JPH0566901B2 - - Google Patents

Info

Publication number
JPH0566901B2
JPH0566901B2 JP61306391A JP30639186A JPH0566901B2 JP H0566901 B2 JPH0566901 B2 JP H0566901B2 JP 61306391 A JP61306391 A JP 61306391A JP 30639186 A JP30639186 A JP 30639186A JP H0566901 B2 JPH0566901 B2 JP H0566901B2
Authority
JP
Japan
Prior art keywords
particles
columnar
aspect ratio
sintered body
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61306391A
Other languages
Japanese (ja)
Other versions
JPS63159259A (en
Inventor
Hiroshi Tajima
Kazuhiro Urashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP61306391A priority Critical patent/JPS63159259A/en
Publication of JPS63159259A publication Critical patent/JPS63159259A/en
Publication of JPH0566901B2 publication Critical patent/JPH0566901B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高靭性の窒化珪素質焼結体に関し、特
に自動車エンジン部材、耐摩耗部材、切削工具、
その他産業用部材に関する。 従来の技術 窒化珪素質焼結体の靭性、強度の向上にはアス
ペクト比の大きい針状或いは柱状粒子を成長させ
る事が好ましいとされている。そしてそのような
組織を得るためにα率の高いSi3N4原料を使用
し、又、特定の焼結助剤(例えばY2O3等の希土
類金属酸化物)を添加することが効果的であるこ
とが知られている。 発明が解決しようとする問題点 しかしなから、高靭性、高強度化を最も効果的
に達成するのに必要な組織、例えば柱状粒子の大
きさ、形状、分布、量等に関する技術開示はなさ
れていなかつた。 問題点を解決するための手段 本発明者らは窒化珪素質焼結体の破壊靭性値強
度が焼結体の組織に大きく依存していることに着
目し、検討を重ねた結果、窒化珪素或いはサイア
ロン粒子の分布状態、特に柱状に成長し粒子の大
きさ、形状、量が最も影響を及ぼすことを見出
し、本発明に至つたものであり、高靭性高強度化
を達成するには微細粒子と、アスペクト比の高い
成長粒子と、粒界ガラス相とからなる組織にする
のが、最も効果的であることを見出した。ここ
で、アスペクト比の高い成長粒子とは、短径0.8μ
m以上で、かつアスペクト比4以上の粒子であ
り、その量は焼結体中で15〜35容量(Vo1)%が
好ましい。これら成長粒子はクラツクの偏向或い
は粒子の引き抜き等の機構により、靭性を向上さ
せるものと考えられ、15容量%未満ではその効果
が小さく、又35容量%を超えると焼結体中の残留
応力が大きくなり、高靭性、高強度が得られな
い。なお粒径0.8μm未満或いはアスペクト比4未
満の粒子は靭性向上への寄与が小さい。 次に残部は短径0.8μm未満の微粒子と、粒界相
からなるのが好ましく、粗大粒子が相当量存在す
ると強度の低下をもたらす。 本発明の焼結体を得るには、Si3N4原料と焼結
助剤を添加混合後これを成形した後焼結する方法
或いはSi原料を出発原料とし、これに焼結助剤を
添加混合し、これを成形した後、窒素を含む雰囲
気中で加熱して窒化せしめ、しかる後焼結する方
法その他の製造方法が利用できるが、その際原料
の純度、α分率、粒度分布、焼結助剤の種類、
量、焼結条件等を最適化する必要がある。 なお本発明の実施に際し、焼結助剤として
Al2O3、AlN等Alを含む物質を使用した場合は、
サイアロン粒子が生成し、それ以外は窒素珪素粒
子となる。 実施例 表1に示す3種類の窒化珪素(Si3N4)粉末
と、Y2O3粉末(比表面積10m2/g)、Al2O3粉末
(10m2/g)を重量比で90%Si3N4−5%Y2O3
5%Al2O3となるように混合した後、成形、焼結
し、異なつた組織を持つ7種類の焼結体を作成し
た。 その製造条件を表示すれば表2に示すとおりで
ある。 これらの焼結体の機械的特性として室温強度
(JIS R601 3点曲げ)及び破壊靭性(シエブロ
ンノツチ法)を測定した。組織の評価としてば鏡
面研磨した試料をSEM観察し、粒径分布、アス
ペクト比等の計測を行なつた。 表3にその測定結果を示す。 同表に於てNo.1〜No.4の試料は本発明の実施
例、No.5〜7は比較例を示す。これらの結果から
明らかなとおり、短径0.8μm以上、アスペクト比
4以上の粒子の割合を適正な範囲内にした焼結体
では、高強度高靭性が達成される。
INDUSTRIAL APPLICATION FIELD The present invention relates to a high-toughness silicon nitride sintered body, particularly for automobile engine parts, wear-resistant parts, cutting tools, etc.
Regarding other industrial parts. Prior Art In order to improve the toughness and strength of silicon nitride sintered bodies, it is considered preferable to grow acicular or columnar particles with a large aspect ratio. In order to obtain such a structure, it is effective to use a Si 3 N 4 raw material with a high α rate and to add a specific sintering aid (for example, a rare earth metal oxide such as Y 2 O 3 ). It is known that Problems to be Solved by the Invention However, there has been no technical disclosure regarding the structure necessary to most effectively achieve high toughness and strength, such as the size, shape, distribution, amount, etc. of columnar particles. Nakatsuta. Means for Solving the Problems The present inventors focused on the fact that the fracture toughness value and strength of silicon nitride sintered bodies largely depend on the structure of the sintered bodies, and as a result of repeated studies, found that silicon nitride or It was discovered that the distribution state of Sialon particles, especially the size, shape, and amount of particles that grow in a columnar shape, has the most influence, leading to the present invention.In order to achieve high toughness and strength, fine particles and They found that it is most effective to create a structure consisting of grown grains with a high aspect ratio and a grain boundary glass phase. Here, a grown particle with a high aspect ratio is a short diameter of 0.8μ.
m or more and has an aspect ratio of 4 or more, and the amount thereof is preferably 15 to 35% by volume (Vo1) in the sintered body. These grown particles are thought to improve toughness through mechanisms such as crack deflection or particle pull-out, and if the amount is less than 15% by volume, the effect will be small, and if it exceeds 35% by volume, the residual stress in the sintered body will increase. It becomes large and high toughness and strength cannot be obtained. Note that particles with a particle size of less than 0.8 μm or an aspect ratio of less than 4 have a small contribution to improving toughness. Next, the remaining portion preferably consists of fine particles with a short diameter of less than 0.8 μm and a grain boundary phase, and the presence of a considerable amount of coarse particles causes a decrease in strength. The sintered body of the present invention can be obtained by adding and mixing the Si 3 N 4 raw material and a sintering aid, shaping the mixture, and then sintering it, or by using the Si raw material as a starting material and adding the sintering aid to it. Other manufacturing methods such as mixing, shaping, heating in a nitrogen-containing atmosphere to nitride, and then sintering can be used; Type of binder,
It is necessary to optimize the amount, sintering conditions, etc. In carrying out the present invention, as a sintering aid
When using substances containing Al such as Al 2 O 3 and AlN,
Sialon particles are generated, and the others become nitrogen silicon particles. Example Three types of silicon nitride (Si 3 N 4 ) powder shown in Table 1, Y 2 O 3 powder (specific surface area 10 m 2 /g), and Al 2 O 3 powder (10 m 2 /g) were mixed at a weight ratio of 90 %Si 3 N 4 −5% Y 2 O 3
After mixing to give 5% Al 2 O 3 , they were molded and sintered to create seven types of sintered bodies with different structures. The manufacturing conditions are shown in Table 2. As mechanical properties of these sintered bodies, room temperature strength (JIS R601 three-point bending) and fracture toughness (Chevron notch method) were measured. For microstructural evaluation, mirror-polished samples were observed by SEM, and grain size distribution, aspect ratio, etc. were measured. Table 3 shows the measurement results. In the same table, samples No. 1 to No. 4 show examples of the present invention, and Nos. 5 to 7 show comparative examples. As is clear from these results, high strength and high toughness are achieved in a sintered body in which the ratio of particles with a minor axis of 0.8 μm or more and an aspect ratio of 4 or more is within an appropriate range.

【表】【table】

【表】【table】

【表】 発明の効果 表3から判るように本発明による焼結体は靭性
及び強度が極めて向上し、部材の信頼性を向上す
ることができ、従来からの利用分野に加えて新し
い用途が広がるものと考えられる。
[Table] Effects of the Invention As can be seen from Table 3, the sintered body according to the present invention has extremely improved toughness and strength, and can improve the reliability of components, expanding new applications in addition to conventional fields of use. considered to be a thing.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化珪素粒子又はサイアロン粒子と粒界相と
からなる焼結体において、窒化珪素粒子又はサイ
アロン粒子は柱状あるいは柱状および粒状にし
て、そのうち短径が0.8μm以上でかつアスペクト
比が4以上の柱状粒子が焼結体中の15〜35容量%
を占め、残部が短径0.8μm未満あるいはアスペク
ト比の4未満の柱状粒子と粒界相、もしくは前記
柱状粒子と粒状粒子と粒界相からなることを特徴
とする高靭性窒化珪素質焼結体。
1 In a sintered body consisting of silicon nitride particles or sialon particles and a grain boundary phase, the silicon nitride particles or sialon particles are formed into columnar shapes or columnar and granular shapes, among which columnar shapes with a short axis of 0.8 μm or more and an aspect ratio of 4 or more are used. Particles account for 15-35% by volume in the sintered body
, and the remainder is composed of columnar particles with a short axis of less than 0.8 μm or an aspect ratio of less than 4 and a grain boundary phase, or the columnar particles, granular particles, and a grain boundary phase. .
JP61306391A 1986-12-24 1986-12-24 High toughness silicon nitride base sintered body Granted JPS63159259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61306391A JPS63159259A (en) 1986-12-24 1986-12-24 High toughness silicon nitride base sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61306391A JPS63159259A (en) 1986-12-24 1986-12-24 High toughness silicon nitride base sintered body

Publications (2)

Publication Number Publication Date
JPS63159259A JPS63159259A (en) 1988-07-02
JPH0566901B2 true JPH0566901B2 (en) 1993-09-22

Family

ID=17956450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61306391A Granted JPS63159259A (en) 1986-12-24 1986-12-24 High toughness silicon nitride base sintered body

Country Status (1)

Country Link
JP (1) JPS63159259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365154B2 (en) 2016-03-31 2022-06-21 Ngk Spark Plug Co., Ltd. Silicon nitride-based sintered body and cutting insert

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524201B2 (en) * 1988-08-22 1996-08-14 日本特殊陶業株式会社 Silicon nitride sintered body and method for manufacturing the same
JP2776471B2 (en) * 1990-11-30 1998-07-16 住友電気工業株式会社 Silicon nitride based composite sintered body
JPH04202058A (en) * 1990-11-30 1992-07-22 Sumitomo Electric Ind Ltd Silicon nitride-based composite sintered body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891074A (en) * 1981-11-26 1983-05-30 株式会社東芝 Manufacture of silicon nitride sintered body
JPS6172684A (en) * 1984-09-18 1986-04-14 株式会社東芝 High strength high abrasion resistance sliding member and manufacture
JPS61201663A (en) * 1985-02-28 1986-09-06 工業技術院長 Manufacture of fiber tissue silicon nitride sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891074A (en) * 1981-11-26 1983-05-30 株式会社東芝 Manufacture of silicon nitride sintered body
JPS6172684A (en) * 1984-09-18 1986-04-14 株式会社東芝 High strength high abrasion resistance sliding member and manufacture
JPS61201663A (en) * 1985-02-28 1986-09-06 工業技術院長 Manufacture of fiber tissue silicon nitride sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365154B2 (en) 2016-03-31 2022-06-21 Ngk Spark Plug Co., Ltd. Silicon nitride-based sintered body and cutting insert

Also Published As

Publication number Publication date
JPS63159259A (en) 1988-07-02

Similar Documents

Publication Publication Date Title
JP3198662B2 (en) Silicon nitride based sintered body and method for producing the same
JPH0680470A (en) Production of silicon nitride sintered compact
US4365022A (en) Method for manufacture of high-strength sintered article of substances having β-silicon nitride type crystal structure
JPH0566901B2 (en)
JP2670221B2 (en) Silicon nitride sintered body and method for producing the same
JPS6487551A (en) Sic-al2o3 composite sintered body and its production thereof
JPS63185863A (en) Silicon nitride-base sintered body and manufacture
JPS59207881A (en) Ceramic sintered body and manufacture
US3887524A (en) Method of strengthening alumina ceramic by quenching with liquid medium
JPH06305837A (en) Sintered silicon nitride
JPS62265173A (en) Silicon carbide whisker-reinforced composite material
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
JPH06116045A (en) Silicon nitride sintered compact and its production
JPH1179848A (en) Silicon carbide sintered compact
Liu et al. Pressureless sintering of in-situ toughened Yb α-SiAlON ceramics by adding seed crystals prepared by combustion synthesis
JP2776471B2 (en) Silicon nitride based composite sintered body
JPS63303864A (en) Production of sialon sintered body
JPH11139874A (en) Silicon nitride-base ceramics and its production
JPH01203260A (en) Production of silicon carbide whisker reinforced ceramics
JP2725362B2 (en) Silicon nitride sintered body
JPS61117153A (en) Manufacture of alumina sintered body
JPH10279360A (en) Silicon nitride structural parts and its production
JPS61270260A (en) Manufacture of silicon nitride base ceramic
JPS61227908A (en) Preparation of raw material powder for sintered silicon nitride
JPH09295869A (en) Sialon ceramic excellent in impact resistance and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term