様に、TiB2. ZrBz 、 HfB
z粉末の中の少なくとも1種以上とTi、 Zr、 H
f、 ZrB、 HfB粉末の中の少なくとも1種以上
とを混合し、該混合粉末を焼結することを特徴とする二
硼化金属系セラミックスの製造方法である。
That is, TiB2. ZrBz, HfB
At least one of the Z powders and Ti, Zr, H
This is a method for producing metal diboride-based ceramics, characterized by mixing at least one of ZrB, ZrB, and HfB powders and sintering the mixed powder.

以下本発明につき詳述する。The present invention will be explained in detail below.

ニー化金属は、そのBの含有率が65〜67原子%の範
囲で六方晶系の結晶構造を有する。即ちBの含有率は、
ある幅を持ち化学i論量から多少離れた範囲でも六方晶
系を示し、その耐食性や電気伝導性を失う事はないので
ある。従ってそれ単独では焼結性が悪いTiB2 、 
ZrB2 、 HfB2粉末の1種以上の混合粉末に対
し、低融点の金属あるいは化合物であろTi、 Zr、
 [(f、 ZrB、 HfB粉末の1種以上を、全混
合粉末の組成を、上述した如くBの含有量が、65〜6
7原子%となる様な量に調整するか、更にB粉末を加え
Bの含有量が65〜67原子%となろように調整する。
Niated metal has a hexagonal crystal structure in which the B content is in the range of 65 to 67 at %. That is, the content of B is
It exhibits a hexagonal crystal system even within a certain range and somewhat away from the stoichiometric range, without losing its corrosion resistance or electrical conductivity. Therefore, TiB2 alone has poor sinterability,
For one or more mixed powders of ZrB2 and HfB2 powder, low melting point metals or compounds such as Ti, Zr,
[(f, one or more of ZrB and HfB powders, the composition of the total mixed powder is such that the B content is 65 to 6 as described above)
The amount is adjusted to 7 at %, or B powder is further added to adjust the B content to 65 to 67 at %.

又は最初からT鴨Zr、旧、 TiB、 ZrB。Or T Kamo Zr, old, TiB, ZrB from the beginning.

[HB粉末の1種以上とB粉末とを同じ(Bが65〜6
7原子%となる様な量に調整混合し、その後焼結を行え
ば、これら混合粉末中に含まれる低融点金属あるいは化
合物が溶融し、液相焼結状態となり低温で容易に焼結が
行え、焼結完了時には全てがBが65〜67原子%の範
囲にあるニー化金属となろのである。
[One or more types of HB powder and B powder are the same (B is 65 to 6
If the amount is adjusted to 7 atomic % and then sintered, the low melting point metal or compound contained in these mixed powders will melt and enter a liquid phase sintering state, allowing easy sintering at low temperatures. When the sintering process is completed, all the metals are niated metals containing B in the range of 65 to 67 at %.

本発明方法による焼結は、原料として用いろ粉末の酸化
を防ぐ為に、非酸化性雰囲気であることが好ましく、又
用いる原料粉末の粒度は出来ろ限り微細である方がよく
、通常4μm以下の平均粒径、より好ましくは1μm以
下の平均粒径の粉末とする。これらの原料粉末中のBの
含有量は、厳格に規制すべきであり、上述した如<B:
iが65〜67原子%の範囲を外れろと得られる焼結体
の全てを六方晶系となす事が出来ないことは勿論、その
量が67原子%よりも多ければ得られる焼結体の緻密化
が困難となり、−万65原子%よりも少なければ焼結体
中に金属や一硼化物等が残存し耐食性や耐酸化性を低下
させる様になるのである。
Sintering according to the method of the present invention is preferably performed in a non-oxidizing atmosphere in order to prevent oxidation of the powder used as a raw material, and the particle size of the raw material powder used is preferably as fine as possible, usually 4 μm or less. The powder has an average particle size of 1 μm or less, more preferably 1 μm or less. The content of B in these raw material powders should be strictly regulated, and as described above <B:
Of course, if i is outside the range of 65 to 67 at%, it will not be possible to make all of the obtained sintered body hexagonal, and if the amount is greater than 67 at%, the density of the obtained sintered body will be reduced. If the amount is less than -65 at %, metals, monoborides, etc. will remain in the sintered body, reducing corrosion resistance and oxidation resistance.

次に本発明の代表的な方法について述べる。Next, a typical method of the present invention will be described.

即ち、まず所定の混合比に混合した粉末組成物を金型に
充填し、0.5〜10ton/cd程度のプレス圧で冷
間圧縮し、得られる圧粉体をラバープレスによ))0.
5〜10ton/cd程度の静水圧を加え均一な圧力分
布を持つ圧粉成形体となすが、又はボールミル等でスラ
リー化した後、差圧を利用したり加圧したりして成形す
る泥漿法により圧粉体となし、該圧粉体を真空中若しく
はアルゴン中で1800〜2600℃の条件下で30〜
200分間焼結する方法がある。
That is, first, a powder composition mixed at a predetermined mixing ratio is filled into a mold, cold-pressed at a press pressure of about 0.5 to 10 ton/cd, and the resulting green compact is pressed with a rubber press))0 ..
Hydrostatic pressure of about 5 to 10 tons/cd is applied to form a powder compact with uniform pressure distribution, or by the slurry method, which is made into a slurry with a ball mill etc. and then molded using differential pressure or pressurization. The green compact is heated at 1800 to 2600° C. in vacuum or in argon at 30 to 30°C.
There is a method of sintering for 200 minutes.

又別の方法としては、ホットプレス法や熱間静水圧法も
あり、いずれの方法を採用しても容易に十分繊密な焼結
体が得られろ。
Other methods include a hot press method and a hot isostatic pressure method, and a sufficiently dense sintered body can be easily obtained by using either method.

〈実施例〉 次に実施例を示し本発明方法を更に詳述する。<Example> Next, the method of the present invention will be explained in further detail by showing examples.

この実施例は、HfB2粉末984重量%とZr粉粉末
1里 形した後も、4 ton/c+jでラバープレスして圧
粉成形体を得、該圧粉成形体をアルゴンフ囲気中で24
00℃下に90分間加熱焼成した。この様にして得られ
た焼結体の空隙率は非常に小さく、抗折力は25kg/
mm’であった。この焼結体の表面層を研削除去し、7
50℃の溶融アルミニウム中に24時間浸漬し耐食性を
調べた結果、形状,質量ともに全く変化が見られず16
重量%Zr−残H fB2焼結体が12れた耐食性を有
している事が確認された。この16重量%Zr−残[(
fB2焼結体の例をNo、 1とし、他にそれぞれに組
成を変えた原料混合粉末から上記実施例の場合と同様の
条件で製造した焼結の特性等を下記第1表に示す。但し
第1表中No、34は比較例である。
In this example, after forming 984% by weight of HfB2 powder and 1 kg of Zr powder, a compact was obtained by rubber pressing at 4 tons/c+j, and the compact was heated in an argon atmosphere for 24 hours.
It was heated and baked at 00°C for 90 minutes. The sintered body thus obtained has a very small porosity and a transverse rupture strength of 25 kg/
It was mm'. The surface layer of this sintered body is removed by grinding, and
As a result of testing the corrosion resistance by immersing it in molten aluminum at 50℃ for 24 hours, no change was observed in both shape and mass16.
It was confirmed that the Zr-residue H fB2 sintered body had a corrosion resistance of 12% by weight. This 16% by weight Zr-residue [(
Examples of fB2 sintered bodies are No. 1, and the characteristics of sintering produced from raw material mixed powders with different compositions under the same conditions as in the above example are shown in Table 1 below. However, No. 34 in Table 1 is a comparative example.

く究明の効果) 以上述べて来た如く、本発明方法によれば原料混合粉末
中に含有せしめろ低融点の金属、化合物の為に低い温度
で液相焼結がなされろ為に低温のしかも通常の焼結法で
十分緻密な焼結体を得る事が出来、かつ原料混合粉末中
のBの量を、65〜67原子%の範囲としているが為に
焼結後は低融点金属や化合物が残存する事なく全てが六
方晶系を持っニー化金属となる為に得られる焼結体は優
れた耐食性を示すのである。
As described above, according to the method of the present invention, liquid phase sintering is performed at a low temperature due to the low melting point metals and compounds contained in the raw material mixed powder. A sufficiently dense sintered body can be obtained using the normal sintering method, and the amount of B in the raw material mixture powder is in the range of 65 to 67 at%, so after sintering, low melting point metals and compounds can be obtained. The resulting sintered body exhibits excellent corrosion resistance because all of the metal has a hexagonal crystal system and no residual metal remains.

特許出願人 工業技術院長(他1名) 復代理人  有吉 教晴Patent applicant: Director of the Agency of Industrial Science and Technology (1 other person) Sub-agent Noriharu Ariyoshi

Claims (1)

【特許請求の範囲】 1、焼結後の焼結体の組成に、B原子を65〜67原子
%含有する様に、TiB_2、ZrB_、HfB_2粉
末の中の少なくとも1種以上とTi、Zr、Hf、Zr
B、HfB粉末の中の少なくとも1種以上とを混合し、
該混合粉末を焼結することを特徴とする二硼化金属系セ
ラミックスの製造方法。 2、焼結後の焼結体の組成に、B原子を65〜67原子
%含有する様に、TiB_2、ZrB_2、HfB_2
粉末の少なくとも1種以上にTi、Zr、Hf、TiB
、ZrB、HfB粉末の中の少なくとも1種以上とB粉
末とを混合し、該混合粉末を焼結することを特徴とする
二硼化金属系セラミックスの製造方法。 3、焼結後の焼結体の組成に、B原子を65〜67原子
%含有する様に、Ti、Zr、Hf、TiB、ZrB、
HfB粉末の中の少なくとも1種以上とB粉末とを混合
し、該混合粉末を焼結することを特徴とする二硼化金属
系セラミックスの製造方法。
[Claims] 1. At least one of TiB_2, ZrB_, HfB_2 powder and Ti, Zr, Hf, Zr
B, mixed with at least one or more of HfB powder,
A method for producing metal diboride ceramics, which comprises sintering the mixed powder. 2. TiB_2, ZrB_2, HfB_2 so that the composition of the sintered body after sintering contains 65 to 67 at% of B atoms.
At least one of the powders contains Ti, Zr, Hf, and TiB.
, ZrB, and HfB powder and B powder, and sintering the mixed powder. 3. Ti, Zr, Hf, TiB, ZrB, so that the composition of the sintered body contains 65 to 67 at% of B atoms
A method for producing metal diboride ceramics, comprising mixing at least one type of HfB powder and B powder, and sintering the mixed powder.
JP62031268A 1987-02-13 1987-02-13 Manufacture of metal diboride base ceramics Granted JPS63201067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62031268A JPS63201067A (en) 1987-02-13 1987-02-13 Manufacture of metal diboride base ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62031268A JPS63201067A (en) 1987-02-13 1987-02-13 Manufacture of metal diboride base ceramics

Publications (2)

Publication Number Publication Date
JPS63201067A true JPS63201067A (en) 1988-08-19
JPH0427186B2 JPH0427186B2 (en) 1992-05-11

Family

ID=12326589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62031268A Granted JPS63201067A (en) 1987-02-13 1987-02-13 Manufacture of metal diboride base ceramics

Country Status (1)

Country Link
JP (1) JPS63201067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129074A (en) * 1988-11-04 1990-05-17 Agency Of Ind Science & Technol Ceramic material composed of boride and aluminum nitride
JP4834188B1 (en) * 2011-05-27 2011-12-14 有志 米田 Impact generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129074A (en) * 1988-11-04 1990-05-17 Agency Of Ind Science & Technol Ceramic material composed of boride and aluminum nitride
JP4834188B1 (en) * 2011-05-27 2011-12-14 有志 米田 Impact generator

Also Published As

Publication number Publication date
JPH0427186B2 (en) 1992-05-11

Similar Documents

Publication Publication Date Title
US4320204A (en) Sintered high density boron carbide
KR100260337B1 (en) Sputtering cathode target for transparent coating and the same method
US4486544A (en) Titanium boride based sintering composition and the use thereof in the manufacture of sintered articles
US4929417A (en) Method of manufacture metal diboride ceramics
JPS62176630A (en) Composition for casting stable slip based on powder containing pulverized aluminum nitride
JPH03208865A (en) Manufacture of refractory composite article
JPS63201067A (en) Manufacture of metal diboride base ceramics
JPH04130065A (en) Method of forming high-density metal boride complex
JPS6337072B2 (en)
EP0181317B1 (en) Process for manufacturing a porous filter body from metal powder
JPH07502072A (en) Boron carbide-copper cermet and its manufacturing method
JPS6325274A (en) Silicon carbide powder mixture and sintered ceramic product
JP3270798B2 (en) Method for producing silicon carbide sintered body
JPS62243726A (en) Cu-tib2 composite sintered material
JPS61215253A (en) Chromium oxide base ceramic material
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JPH0344145B2 (en)
JPS6212664A (en) Method of sintering b4c base composite body
DE4013025C2 (en) Manufacture of boron nitride moldings
JPS6347344A (en) Production of low oxygen alloy molding
JPH08253833A (en) Copper-molybdenum alloy and its production
JPH06279124A (en) Production of silicon nitride sintered compact
JPS5891074A (en) Manufacture of silicon nitride sintered body
KR900002040B1 (en) Making process for super alloy of tungsten carbide
JPS6364973A (en) Boron nitride sintered body and manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term