JP2695070B2 - Method for producing silicon nitride-silicon carbide composite sintered body - Google Patents

Method for producing silicon nitride-silicon carbide composite sintered body

Info

Publication number
JP2695070B2
JP2695070B2 JP3202827A JP20282791A JP2695070B2 JP 2695070 B2 JP2695070 B2 JP 2695070B2 JP 3202827 A JP3202827 A JP 3202827A JP 20282791 A JP20282791 A JP 20282791A JP 2695070 B2 JP2695070 B2 JP 2695070B2
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon carbide
sintered body
silicon
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3202827A
Other languages
Japanese (ja)
Other versions
JPH0543324A (en
Inventor
辰珠 松井
晃 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3202827A priority Critical patent/JP2695070B2/en
Priority to PCT/JP1992/001032 priority patent/WO1993004012A1/en
Priority to US07/956,887 priority patent/US5352641A/en
Priority to DE69225304T priority patent/DE69225304T2/en
Priority to EP92917816A priority patent/EP0552381B1/en
Publication of JPH0543324A publication Critical patent/JPH0543324A/en
Application granted granted Critical
Publication of JP2695070B2 publication Critical patent/JP2695070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車部品や耐摩工具
等に使用される構造用セラミックス材料に関し、特にこ
の分野において優れた機能を有する窒化珪素−炭化珪素
複合焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural ceramic material used for automobile parts, wear resistant tools and the like, and more particularly to a method for producing a silicon nitride-silicon carbide composite sintered body having an excellent function in this field.

【0002】[0002]

【従来の技術】窒化珪素は、強度、破壊靭性、耐食性、
耐摩耗性、耐熱衝撃性、耐酸化性等においてバランスの
とれた材料であり、室温さらに高温における構造部材用
エンジニアリングセラミックスとして最近注目を集めて
いる。しかしながら、自動車部品等のように材料に対し
高い信頼性が要求される分野に窒化珪素セラミックスを
使用していくには、破壊靭性をさらに向上させてその脆
さを克服し、かつ強度向上をも図ることが必要不可欠で
ある。従来、多結晶体であるセラミックスは個々の結晶
粒を微細化することにより高強度化が図られてきたが、
この方法では材料の破壊靭性が低下し、より一層脆くな
る。一方、破壊靭性を向上させる技術として、例えば特
公昭62−265173号公報に示されるように、窒化
珪素マトリックスに炭化珪素ウイスカーを複合、分散さ
せる方法がある。
2. Description of the Related Art Silicon nitride has strength, fracture toughness, corrosion resistance,
It is a material with a good balance of abrasion resistance, thermal shock resistance, oxidation resistance, etc., and has recently attracted attention as engineering ceramics for structural members at room temperature and at high temperatures. However, in order to use silicon nitride ceramics in fields where high reliability is required for materials such as automobile parts, fracture toughness is further improved to overcome its brittleness and strength is also improved. It is essential to plan. Conventionally, ceramics, which are polycrystals, have been made stronger by refining individual crystal grains.
This method reduces the fracture toughness of the material and makes it even more brittle. On the other hand, as a technique for improving fracture toughness, for example, as disclosed in Japanese Patent Publication No. 62-265173, there is a method of compounding and dispersing silicon carbide whiskers in a silicon nitride matrix.

【0003】この方法によれば、破壊の際に進展する亀
裂がウイスカーによってディフレクションしたり、ウイ
スカーの引き抜きや架橋が起こることにより破壊靭性が
向上すると考えられている。しかし、ウイスカー複合に
より破壊靭性は向上するが、逆に、添加したウイスカー
のサイズが1〜10μm のオーダーである上に、その凝集
を機械的に完全に取り除くことは事実上困難であり、こ
れが粗大粒として破壊起点となるため材料強度を低下さ
せる。このような強度低下は、長繊維複合材でもみられ
る。また、ミクロンオ−ダ−の粒子を機械的に混合し、
焼成した粒子分散複合材では、強度、靭性の両面におい
て、分散粒子の複合効果は顕著に発揮されない。
According to this method, it is considered that the crack toughness which develops at the time of fracture is deflected by the whiskers, or the whiskers are pulled out or crosslinked to improve the fracture toughness. However, whisker composite improves fracture toughness, but conversely, the size of the added whiskers is on the order of 1 to 10 μm, and it is practically difficult to completely remove the agglomerates from the whiskers. As a grain, it becomes the starting point of fracture, which reduces the material strength. Such a decrease in strength is also observed in the long fiber composite material. Also, micron-order particles are mechanically mixed,
In the fired particle-dispersed composite material, the composite effect of the dispersed particles is not remarkably exhibited in terms of both strength and toughness.

【0004】[0004]

【発明が解決しようとする課題】以上のように、従来は
窒化珪素系の組織の微細化により強度を向上させると、
破壊靭性が低下し、逆にウイスカーを添加したり窒化珪
素を粒成長させて大きな柱状晶を存在させることにより
破壊靭性を向上させると強度低下を招くため、強度・靭
性を同時に向上させることは極めて困難であった。その
ため、窒化珪素セラミックスにおいて、強度と靭性向上
の両立を図ることが大きな課題であった。
As described above, conventionally, when the strength is improved by refining the structure of the silicon nitride system,
Fracture toughness decreases, and conversely, when whisker is added or silicon nitride is grown to form large columnar crystals to improve the fracture toughness, the strength decreases, so it is extremely difficult to improve strength and toughness at the same time. It was difficult. Therefore, in silicon nitride ceramics, it has been a major issue to achieve both strength and improvement in toughness.

【0005】[0005]

【課題を解決するための手段】本発明は、このような課
題に鑑み、高強度、高靭性な焼結体を得るための微細組
織の制御方法に関するものである。すなわち、非晶質の
窒化珪素と炭素の混合粉末に焼結助剤を加えて圧粉体と
した後、1350〜1700℃で焼成して、炭素を非晶質の窒化
珪素に固溶させ、さらにα型の窒化珪素に結晶化させる
と同時にβ型の結晶相に相転移させた後、1700〜2300℃
で固溶した炭素と窒化珪素の珪素とを反応させてα又は
β型の炭化珪素の結晶を窒化珪素の粒内及び/又は粒界
に析出させることを特徴とする窒化珪素−炭化珪素複合
焼結体の製造方法である。特開平2−160669号に
おいて、窒化ケイ素、炭化ケイ素複合粉末又は混合粉末
を原料とする複合焼結体の製造方法が記載されている。
これに対し、本発明は原料として窒化珪素粉末に炭素粉
末を添加した混合粉末を用い、液相焼結においてβ型の
窒化珪素が粒成長する最終緻密化段階において、窒化珪
素と炭素を固相反応させ、炭化珪素粒子を析出させるこ
とを大きな特徴とする。
In view of the above problems, the present invention relates to a method for controlling a fine structure for obtaining a sintered body having high strength and high toughness. That is, after adding a sintering aid to a mixed powder of amorphous silicon nitride and carbon to obtain a green compact, it is fired at 1350 to 1700 ° C. to make carbon a solid solution in the amorphous silicon nitride, Furthermore, after being crystallized into α-type silicon nitride and simultaneously undergoing a phase transition to a β-type crystal phase, 1700 to 2300 ° C
The silicon nitride-silicon carbide composite calcination, characterized in that the carbon solid-dissolved in the step of reacting with silicon of silicon nitride precipitates α or β type silicon carbide crystals in and / or at grain boundaries of silicon nitride. It is a method for producing a bound body. Japanese Patent Application Laid-Open No. 2-160669 describes a method for producing a composite sintered body using silicon nitride, silicon carbide composite powder or mixed powder as a raw material.
On the other hand, the present invention uses a mixed powder obtained by adding carbon powder to silicon nitride powder as a raw material, and uses silicon nitride and carbon as a solid phase in the final densification step in which β-type silicon nitride grains grow in liquid phase sintering. The major feature is that the reaction is carried out to precipitate silicon carbide particles.

【0006】上記において、出発原料を混合するには例
えばボールミル、アトリッションミル又は超音波混合等
のような従来のセラミックス粉末同士を混合する際に用
いる機械的な混合がある。又、焼成は窒素雰囲気中ホッ
トプレス法又は常圧焼結法によって行うとよい。
In the above, for mixing the starting materials, there is mechanical mixing such as ball mill, attrition mill, ultrasonic mixing, etc., which is used for mixing conventional ceramic powders. The firing may be performed by hot pressing or atmospheric pressure sintering in a nitrogen atmosphere.

【0007】得られる焼結体は、母材である窒化珪素の
結晶粒の平均粒径が、短軸径3μm以下、好ましくは1
μm 以下であり、アスペクト比が20以下、好ましくは10
以下の柱状晶及び/又は1μm 以下の直径の等軸晶から
なるマトリックスの組織を有し、かつ、窒化珪素の結晶
粒内及び/又は粒界に数nm〜数百nmの大きさ炭化珪
素粒子が分散している構造を有する。
In the obtained sintered body, the average grain size of the crystal grains of silicon nitride as the base material is 3 μm or less, preferably 1
μm or less and aspect ratio of 20 or less, preferably 10
Silicon carbide particles having a matrix structure consisting of the following columnar crystals and / or equiaxed crystals having a diameter of 1 μm or less, and having a size of several nm to several hundred nm in the crystal grains of silicon nitride and / or in the grain boundaries. Have a dispersed structure.

【0008】[0008]

【作用】非晶質の窒化珪素と炭素の混合物に焼結助剤を
加えて焼成すると、焼成中に炭化珪素が生成することに
より、得られた焼結体が窒化珪素−炭化珪素複合焼結体
となり、窒化珪素単一焼結体あるいは窒化珪素と炭化珪
素の結晶粉末の機械混合により得られた焼結体に比べて
高強度・高靭性となることを発見した。本発明の最大の
特徴は、非晶質の窒化珪素と炭素を固相反応させること
にある。すなわち、1300〜1700℃の温度域で炭素を非晶
質の窒化珪素の粒内に固溶させ、さらに窒化珪素のα相
への結晶化→β相への転移が起った後、固溶した炭素を
窒化珪素の珪素と反応させ、窒化珪素の粒内及び/又は
粒界に炭化珪素を析出させることにより、従来の複合材
の製造法である窒化珪素の結晶粉末と炭化珪素の結晶粉
末又はウイスカーを機械的に混合・焼成した場合に比べ
て、分散相である炭化珪素をより均一に分散させ、かつ
その粒径をより微粒化し、ナノメーターオーダーの超微
粒子にすることができる。
When a sintering aid is added to a mixture of amorphous silicon nitride and carbon and the mixture is fired, silicon carbide is produced during firing, and the obtained sintered body is a silicon nitride-silicon carbide composite sintered body. It has been discovered that it has higher strength and higher toughness than a single sintered body of silicon nitride or a sintered body obtained by mechanical mixing of silicon nitride and silicon carbide crystal powder. The greatest feature of the present invention resides in that solid-state reaction of amorphous silicon nitride and carbon occurs. That is, carbon is dissolved in the grains of amorphous silicon nitride in the temperature range of 1300 to 1700 ° C, and after the crystallization of silicon nitride to the α phase → the transition to the β phase occurs, the solid solution occurs. By reacting the formed carbon with silicon of silicon nitride to precipitate silicon carbide in the grains of silicon nitride and / or in the grain boundaries of the silicon nitride, which is a conventional method for producing a composite material. Alternatively, as compared with the case where whiskers are mechanically mixed and fired, silicon carbide, which is a dispersed phase, can be more uniformly dispersed, and the particle size thereof can be made finer to form ultrafine particles of nanometer order.

【0009】本発明によれば、窒化珪素の結晶粒内に熱
膨脹係数の大きな炭化珪素粒子(熱膨脹係数:窒化珪素
=3.2×10~6/℃、炭化珪素=4.4×10~6/℃)がナノメ
ーターオーダーで分散することにより、最終焼結温度か
ら室温への冷却時の収縮率の違いにより残留応力が発生
する。この残留応力に誘起されて窒化珪素の結晶粒内に
転位等の格子欠陥が生成する結果、炭化珪素粒子を中心
に亜粒界が形成され、窒化珪素粒子が実質的に分割され
るため、粒径が粗大化しても破壊の際に亀裂先端の応力
集中が起こらず、強度を低下させない。又、窒化珪素粒
内に分散した炭化珪素および粒界の炭化珪素粒子と窒化
珪素粒子とのそれぞれの界面には、ガラス相や不純物相
がなく強度に結合し、その結果、母相である窒化珪素の
粒内および粒界が強化され、外部から加えられた応力に
対して変形しにくく、かつ破面を形成する際の破壊エネ
ルギーが大きい材料となる。その結果、以下に示すグリ
フィスの脆性破壊の式より強度(σ)と靭性(Kic)が同
時に向上する。
According to the present invention, silicon carbide particles having a large coefficient of thermal expansion (coefficient of thermal expansion: silicon nitride = 3.2 × 10 6 / ° C, silicon carbide = 4.4 × 10 6 / ° C) are contained in the crystal grains of silicon nitride. Dispersion on the order of nanometers causes residual stress due to the difference in shrinkage rate during cooling from the final sintering temperature to room temperature. This residual stress induces lattice defects such as dislocations in the silicon nitride crystal grains, and as a result, subgrain boundaries are formed around the silicon carbide particles and the silicon nitride particles are substantially divided. Even if the diameter becomes coarse, stress concentration does not occur at the crack tip at the time of fracture, and the strength is not reduced. Further, there is no glass phase or impurity phase at the respective interfaces of silicon carbide dispersed in the silicon nitride grains and the silicon carbide grains at the grain boundaries and the silicon nitride grains, and as a result, the nitriding which is the parent phase is performed. It becomes a material in which the inside and the grain boundaries of silicon are strengthened, are not easily deformed by the stress applied from the outside, and have large fracture energy when forming a fracture surface. As a result, the strength (σ) and the toughness (Kic) are simultaneously improved from the following formula for the brittle fracture of Griffith.

【0010】[0010]

【数1】 (Equation 1)

【0011】[0011]

【数2】 (Equation 2)

【0012】すなわち、炭化珪素分散粒子による窒化珪
素の粒内および粒界強化により(1)式中のΓおよびEが
増大し、Kicが増加する。さらに、粗大な窒化珪素粒子
が存在しても亜粒界の形成によって粒内が分割・微細化
されて欠陥とならず、(2) 式においてaが増加しないた
めKicの増加に比例してσも増加する。
That is, Γ and E in the equation (1) are increased and Kic is increased due to the strengthening of silicon nitride grains and grain boundaries by the silicon carbide dispersed particles. Furthermore, even if there are coarse silicon nitride particles, the inside of the particles is divided and refined due to the formation of subgrain boundaries, and no defects occur. Since a does not increase in Eq. (2), σ increases in proportion to Kic. Also increases.

【0013】[0013]

【実施例】以下、実施例並びに比較例について説明す
る。
EXAMPLES Examples and comparative examples will be described below.

【0014】実施例1〜6 非晶質の窒化珪素粉末と炭化粉末(アセチレンブラッ
ク)および焼結助剤(5wt%Y23・2wt%Al23
をボールミルで混合し、プレス成形した後、ホットプレ
ス法により焼成した。表1に炭素の添加量、焼結条件、
得られた焼結体中の炭化珪素の含有量および焼結体の3
点曲げ強度と破壊靭性を示す。
[0014] Examples 1-6 amorphous silicon nitride powder and carbon powder (acetylene black) and a sintering aid (5wt% Y 2 O 3 · 2wt% Al 2 O 3)
Were mixed in a ball mill, press-molded, and then fired by a hot press method. Table 1 shows the amount of carbon added, the sintering conditions,
Content of silicon carbide in the obtained sintered body and 3 of the sintered body
Shows point bending strength and fracture toughness.

【0015】[0015]

【表1】 [Table 1]

【0016】比較例1〜6 α相の窒化珪素結晶粉末に焼結助剤(5wt%Y23・2
wt%Al23)を加え、プレス成形した後、ホットプレ
ス法により焼成した(No.1〜3)。又、窒化珪素結晶粉末
に炭素を加えた例についても同様に作製した(No.4〜
6)。表2に添加した炭素量、焼結条件および得られた焼
結体中の炭化珪素の分散量、そして焼結体の3点曲げ強
度と破壊靭性を示す。
[0016] sintering aid in the silicon nitride crystal powder of Comparative Example 1 to 6 alpha phase (5wt% Y 2 O 3 · 2
wt% Al 2 O 3 ) was added and press molding was performed, followed by firing by a hot pressing method (Nos. 1 to 3). In addition, an example in which carbon was added to silicon nitride crystal powder was similarly prepared (No. 4 to
6). Table 2 shows the amount of carbon added, the sintering conditions, the amount of silicon carbide dispersed in the obtained sintered body, and the three-point bending strength and fracture toughness of the sintered body.

【0017】[0017]

【表2】 [Table 2]

【0018】比較例7〜12 α相の窒化珪素結晶粉末にβ相の炭化珪素結晶粉末(平
均粒径0.5 μm )および焼結助剤(5wt%Y23・2wt
%Al23)をボールミル混合し、プレス成形した後、
ホットプレス法により焼成した。表3に炭化珪素の添加
量、焼結条件および得られた焼結体の3点曲げ強度と破
壊靭性を示す。
The silicon carbide crystal powder of Comparative Example 7 to 12 alpha-phase silicon nitride crystal powder β phase (average particle size 0.5 [mu] m) and a sintering aid (5wt% Y 2 O 3 · 2wt
% Al 2 O 3 ) in a ball mill and press-molded,
It was baked by the hot press method. Table 3 shows the amount of silicon carbide added, the sintering conditions, and the three-point bending strength and fracture toughness of the obtained sintered body.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【発明の効果】本発明によれば、強度・破壊靭性ともに
優れた窒化珪素セラミックスを得ることができ、高強度
・高靭性が要求される自動車部品をはじめとする各種構
造用部材への利用が期待できる。
EFFECTS OF THE INVENTION According to the present invention, silicon nitride ceramics having excellent strength and fracture toughness can be obtained and can be used for various structural members such as automobile parts which require high strength and high toughness. Can be expected.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非晶質の窒化珪素と炭素の混合粉末に焼
結助剤を加えて圧粉体とした後、1350〜1700℃で焼成し
て、炭素を非晶質の窒化珪素に固溶させ、さらにα型の
窒化珪素に結晶化させると同時にβ型の結晶相に相転移
させた後、1700〜2300℃で固溶した炭素と窒化珪素の珪
素とを反応させてα又はβ型の炭化珪素の結晶を窒化珪
素の粒内及び/又は粒界に析出させることを特徴とする
窒化珪素−炭化珪素複合焼結体の製造方法。
1. A sintering aid is added to a mixed powder of amorphous silicon nitride and carbon to obtain a green compact, which is then fired at 1350 to 1700 ° C. to solidify carbon into amorphous silicon nitride. After being melted and further crystallized into α-type silicon nitride and at the same time undergoing a phase transition to a β-type crystal phase, the carbon solid-solved at 1700 to 2300 ° C is reacted with silicon nitride silicon to form α or β type. 2. A method for producing a silicon nitride-silicon carbide composite sintered body, which comprises depositing the silicon carbide crystal of claim 1 in a grain of silicon nitride and / or at a grain boundary.
【請求項2】 焼成を窒素雰囲気中ホットプレス法又は
常圧焼結法により行う請求項1記載の窒化珪素−炭化珪
素複合焼結体の製造方法。
2. The method for producing a silicon nitride-silicon carbide composite sintered body according to claim 1, wherein the firing is performed by a hot pressing method or an atmospheric pressure sintering method in a nitrogen atmosphere.
JP3202827A 1991-08-13 1991-08-13 Method for producing silicon nitride-silicon carbide composite sintered body Expired - Lifetime JP2695070B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3202827A JP2695070B2 (en) 1991-08-13 1991-08-13 Method for producing silicon nitride-silicon carbide composite sintered body
PCT/JP1992/001032 WO1993004012A1 (en) 1991-08-13 1992-08-12 Composite silicon nitride sinter and production thereof
US07/956,887 US5352641A (en) 1991-08-13 1992-08-12 Silicon nitride composite sintered body and process for producing same
DE69225304T DE69225304T2 (en) 1991-08-13 1992-08-12 Sintered silicon nitride composite and its manufacture
EP92917816A EP0552381B1 (en) 1991-08-13 1992-08-12 Composite silicon nitride sinter and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3202827A JP2695070B2 (en) 1991-08-13 1991-08-13 Method for producing silicon nitride-silicon carbide composite sintered body

Publications (2)

Publication Number Publication Date
JPH0543324A JPH0543324A (en) 1993-02-23
JP2695070B2 true JP2695070B2 (en) 1997-12-24

Family

ID=16463850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3202827A Expired - Lifetime JP2695070B2 (en) 1991-08-13 1991-08-13 Method for producing silicon nitride-silicon carbide composite sintered body

Country Status (1)

Country Link
JP (1) JP2695070B2 (en)

Also Published As

Publication number Publication date
JPH0543324A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
JP3198662B2 (en) Silicon nitride based sintered body and method for producing the same
US5356842A (en) Composite ceramic powder and production process thereof
EP0552381B1 (en) Composite silicon nitride sinter and production thereof
JPH06219840A (en) Silicon nitride sintered compact and its production
US5759933A (en) Gas pressure sintered silicon nitride having high strength and stress rupture resistance
JP2695070B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2974473B2 (en) Composite ceramics and manufacturing method thereof
JP3297740B2 (en) Low temperature sintering method of silicon carbide powder.
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JPH08225311A (en) Silicon nitride/silicon carbide complex powder, complex molding, their production and production of sintered compact of silicon nitride/silicon carbide complex
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP2726694B2 (en) Conductive silicon carbide sintered body and method for producing the same
JPH01145380A (en) Production of silicon nitride sintered form
JP2652936B2 (en) Silicon nitride sintered body and method for producing the same
JPH0559073B2 (en)
JPH05178668A (en) Silicon nitride-titanium nitride composite sintered body and its production
JPH05186270A (en) Production of silicon nitride-silicon carbide composite sintered material
JPH0669905B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP2793635B2 (en) Silicon nitride powder composition
JPH0543325A (en) Silicon nitride based composite sintered compact
JP2681843B2 (en) Manufacturing method of β-type silicon nitride whiskers
JPH07109172A (en) Sic sintered body and production thereof
JPH0513106B2 (en)
JPH06172036A (en) Production of silicon nitride powder
JPH09169575A (en) Silicon nitride-base composite material and production thereof