JPS5891074A - Manufacture of silicon nitride sintered body - Google Patents

Manufacture of silicon nitride sintered body

Info

Publication number
JPS5891074A
JPS5891074A JP56188447A JP18844781A JPS5891074A JP S5891074 A JPS5891074 A JP S5891074A JP 56188447 A JP56188447 A JP 56188447A JP 18844781 A JP18844781 A JP 18844781A JP S5891074 A JPS5891074 A JP S5891074A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride sintered
oxide
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56188447A
Other languages
Japanese (ja)
Inventor
勝利 米屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56188447A priority Critical patent/JPS5891074A/en
Publication of JPS5891074A publication Critical patent/JPS5891074A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (究明の緘する技術分封) 本発明は窒化ケイ素焼結体の製造方法ζ1係り、%+−
HIp(高温静圧プレス)法を用いた場名・の改良に隈
1する。
DETAILED DESCRIPTION OF THE INVENTION (Technology for investigation) The present invention relates to a method of manufacturing ζ1 of silicon nitride sintered body,
Kuma 1 will discuss the improvement of place names using the HIp (High Temperature Isostatic Press) method.

(従米技術及びその問題点) 一般に会化ケイ素はその結合様式が共鳴的で身)ること
がら耐熱性、繭賞性、尚強度に特長かりる。
(Advanced technology and its problems) In general, silicon has a resonant bonding pattern, so it is characterized by heat resistance, cocoonability, and strength.

し7かし一万では安定な物質でおる/こめに焼結がむず
かしいため、多孔質の状態で合成するか焼結助剤を使っ
てmW化することが行われている。
However, since 7-10,000 is a stable material and is difficult to sinter, it has been synthesized in a porous state or made into mW by using a sintering aid.

不発切者らはこれチでσノ研究に山゛いてα型窒化ケイ
素粉末に周M律表111a加、酸化物(酸化イツトリウ
ム等)とアルミナを力lえたものをベースにして必敦i
二尾、じそれに窒化アルミニウムや他の酸化物を加えた
組成を出発物l質として焼結し、強度の簡い材料を得る
方法を見い出してきた(例えは特公昭49−21091
%公昭52−3649等)。
At this point, those who failed to develop the technology were busy researching σ, and using α-type silicon nitride powder, adding 111a of the Periodic Law, and adding oxides (yttrium oxide, etc.) and alumina as a base, they were able to create a necessary i.
He discovered a method to obtain a material with easy strength by sintering the same composition with aluminum nitride and other oxides as a starting material.
% Kosho 52-3649, etc.).

[7かるに窒化ケイ素などの耐熱材料はより高温で使用
1゛ることを期待する分野も少なくない。とくに商況熱
機関に用いる場合は1200℃以上の高い温度での耐熱
性が要求され、しかもかなりの熱応力千ンるいは機械応
力が必要とされているものが多い。そのためには璧化ケ
イ累セラミックス(二対[2てもよt) A温で強度、
耐食性を保持する様特性の向上が期待されている。これ
を克服する市としては■なるべく窒化ケイ素年独の性質
をもたせる意味で添加物知を減らすか■女足な粒界ある
いは粒界相を形成するための添加物を辿定するか、ある
いは■プロセス上の工夫を行なう等が検討されている。
[7] There are many fields in which heat-resistant materials such as silicon nitride are expected to be used at higher temperatures. In particular, when used in commercial heat engines, heat resistance at temperatures as high as 1200° C. or higher is required, and in many cases, considerable thermal stress or mechanical stress is required. For that purpose, we need ceramics made of silica (two pairs [2 moyot)] which has strength at temperature A,
Improvements in properties are expected to maintain corrosion resistance. In order to overcome this problem, the city should: ■ Reduce the number of additives to give silicon nitride properties as much as possible; ■ Find additives to form undesirable grain boundaries or grain boundary phases; or ■ Process The above measures are being considered.

通′屑酊加物警か減少すると焼結性が悪くなるので外圧
の助けをかりて焼結が行なわJlている。例えば前記(
節の方法としてホツトフレスあるいはH■p(Q温静水
圧プレス)が一般的に知られている。本発明1−際して
発明者らはα型窒化ケイ素粉末に酸化イツトリウム、ア
ルミナを添加物例としで選びその添加量に対する焼結特
性の変化を6ノ41べた。その結果、M爾添力11でも
H工P焼結によって較什1;化は達成されるものの、強
度の向上か少なく、1だ添加9勿の銅か増すに伴なって
強度が向上する事を見い出した。この結果は微細組織と
対向するもので添加物の祈が少ないと焼結体の償i度向
上C二裕与する結晶粒の柱状化は起りにりく、その結果
α−十βの相転移があっても粒状結晶の眉を組線を呈し
またことに起因していると考えられる。
If the amount of additives decreases, the sinterability will deteriorate, so sintering is performed with the help of external pressure. For example, the above (
Hot press or Hp (Q hot isostatic press) is generally known as a knotting method. Present Invention 1 - The inventors selected yttrium oxide and alumina as additives to α-type silicon nitride powder, and investigated the changes in sintering properties depending on the amounts added. As a result, even though the M addition force is 11, a comparison of 1. I found out. This result is in contrast to the microstructure, and if the amount of additives is small, columnarization of crystal grains, which increases the degree of compensation of the sintered body, is unlikely to occur, and as a result, the α-β phase transition occurs. This is thought to be due to the fact that the granular crystals have braided lines.

このことに関し、窒化ケイ累粉末の性状も甘めプロセス
を検削した所、本発明堝らσHIP焼帖法蓄二ついて焼
成プロセスがとくにN要であり、適当の少車添加物に対
(7ては結晶を柱状にするだめの熱処理を鴻切な温度条
H−で行なうのが好1し7く、これによって粒形が柱状
化し強度向上に貢献することを見い出した。
Regarding this, the properties of the silicon nitride powder are also mild, and when we examined the process, we found that the sintering process of the σHIP sintering method of the present invention is particularly N-required. In order to make the crystals columnar, it is preferable to carry out the heat treatment under a very strict temperature condition H-, and it has been found that this makes the grain shape columnar and contributes to improving the strength.

(発明の目的) 本発明は上記の点CmみSi叔密化が容易でかつ機樺的
強度番′−優7−1だ窒化ケイ素焼結体の製造方法な伶
る挙を特徴とする。
(Objective of the Invention) The present invention is characterized by the above-mentioned method for manufacturing a silicon nitride sintered body that can easily be made Si dense in Cm and has a mechanical strength rating of 7-1.

(発明の概賛) 不発明方法でに1ず第?7I(−α型を多量に含む窒化
ケイ素粉末(二酸化イツトリウムに代表をれる絢期律表
1117Z族酸化物とアルミナを1f4s加し、必要(
1応じて他の蟹化物(窒化アルミニウノ・等)、酸化物
(酸化チタン、酸化マグネシウム等)を含むものを際加
物とし、それぞれを下記の通り添加する事が好捷しい○ 酸化イツトリウム  01〜4市量チ アルミナ      0.01〜3I 窒化アルミニウム   〈3  # 酸化物         〈05 〃 これらの混合物を均一に混ぜ、これに粘結剤としてバイ
ンダを加えて成形する。バインダの柚類と飯は成形方法
に応じて適宜選定されるもので通常の金型成形では数襲
程度射出成形などでは多重の例えば熱町和性柄脂が用い
られる。しかしいずれにしても、このバインダは成形後
除去されるので1u接焼結組成としては関与(2ない。
(Summary of the invention) What is the first non-inventive method? Add 1f4s of silicon nitride powder containing a large amount of 7I (-α type oxides of the 1117 Z group in the Kyushu Period Table represented by yttrium dioxide and alumina, and add the necessary (
1) It is preferable to use substances containing other crabmides (aluminum nitride, etc.) and oxides (titanium oxide, magnesium oxide, etc.) as additives, and add each as shown below.○ Yttrium oxide 01~ 4 Commercially available Thialumina 0.01-3I Aluminum nitride <3 # Oxide <05> These mixtures are mixed uniformly, a binder is added thereto as a caking agent, and the mixture is molded. The binders, citron and rice, are appropriately selected depending on the molding method, and in ordinary mold molding, several strokes are used, and in injection molding, for example, multiple layers of heat-resistant handle fat are used. However, in any case, since this binder is removed after molding, it does not play a role in the 1u welding and sintering composition.

このように成形した圧粉体はバインダを除去した後、次
の三つの熱処理工程を経て焼結する。
After removing the binder from the powder compact formed in this way, it is sintered through the following three heat treatment steps.

■ 1600〜1750℃、常圧、非酸化性雰囲気或い
は1400〜1650℃減圧下で熱処理する。
(2) Heat treatment at 1600-1750°C, normal pressure, non-oxidizing atmosphere or 1400-1650°C under reduced pressure.

■ ■の熱処耶体をガラスカプセル中に入れて脱気し7
て焼成し、成形体表面≦ニガラスな被核するか、表面に
ガラス成分物質をコート(7て焼成(2、ガラス層で成
形体をお\い成杉体を外部環境から遮断する。
■ Place the heat-treated body of ■ in a glass capsule and degas it.
2. Cover the molded body with a glass layer to insulate the molded cedar body from the external environment.

■ その後、HIP処理として1700〜2000℃、
1000〜3000気圧で焼結して緻密化を光子する。
■ After that, HIP treatment at 1700-2000℃,
The densification is photonized by sintering at 1000-3000 atm.

焼結体はガラスを除去して回収する。The sintered body is recovered after removing the glass.

従来ホソトフレスの前に熱処理[〜て粒界相を結晶化す
る方法が発明されている(特公昭56−3ss)本発明
方法の楊会は組成少量に対してイj意なもので、結晶化
処理を目的とするものでなく粒形の柱状化を目的とする
ものでおる〇 この熱処理効果についての明確な粒成長機構を+it段
階で与えることはできないが概ね次のように推察してい
る。
Conventionally, a method has been invented in which the grain boundary phase is crystallized by heat treatment before photo-freezing (Japanese Patent Publication No. 56-3SS). The purpose is not to process the heat treatment, but to make the grain shape columnar. Although it is not possible to provide a clear grain growth mechanism for this heat treatment effect at the +it stage, it is generally inferred as follows.

本来、酸化イツ) IJウムの冷加はα型窒化ケイ素に
対してα→βの相転移に伴ない異方性のある粒成長をも
たらす。即ち柱状結晶粒の成長をもたらすことが認めら
れているが少量添加の場合は様態が異なり、このような
粒成長が起りにくい。これは窒化ケイ素の表面あるいは
内部にシリカと(,7であるいは構造内酸素として存仕
する酸素に起因して粒界相の組成が相対的1ニジリカ成
分の多く、イツトリウム成分の少ないもの(二なり易く
、その結果、酸化イツトリウム本来の粒成長効果が弱ま
り、α→βの相転移で柱状粒の成長を困難C二]〜だも
のと思われる。
Cooling of IJium (originally an oxide) causes anisotropic grain growth in α-type silicon nitride due to an α→β phase transition. That is, it is recognized that it causes the growth of columnar crystal grains, but the situation is different when a small amount is added, and such grain growth is less likely to occur. This is due to the presence of silica on the surface or inside of silicon nitride (7), or due to the oxygen present in the structure, the composition of the grain boundary phase is relatively 1. As a result, the grain growth effect inherent to yttrium oxide is weakened, making it difficult to grow columnar grains due to the α→β phase transition.

本発明による常圧あるいはそれ以下気圧の雰囲気で熱処
理する工程を中間にとると、存在する酸素か何らかの形
で、例えは−酸化ケイ素の形で逃散しイツトリウム濃度
の旨い粒界相を作り、その、結果イツ) IJウムの効
果が顕著になって粒の柱状化をもたらしたものと推定さ
れる。本発明C′″−不す朱Hけこれを可能にする虐正
軛囲l二あったものと思われる。
By intervening the step of heat treatment in an atmosphere of atmospheric pressure or lower pressure according to the present invention, the existing oxygen escapes in some form, for example, in the form of silicon oxide, creating a grain boundary phase with a good yttrium concentration. It is presumed that the effect of IJum became significant and caused the grains to become columnar. It is believed that there were two cruelties that made this invention possible.

(発明の実施例) 以下実施例により詐細に説明する。(Example of the invention) A more detailed explanation will be given below using examples.

実施例1 平均粒径1μmのα相95%窒化ケイ素粉末951魚チ
、平均粒径0.5μm17)試薬級酸化イツ) IJウ
ム2重量俤、さらに〈03μmの試薬級アルミナ粉末を
加えてこれを混合した後バインダとしてパラフィンを5
1飯チ加えて37 X 37 X 8 amに500K
f/elで成形し脱脂して焼結用試料とした。
Example 1 95% α-phase silicon nitride powder with an average particle size of 1 μm, 2 weights of reagent-grade oxide, and further added 0.3 μm reagent-grade alumina powder. After mixing, add 5 paraffin as a binder.
1 meal plus 500K for 37 x 37 x 8 am
It was molded using f/el and degreased to prepare a sample for sintering.

これを窒素ガス3001/hの気流中常圧中で1650
℃2時間の熱処理を行ない、これをシリカカラス中に入
れて脱気し、加熱してガラスな被核させ、1850℃、
 2000気圧、2時間の焼結(HIP)を・行なった
。その結果、焼結密fk3.22r/。。
This was heated to 1,650 liters at normal pressure in a flow of nitrogen gas of 3,000 liters per hour.
Heat treated for 2 hours at 1850°C, degassed by placing it in a silica glass, heated to form a glassy core, and heated to 1850°C.
Sintering (HIP) was performed at 2000 atm for 2 hours. As a result, the sintering density fk3.22r/. .

3点曲は強度88〜/−を示した。同一組成で熱処理を
行なわない場合は緻密化は同等であったものの強度は捗
の45Ky/−であった0微構造帖察では前場において
柱状結晶粒の成長が認めら才またが後者は不十分であっ
た。
The three-point curve showed an intensity of 88 to/-. When the same composition was used without heat treatment, the densification was the same, but the strength was 45Ky/-.In the microstructure examination, the growth of columnar grains was observed in the former stage, but the latter was insufficient. Met.

実施例2 実施例1(二同様の方法(二おいて、組成及び条件、b
人工ず12 も 表 2 実施例6 組成として実施例1の原料及び酸化イツトリウムの代り
に〇、7μmの酸化セリウムを使い813N4−〇、5
3[、in%0e02 0.51に’、 % % A2
20B系の混合粉末を使い実施例と同じ条件で焼結を行
ない密度3.20r/cc 、  3点曲けり1度72
にg/−を得た。敵#l緘も柱状粒からなるものであっ
た。
Example 2 Example 1 (2) Similar method (2, composition and conditions, b
Table 2 Example 6 813N4-〇, 5 using the raw materials of Example 1 and cerium oxide with a thickness of 7 μm instead of yttrium oxide.
3[, in%0e02 0.51', % % A2
Sintering was carried out using 20B series mixed powder under the same conditions as in the example, with a density of 3.20 r/cc and a three-point bend of 1 degree 72
g/- was obtained. Enemy #1 was also composed of columnar grains.

Claims (1)

【特許請求の範囲】 1)窒化ケイ累に周期律表出α放散化物とアルミナを龜
加した糸の組成物をH工P(高温静水圧プレス)焼結す
る方法において、H工P焼結前に常圧ろるいは減圧下で
熱処理して結晶粒を柱状化にすることを%徴とする窒化
ケイ素焼結体の製造方法0 2、特許請求の範囲第1項において窒化ケイ累としてα
相生体の窒化ケイ素を用いた事を特徴とする窒化ケイ素
焼結体の製造方法。 3)特許請求の範囲第1項又は第2功において周期律表
+f1.族酸化放散、1−4]jJ%アルミナo、oi
〜3ミル3電量チ事を特徴とする窒化ケイ素焼結体の製
造方法。 4)特許請求の範F15第1項、第2項又は第3項にお
いて周期律表1lla族酸化物として酸化イツトリアを
用いた朝を%徴とする窒化ケイ素m結体の製造方法。 5) 特許請求の範囲第1項、第2項又は第4項におい
て添加物としてさらに窒化アルミニウム〈3氷鍬チ、そ
の他の酸化物<0.5爪愈チな少なくとも一極添加した
事を特徴とする窒化ケイ素焼結体の製造方法。 6)%許hi氷の範囲第1項、第2項、第3槙。 第4項又Fi第5項Inおいて中間の熱処理温度を常圧
で1600〜1750℃、又は減圧下で1400〜16
50℃とした事を%徴とする窒化ケイ素焼結体の製造方
法。 7)特許請求の範囲第1項、第2項、第3項。 菓4項、第5項又は第6項C二おいてH工P処理を17
0(1〜2000°C,1000〜3000気圧で行な
う事を特徴とした窒化ケイ素焼結体の製造方法。
[Scope of Claims] 1) In a method of sintering a yarn composition in which silicon nitride is added with a periodic α-radiation compound and alumina by H-P (high temperature isostatic pressing), H-P sintering is performed. A method for manufacturing a silicon nitride sintered body, which is characterized in that the crystal grains are formed into columnar shapes by heat treatment under normal pressure or reduced pressure beforehand.
A method for manufacturing a silicon nitride sintered body, characterized by using silicon nitride as a phase body. 3) In claim 1 or 2, periodic table +f1. Group oxidation emission, 1-4]jJ% alumina o, oi
A method for producing a silicon nitride sintered body characterized by a coulometric capacity of ~3 mils. 4) A method for producing a silicon nitride m-structure using ittria oxide as an oxide of group 1lla of the periodic table in item 1, 2 or 3 of claim F15. 5) Claims 1, 2, or 4 further include the addition of aluminum nitride <3 nitride, other oxide <0.5 molten metal, and at least one electrode as an additive. A method for manufacturing a silicon nitride sintered body. 6) Percentage range of 1st, 2nd and 3rd terms. In item 4 or Fi item 5 In, the intermediate heat treatment temperature is 1600 to 1750°C at normal pressure, or 1400 to 16°C under reduced pressure.
A method for producing a silicon nitride sintered body, characterized in that the temperature is 50°C. 7) Claims 1, 2, and 3. 17 H engineering P treatment in Section 4, Section 5 or Section 6 C2
A method for producing a silicon nitride sintered body, characterized in that the process is carried out at 1 to 2000°C and 1000 to 3000 atm.
JP56188447A 1981-11-26 1981-11-26 Manufacture of silicon nitride sintered body Pending JPS5891074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56188447A JPS5891074A (en) 1981-11-26 1981-11-26 Manufacture of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56188447A JPS5891074A (en) 1981-11-26 1981-11-26 Manufacture of silicon nitride sintered body

Publications (1)

Publication Number Publication Date
JPS5891074A true JPS5891074A (en) 1983-05-30

Family

ID=16223844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56188447A Pending JPS5891074A (en) 1981-11-26 1981-11-26 Manufacture of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS5891074A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155576A (en) * 1984-01-26 1985-08-15 工業技術院長 Manufacture of silicon nitride sintered body
JPS63159259A (en) * 1986-12-24 1988-07-02 日本特殊陶業株式会社 High toughness silicon nitride base sintered body
EP0334543A2 (en) * 1988-03-23 1989-09-27 Ngk Insulators, Ltd. Method of producing high density silicon nitride sintered bodies
JPH02184573A (en) * 1989-01-10 1990-07-19 Hitachi Metals Ltd Tool for hot working

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155576A (en) * 1984-01-26 1985-08-15 工業技術院長 Manufacture of silicon nitride sintered body
JPS6357388B2 (en) * 1984-01-26 1988-11-11 Kogyo Gijutsuin
JPS63159259A (en) * 1986-12-24 1988-07-02 日本特殊陶業株式会社 High toughness silicon nitride base sintered body
JPH0566901B2 (en) * 1986-12-24 1993-09-22 Ngk Spark Plug Co
EP0334543A2 (en) * 1988-03-23 1989-09-27 Ngk Insulators, Ltd. Method of producing high density silicon nitride sintered bodies
JPH02184573A (en) * 1989-01-10 1990-07-19 Hitachi Metals Ltd Tool for hot working

Similar Documents

Publication Publication Date Title
JPS5826077A (en) Ceramic sintered body and manufacture
JPS5891074A (en) Manufacture of silicon nitride sintered body
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP2742619B2 (en) Silicon nitride sintered body
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
JPH1121175A (en) Silicon nitride sintered compact
JPH09157028A (en) Silicon nitride sintered compact and its production
JP2694369B2 (en) Silicon nitride sintered body
JPS59174577A (en) Silicon nitride sintered body
JP3140122B2 (en) Silicon nitride sintered body
JPS58125667A (en) Composite carborundum sintered shape and its manufacture
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPS59116176A (en) Manufacture of ceramic sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPS60155576A (en) Manufacture of silicon nitride sintered body
JPH0772105B2 (en) Silicon nitride sintered body and method for manufacturing the same
JPH06287065A (en) Silicon nitride sintered compact and its production
JPS63277568A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS63151682A (en) Silicon nitride sintered body and manufacture
JP2811493B2 (en) Silicon nitride sintered body
JP2687634B2 (en) Method for producing silicon nitride sintered body
JPS63195170A (en) Manufacture of silicon nitride sintered body