JPH11139874A - Silicon nitride-base ceramics and its production - Google Patents

Silicon nitride-base ceramics and its production

Info

Publication number
JPH11139874A
JPH11139874A JP9303852A JP30385297A JPH11139874A JP H11139874 A JPH11139874 A JP H11139874A JP 9303852 A JP9303852 A JP 9303852A JP 30385297 A JP30385297 A JP 30385297A JP H11139874 A JPH11139874 A JP H11139874A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
ceramics
less
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9303852A
Other languages
Japanese (ja)
Inventor
Akira Yamakawa
晃 山川
Takashi Matsuura
尚 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9303852A priority Critical patent/JPH11139874A/en
Publication of JPH11139874A publication Critical patent/JPH11139874A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily produce silicon nitride-base ceramics excellent also in workability while having excellent mechanical characteristics. SOLUTION: The silicon nitride-base ceramics contains a titanium compd. chiefly in the grain boundaries and has <=100 nm average grain diameter. The Vickers hardness of the ceramics is >=1,200 at room temp. and lowers to <=300 at >1,000 deg.C. The ceramics is produced as follows; silicon nitride powder and titanium powder are mixed and communicated to <=50 nm average particle diameter by a mechanical alloying method and the resultant composite powder is heated until <=100 nm average grain diameter is attained and the titanium compd. is distributed chiefly in the grain boundaries.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車部品のよう
な機械構造部材等に使用される窒化ケイ素系構造用セラ
ミックス材料として、室温から900℃の中低温域で優
れた硬さ及び曲げ強度等の機械的性質を備える一方で、
1000℃以上の高温域では極端に硬度が低下し、加工
が容易となる新規な機能を持つ窒化ケイ素系セラミック
ス、及びその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a silicon nitride structural ceramic material used for a mechanical structural member such as an automobile part, which has excellent hardness and flexural strength from room temperature to 900.degree. While having the mechanical properties of
The present invention relates to a silicon nitride-based ceramic having a novel function in which hardness is extremely lowered in a high temperature range of 1000 ° C. or more and processing becomes easy, and a method for producing the same.

【0002】[0002]

【従来の技術】窒化ケイ素セラミックスは、強度、破壊
靭性値、耐食性、耐摩耗性、耐熱衝撃性、耐酸化性等に
おいてバランスの取れた材料であるため、切削工具から
エンジン部品等の広い範囲で構造用材料として利用され
ている。特に最近では、自動車エンジンやガスタービン
等の構造用材料として注目を集めている。
2. Description of the Related Art Silicon nitride ceramics are well-balanced materials in strength, fracture toughness, corrosion resistance, abrasion resistance, thermal shock resistance, oxidation resistance, etc., and can be used in a wide range from cutting tools to engine parts. Used as a structural material. In particular, recently, it has attracted attention as a structural material for automobile engines and gas turbines.

【0003】しかし、窒化ケイ素セラミックスの硬さが
高いという機械的特性は、逆に被加工性が悪く、製造コ
ストが高くなる原因につながっている。その為、研削加
工能率を上げるために超高速研削加工が研究され、或い
は研削加工を減らすために超塑性加工法又はニアネット
成形技術等が開発されるなど、より低コストで窒化ケイ
素セラミックス部品を作製するための技術開発が試みら
れている。
However, the mechanical properties of silicon nitride ceramics, such as high hardness, are conversely inferior in workability, leading to an increase in manufacturing costs. For this reason, ultra-high-speed grinding has been studied to increase grinding efficiency, or superplastic processing or near-net forming technology has been developed to reduce grinding, and silicon nitride ceramic parts can be manufactured at lower cost. Technology development for fabrication is being attempted.

【0004】[0004]

【発明が解決しようとする課題】上記のごとく窒化ケイ
素セラミックスの製造コストを低減する試みが行われて
いるが、超塑性加工法やニアネット成形技術等によって
も仕上げ加工を省略することは困難であり、超高速研削
加工には特殊な工作機械や研削砥石が必要であるため、
画期的な低コスト製造技術は未だ実現されていない。
As described above, attempts have been made to reduce the production cost of silicon nitride ceramics. However, it is difficult to omit the finishing process even by a superplastic working method or a near net forming technique. Yes, ultra-high-speed grinding requires special machine tools and grinding wheels,
Innovative low-cost manufacturing technology has not yet been realized.

【0005】本発明は、このような従来の事情に鑑み、
根本的且つ簡便な方法により製造でき、優れた機械的特
性を備えながら、同時に被加工性にも優れた窒化ケイ素
系セラミックス、及びその製造方法を提供することを目
的とする。
The present invention has been made in view of such a conventional situation,
An object of the present invention is to provide a silicon nitride-based ceramic which can be manufactured by a fundamental and simple method, has excellent mechanical properties, and is also excellent in workability, and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する窒化ケイ素系セラミックスは、チ
タン化合物を主に粒界に含み、平均結晶粒径が100n
m以下であって、室温でのビッカース硬さが1200以
上であり且つ1000℃を越えるとビッカース硬さが3
00以下に低下することを特徴とする。
Means for Solving the Problems In order to achieve the above object, the silicon nitride-based ceramic provided by the present invention mainly contains a titanium compound at a grain boundary and has an average crystal grain size of 100 n.
m or less, the Vickers hardness at room temperature is 1200 or more, and when it exceeds 1000 ° C., the Vickers hardness becomes 3
It is characterized by being reduced to 00 or less.

【0007】上記窒化ケイ素系セラミックスの製造方法
は、窒化ケイ素粉末とチタン粉末をメカニカルアロイン
グ法で平均粒径50nm以下まで混合粉砕し、得られた
複合粉末を平均粒径が100nm以下で且つチタン化合
物が主に粒界に分布するまで加熱することを特徴とす
る。
[0007] In the above-mentioned method for producing silicon nitride ceramics, silicon nitride powder and titanium powder are mixed and pulverized to a mean particle size of 50 nm or less by a mechanical alloying method, and the obtained composite powder is mixed with an average particle size of 100 nm or less and titanium powder. It is characterized by heating until the compound is mainly distributed at the grain boundaries.

【0008】[0008]

【発明の実施の形態】本発明の窒化ケイ素系セラミック
スは、チタン化合物を主に粒界に含む窒化ケイ素焼結体
からなり、その平均結晶粒径が100nm以下であると
いう特徴的な構成を有している。かかる構成により、中
低温域で高いビッカース硬さを有するなど優れた機械的
特性を備え、同時に1000℃以上の高温では優れた被
加工性を示すものである。
BEST MODE FOR CARRYING OUT THE INVENTION The silicon nitride-based ceramic of the present invention comprises a silicon nitride sintered body mainly containing a titanium compound in a grain boundary, and has a characteristic structure in which the average crystal grain size is 100 nm or less. doing. With such a configuration, it has excellent mechanical properties such as high Vickers hardness in a medium to low temperature range, and at the same time exhibits excellent workability at a high temperature of 1000 ° C. or higher.

【0009】即ち、本発明の窒化ケイ素系セラミックス
は、室温付近から800℃以下の温度範囲において従来
の窒化ケイ素焼結体と同等の硬さを持ち、耐摩摩耗性、
曲げ強度、疲労強度等についても優れた性能を備えてい
る。具体的には、ビッカース硬さが室温で1200以上
であり、ビッカース硬さが120未満になると特に耐摩
耗性が維持できず、従来の窒化ケイ素焼結体と同等の特
性を発揮することができない。このため、本発明の窒化
ケイ素系セラミックスは、摺動部品等のような中低温域
での用途を対象とするものである。
That is, the silicon nitride-based ceramic of the present invention has a hardness equivalent to that of a conventional silicon nitride sintered body in a temperature range from around room temperature to 800 ° C. or lower, and has abrasion and wear resistance.
It also has excellent performance in bending strength and fatigue strength. Specifically, when the Vickers hardness is 1200 or more at room temperature, and when the Vickers hardness is less than 120, particularly wear resistance cannot be maintained, and characteristics equivalent to those of a conventional silicon nitride sintered body cannot be exhibited. . For this reason, the silicon nitride-based ceramics of the present invention is intended for use in medium to low temperatures such as sliding parts.

【0010】同時に、本発明の窒化ケイ素系セラミック
スは、1000℃を越えると急激に硬さが低下し、10
00℃でのビッカース硬さは300以下となる。窒化ケ
イ素セラミックスの研削加工では研削点の温度が100
0℃を越えるため、1000℃以上での硬さが被研削加
工性に与える影響が大きく、本発明者らの研究によれ
ば、1000℃での硬さが300以下であれば除去加工
が高能率で行えることが分かった。
At the same time, the hardness of the silicon nitride-based ceramic of the present invention rapidly decreases when the temperature exceeds 1000 ° C.
The Vickers hardness at 00 ° C. is 300 or less. In the grinding of silicon nitride ceramics, the temperature at the grinding point is 100
Since the temperature exceeds 0 ° C., the hardness at 1000 ° C. or more greatly affects the grindability, and according to the study of the present inventors, the removal processing is high when the hardness at 1000 ° C. is 300 or less. It turned out that it can be done with efficiency.

【0011】かかる本発明の窒化ケイ素系セラミックス
は、例えば以下の方法により製造することができる。ま
ず、市販の窒化ケイ素粉末と金属チタン粉末とをボール
ミルで混合粉砕して、平均粒径50nm以下の窒化ケイ
素粒子とチタン粉末の複合粉末を形成する。金属チタン
粉末の添加量は、少なすぎると添加による被加工性改善
の効果がなく、多すぎると金属チタンが窒化されずに焼
結体中に残留する可能性があるので、通常は5〜50重
量%程度とすることが好ましい。
The silicon nitride ceramic of the present invention can be manufactured, for example, by the following method. First, commercially available silicon nitride powder and titanium metal powder are mixed and pulverized by a ball mill to form a composite powder of silicon nitride particles and titanium powder having an average particle diameter of 50 nm or less. When the addition amount of the metal titanium powder is too small, there is no effect of improving the workability by addition, and when it is too large, the metal titanium may remain in the sintered body without being nitrided. It is preferable to be about weight%.

【0012】その後、この複合粉末をホットプレス法な
どで短時間で緻密化し、平均結晶粒径が100nmを越
えないよう制御する。原料粉末の混合粉砕が不充分な場
合、得られる複合粉末中の窒化ケイ素の平均粒径が50
nmを越え、焼結したとき平均結晶粒径100nm以下
の窒化ケイ素とチタン化合物粒子からなる焼結体が得ら
れない。
Thereafter, the composite powder is densified in a short time by a hot press method or the like, and is controlled so that the average crystal grain size does not exceed 100 nm. When the mixing and grinding of the raw material powder is insufficient, the average particle size of silicon nitride in the obtained composite powder is 50%.
When sintered, the sintered body comprising silicon nitride and titanium compound particles having an average crystal grain size of 100 nm or less cannot be obtained.

【0013】また、得られる窒化ケイ素系焼結体中の窒
化ケイ素とチタン化合物の平均結晶粒径が100nmを
越えると、室温でのビッカース硬さが1200以上であ
っても、1000℃でのビッカース硬さが300以下と
ならず、被加工性に優れた窒化ケイ素系セラミックスが
得られない。
When the average crystal grain size of the silicon nitride and titanium compound in the obtained silicon nitride-based sintered body exceeds 100 nm, even if the Vickers hardness at room temperature is 1200 or more, the Vickers hardness at 1000 ° C. The hardness does not become 300 or less, and a silicon nitride ceramic having excellent workability cannot be obtained.

【0014】[0014]

【実施例】平均粒径0.6μmのα型Si34粉末に、
下記表1に示す量の平均粒径5.0μmの金属Ti粉末
と、焼結助剤として1重量%のMgOを添加し、ボール
ミルを用いて混合粉砕を行った。尚、混合粉砕の条件
(加速度と時間)は表1に示すとおりである。
EXAMPLE An α-type Si 3 N 4 powder having an average particle size of 0.6 μm was
Metal Ti powder having an average particle size of 5.0 μm in the amount shown in Table 1 below and 1% by weight of MgO as a sintering aid were added, and mixed and pulverized using a ball mill. The conditions (acceleration and time) for the mixing and pulverization are as shown in Table 1.

【0015】混合粉砕により得られた複合粉末につい
て、TEMを用いて窒化ケイ素の粒径を測定し、Si3
4の平均粒径を表1に示した。次に、各複合粉末を窒
素1気圧下において表1に示す温度で加圧焼結し、緻密
化した。尚、焼結温度を低くした比較例として、試料1
0を準備した。
[0015] The composite powder obtained by co-grinding, measuring the particle size of silicon nitride using a TEM, Si 3
Table 1 shows the average particle size of N 4 . Next, each composite powder was pressure-sintered at a temperature shown in Table 1 under 1 atm of nitrogen to be densified. As a comparative example in which the sintering temperature was lowered, Sample 1 was used.
0 was prepared.

【0016】[0016]

【表1】 Ti添加量 混合粉砕条件 複合粉末中 焼結温度試料 (wt%) 加速度(G) 時間(hr) Si3N4粒径(nm) (℃) 1* − 100 4 200 1400 2 5 100 4 40 1400 3 20 100 4 10 1400 4 50 100 4 10 1400 5* 70 100 4 60 1400 6* 20 2 4 400 1600 7 20 150 8 10 1300 8* 20 150 4 10 1900 9* 20 100 8 15 1700 10* 20 100 8 15 1200 (注)表中の*を付した試料は比較例である。[Table 1] Ti addition amount Mixing and grinding conditions In composite powder Sintering temperature Sample (wt%) Acceleration (G) Time (hr) Si 3 N 4 Particle size (nm) (° C) 1 * − 100 4 200 1400 2 5 100 4 40 1400 3 20 100 4 10 1400 4 50 100 4 10 1400 5 * 70 100 4 60 1400 6 * 20 2 4 400 1600 7 20 150 8 10 1300 8 * 20 150 4 10 1900 9 * 20 100 8 15 1700 10 * 20 100 8 15 1200 (Note) Samples marked with * in the table are comparative examples.

【0017】得られた各Si34系焼結体について、室
温と1000℃でビッカース硬さを測定した。ビッカー
ス硬さの測定は、真空中、荷重200gで10秒間保持
の条件で行った。また、焼結体の微細構造については、
イオンエッチングで薄膜試片を作製し、透過型電子顕微
鏡を用いて、母相の窒化ケイ素粒子及び分散粒子である
TiN粒子の粒径を評価した。これらの結果を表2に併
せて示した。尚、試料10を除いて、TiN粒子は主に
結晶粒界に分布していた。
The Vickers hardness of each of the obtained Si 3 N 4 based sintered bodies was measured at room temperature and at 1000 ° C. The measurement of Vickers hardness was carried out in vacuum under a condition of holding at a load of 200 g for 10 seconds. Regarding the microstructure of the sintered body,
A thin film sample was prepared by ion etching, and the particle diameters of the matrix silicon nitride particles and the dispersed TiN particles were evaluated using a transmission electron microscope. These results are also shown in Table 2. Except for Sample 10, the TiN particles were mainly distributed at the crystal grain boundaries.

【0018】[0018]

【表2】 (注)表中の*を付した試料は比較例である。[Table 2] (Note) Samples marked with * in the table are comparative examples.

【0019】上記の結果から分かるように、Si34
焼結体中のSi34粒子及びTiN粒子の平均粒径が1
00nm以下である本発明の各試料は、室温でのビッカ
ース硬さが1200以上で且つ1000℃でのビッカー
スが300以下であった。
As can be seen from the above results, the average particle diameter of the Si 3 N 4 particles and the TiN particles in the Si 3 N 4 based sintered body is 1
Each sample of the present invention having a size of 00 nm or less had a Vickers hardness at room temperature of 1200 or more and a Vickers hardness at 1000 ° C. of 300 or less.

【0020】[0020]

【発明の効果】本発明によれば、中低温域で優れた機械
的特性を備えながら、同時に1000℃以上の温度で硬
さが急激に低下し、従って1000℃以上での研削加工
など、被加工性にも優れた窒化ケイ素系セラミックス、
及びその簡単な製造方法を提供することができる。
According to the present invention, while having excellent mechanical properties in the middle and low temperature range, the hardness sharply decreases at a temperature of 1000 ° C. or more, and therefore, it is difficult to perform grinding such as grinding at 1000 ° C. or more. Silicon nitride ceramics with excellent workability,
And a simple manufacturing method thereof can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタン化合物を主に粒界に含み、平均結
晶粒径が100nm以下であって、室温でのビッカース
硬さが1200以上であり且つ1000℃を越えるとビ
ッカース硬さが300以下に低下することを特徴とする
窒化ケイ素系セラミックス。
1. A titanium compound mainly containing at a grain boundary, an average crystal grain size of 100 nm or less, a Vickers hardness at room temperature of 1200 or more, and a Vickers hardness of 300 or less at 1000 ° C. or more. A silicon nitride-based ceramic characterized by a decrease.
【請求項2】 窒化ケイ素粉末とチタン粉末をメカニカ
ルアロイング法で平均粒径50nm以下まで混合粉砕
し、得られた複合粉末を平均粒径が100nm以下で且
つチタン化合物が主に粒界に分布するまで加熱すること
を特徴とする窒化ケイ素系セラミックスの製造方法。
2. A silicon nitride powder and a titanium powder are mixed and pulverized by a mechanical alloying method to an average particle diameter of 50 nm or less, and the obtained composite powder has an average particle diameter of 100 nm or less and a titanium compound is mainly distributed at grain boundaries. A method for producing silicon nitride-based ceramics, wherein heating is performed until the temperature of the ceramics increases.
JP9303852A 1997-11-06 1997-11-06 Silicon nitride-base ceramics and its production Pending JPH11139874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9303852A JPH11139874A (en) 1997-11-06 1997-11-06 Silicon nitride-base ceramics and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9303852A JPH11139874A (en) 1997-11-06 1997-11-06 Silicon nitride-base ceramics and its production

Publications (1)

Publication Number Publication Date
JPH11139874A true JPH11139874A (en) 1999-05-25

Family

ID=17926080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9303852A Pending JPH11139874A (en) 1997-11-06 1997-11-06 Silicon nitride-base ceramics and its production

Country Status (1)

Country Link
JP (1) JPH11139874A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057197A1 (en) * 2001-01-22 2002-07-25 Sumitomo Electric Industries, Ltd. Electroconductive silicon nitride based composite sintered body and method for preparation thereof
WO2002085812A1 (en) * 2001-04-20 2002-10-31 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof
US6911162B2 (en) * 2002-01-30 2005-06-28 Sumitomo Electric Industries, Ltd. Conductive silicon nitride composite sintered body and a process for the production thereof
CN109336613A (en) * 2018-10-04 2019-02-15 南京航空航天大学溧水仿生产业研究院有限公司 High-strength bionic ceramics and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057197A1 (en) * 2001-01-22 2002-07-25 Sumitomo Electric Industries, Ltd. Electroconductive silicon nitride based composite sintered body and method for preparation thereof
US7132061B2 (en) 2001-01-22 2006-11-07 Sumitomo Electric Industries, Ltd. Electroconductive silicon nitride based composite sintered body and method for preparation thereof
WO2002085812A1 (en) * 2001-04-20 2002-10-31 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof
EP1298106A1 (en) * 2001-04-20 2003-04-02 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof
US6844282B2 (en) 2001-04-20 2005-01-18 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof
US7008893B2 (en) 2001-04-20 2006-03-07 Sumitomo Electric Industries, Ltd. Silicon nitride-based composite sintered body and producing method thereof
EP1298106A4 (en) * 2001-04-20 2007-04-04 Sumitomo Electric Industries Silicon nitride based composite sintered product and method for production thereof
US6911162B2 (en) * 2002-01-30 2005-06-28 Sumitomo Electric Industries, Ltd. Conductive silicon nitride composite sintered body and a process for the production thereof
CN109336613A (en) * 2018-10-04 2019-02-15 南京航空航天大学溧水仿生产业研究院有限公司 High-strength bionic ceramics and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3712614B2 (en) Titanium-based composite material, manufacturing method thereof, and engine valve
JP3198662B2 (en) Silicon nitride based sintered body and method for producing the same
JPH08239270A (en) Superplastic silicon carbide sintered product and its production
JPH11139874A (en) Silicon nitride-base ceramics and its production
US5622905A (en) Silicon nitride based sintered body
JPH06219840A (en) Silicon nitride sintered compact and its production
JP3617076B2 (en) Silicon nitride sintered body and method for producing the same
JP4061678B2 (en) Method for producing silicon nitride composite powder
JPH08333165A (en) Production of silicon nitride composite ceramic
JPH0797256A (en) Sintered body of aluminum oxide base and its production
US5698156A (en) Method of producing a silicon nitride based sintered body
JPH11139877A (en) Heat insulating silicon nitride-base sintered compact and its production
JPS62265173A (en) Silicon carbide whisker-reinforced composite material
JP2881189B2 (en) Method for producing silicon nitride-silicon carbide composite ceramics
JPH05330926A (en) Boride-based composite ceramic sintered compact
JPH10338576A (en) Silicon nitride sintered compact and its production
JPH11139813A (en) Amorphous silicon nitride powder and its production
JPH092875A (en) Silicon carbide-based ceramic sintered compact
JPH09249456A (en) Boride complex ceramic and its production
JPH06340941A (en) Nano-phase composite hard material and its production
JP2695070B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2001019550A (en) Crystallite granule silicon carbide sintered compact having superplasticity and its production
JP2002316876A (en) Silicon nitride based composite powder and production method therefor
JPH09100167A (en) Ceramic nano composite crystalline substance
JPH07267734A (en) Particle dispersed silicon nitride sintered compact and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703