JP2793635B2 - Silicon nitride powder composition - Google Patents

Silicon nitride powder composition

Info

Publication number
JP2793635B2
JP2793635B2 JP1132259A JP13225989A JP2793635B2 JP 2793635 B2 JP2793635 B2 JP 2793635B2 JP 1132259 A JP1132259 A JP 1132259A JP 13225989 A JP13225989 A JP 13225989A JP 2793635 B2 JP2793635 B2 JP 2793635B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
sintered body
powder composition
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1132259A
Other languages
Japanese (ja)
Other versions
JPH02311366A (en
Inventor
秀樹 広津留
征彦 中島
美幸 中村
紘一 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP1132259A priority Critical patent/JP2793635B2/en
Publication of JPH02311366A publication Critical patent/JPH02311366A/en
Application granted granted Critical
Publication of JP2793635B2 publication Critical patent/JP2793635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高靭性且つ高温における曲げ強度が高い焼
結体を製造することができる窒化ケイ素粉末組成物に関
する。窒化ケイ素は、高温構造材料としてガスタービン
部材、ノズル、軸受等に利用されている。
Description: TECHNICAL FIELD The present invention relates to a silicon nitride powder composition capable of producing a sintered body having high toughness and high bending strength at high temperatures. Silicon nitride is used as a high-temperature structural material in gas turbine members, nozzles, bearings, and the like.

〔従来の技術〕[Conventional technology]

従来、窒化ケイ素粉末の製造方法としては、(1)金
属ケイ素直接窒化法、(2)シリカ還元窒化法、(3)
ハロゲン化ケイ素法が知られている。これらの方法でつ
くられる粉末は、製造履歴が異なるためか金属不純物量
や酸素量あるいは粒径、比表面積が同程度であつても、
粉末の焼結性や焼結後の焼結体の特性、例えば曲げ強
度、破壊靭性値に大きな違いがある。
Conventionally, methods for producing silicon nitride powder include (1) metal silicon direct nitriding, (2) silica reduction nitriding, and (3)
The silicon halide method is known. Powder produced by these methods, even if the production history is different or the amount of metal impurities, the amount of oxygen or the particle size, and the specific surface area are almost the same,
There is a great difference in the sinterability of the powder and the characteristics of the sintered body after sintering, for example, the bending strength and the fracture toughness value.

一般には、(1)の方法で製造された粉は、易焼結性
であるが高温曲げ強度が低い、(2)の方法の粉末は、
難焼結性であるが高温曲げ強度が高い、(3)の方法の
粉末は、中間的な性能を示すといわれている。
Generally, the powder produced by the method (1) is easily sinterable but has a low high-temperature bending strength.
It is said that the powder of the method (3), which is difficult to sinter but has high high-temperature bending strength, exhibits intermediate performance.

酸素量については、(1)の方法の粉末は、粉砕工程
を経るため通常全酸素量が2重量%を超える場合が多
く、少なくても1.5重量%はある。(1)の方法で不純
物除去のために酸処理等の工程を通すと全酸素量は低減
するがそれでも1.0重量%未満にすることは難しい。一
方、(2)の方法の粉末でも、原料としてシリカ粉末を
用いるためにシリカの残留があり、全酸素量は2重量%
を超えるのが普通である。
Regarding the oxygen content, the powder of the method (1) generally undergoes a pulverizing step, so that the total oxygen content usually exceeds 2% by weight, and at least 1.5% by weight. When a process such as acid treatment is performed to remove impurities in the method (1), the total amount of oxygen is reduced, but it is still difficult to reduce the amount to less than 1.0% by weight. On the other hand, even in the powder of the method (2), since silica powder is used as a raw material, silica remains and the total oxygen content is 2% by weight.
It is common to exceed.

以上の粉末が現在入手可能なものである。当然のこと
ながら、粉末の焼結性及び焼結体特性には、粉体酸素量
の影響があるのはもちろんであるが、その他に比表面
積、結晶性、粒子形状、粒度(微粉)等様々の粉体特性
がからみあつており、前記各製法の粉末特性が焼結体特
性にどのように関係しているかはほとんどわかつていな
いのが現状である。
These powders are currently available. Naturally, the sinterability and the characteristics of the sintered body of the powder are affected not only by the amount of oxygen in the powder, but also by various other factors such as specific surface area, crystallinity, particle shape, and particle size (fine powder). At present, it is hardly known how the powder characteristics of each of the above-mentioned production methods relate to the characteristics of the sintered body.

また、焼結体の靭性と高温強度については、一般に靭
性を高くすると高温強度が低下し、高温強度を高くする
と靭性が低下する。現在までに窒化ケイ素で高靭性且つ
高温強度の高い焼結体は得られていない。靭性強化につ
いては、炭化ケイ素ウイスカー等を添加するウイスカー
強化、分散粒子を添加する粒子分散強化等が知られてい
る。例えば、特開昭64−33076号公報では、窒化ケイ素
に熱膨張率の異なるSiC等のセラミツクウイスカーを混
入し、焼結体に於ける靭性を向上させている。しかし、
ウイスカー強化の場合、分散性、配向等の問題があり、
大型形状の焼結体を製造するのが難しいし、またコスト
的にも非常に高価であり、しかもSiCウイスカーについ
ては近年発ガン性等の問題が指摘されている。
As for the toughness and high-temperature strength of the sintered body, generally, the higher the toughness, the lower the high-temperature strength, and the higher the high-temperature strength, the lower the toughness. Until now, a sintered body of silicon nitride having high toughness and high-temperature strength has not been obtained. As to toughness enhancement, whisker enhancement by adding silicon carbide whiskers and the like, particle dispersion enhancement by adding dispersed particles, and the like are known. For example, in JP-A-64-33076, ceramic whiskers such as SiC having different coefficients of thermal expansion are mixed into silicon nitride to improve the toughness of the sintered body. But,
In the case of whisker reinforcement, there are problems such as dispersibility and orientation,
It is difficult to produce a large-sized sintered body, and it is very expensive in terms of cost. In addition, in recent years, problems such as carcinogenicity have been pointed out for SiC whiskers.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

窒化ケイ素焼結体の高温強度と破壊靭性は相反する部
分があり、双方が共に優れている焼結体を得ることは非
常にむずかしい。
The high-temperature strength and the fracture toughness of silicon nitride sintered bodies have contradictory parts, and it is very difficult to obtain a sintered body in which both are excellent.

本発明の目的は、前記課題を解決した窒化ケイ素焼結
体を製造するに好適な窒化ケイ素粉末を提供することに
あり、且つ同粉末を金属ケイ素直接窒化法にて製造する
ことにより、他の製法、例えばハロゲン化ケイ素法によ
る粉末等に比べ安価に提供することにある。
An object of the present invention is to provide a silicon nitride powder suitable for producing a silicon nitride sintered body that has solved the above-mentioned problems, and by producing the same powder by a metal silicon direct nitridation method, An object of the present invention is to provide an inexpensive method as compared with a powder produced by a production method such as a silicon halide method.

〔課題を解決するための手段〕[Means for solving the problem]

すなわち、本発明は、金属ケイ素粉末を原料として得
られた酸素含有量0.6重量%以下、平均粒径0.3〜0.8μ
mの粉末であつて、主成分窒化ケイ素と、Cr3C2,Cr2N,T
iB2,TiN,NbB2及びTaNの中から選ばれた1種又は2種以
上の成分とからなることを特徴とする窒化ケイ素粉末組
成物である。
That is, the present invention provides an oxygen content obtained from metal silicon powder as a raw material of 0.6% by weight or less and an average particle size of 0.3 to 0.8 μm.
m powder, consisting mainly of silicon nitride and Cr 3 C 2 , Cr 2 N, T
A silicon nitride powder composition comprising one or more components selected from iB 2 , TiN, NbB 2 and TaN.

以下、さらに詳しく本発明について説明する。 Hereinafter, the present invention will be described in more detail.

本発明における窒化ケイ素粉末組成物中の酸素量は0.
6重量%以下である。酸素量が0.6重量%を超えると、焼
結の際に生じるα→β転移が低温側より起こりやすくな
り、さらには焼結助剤が形成する粒界相の量が多くなる
ので窒化ケイ素の溶解性が大きくなる。その結果、β核
の数が多くなり、充分に成長したアスペクト比の高いβ
柱状晶を得ることが困難となり、高温強度及び靭性の優
れた焼結体を得ることができなくなる。
The oxygen content in the silicon nitride powder composition of the present invention is 0.
6% by weight or less. If the oxygen content exceeds 0.6% by weight, the α → β transition that occurs during sintering is more likely to occur at low temperatures, and the amount of the grain boundary phase formed by the sintering aid increases. The nature increases. As a result, the number of β nuclei increases, and β
It becomes difficult to obtain columnar crystals, and it becomes impossible to obtain a sintered body having excellent high-temperature strength and toughness.

平均粒径は、特に常圧焼結を採用する場合に非常に重
要であり、一般的には、小さいことが好ましいといわれ
ている。本発明の窒化ケイ素粉末組成物の平均粒径は、
0.3〜0.8μmの範囲である。0.8μmを超えると、焼結
助剤例えば酸化イツトリウム、酸化アルミニウム、酸化
マグネシウム等と窒化ケイ素粉末組成物中に含まれる酸
素との反応により生じる複合酸化物への窒化ケイ素の溶
解度の低下が起こり充分に緻密化しなくなる。一方、0.
3μm未満であると焼結助剤が形成する粒界相への窒化
ケイ素の溶解度が大きくなり、その結果、β核の数が多
くなつて充分に成長したアスペクト比の高いβ柱状晶を
得ることができなくなる。
The average particle size is very important especially when normal-pressure sintering is employed, and it is generally said that it is preferable that the average particle size be small. The average particle size of the silicon nitride powder composition of the present invention,
It is in the range of 0.3 to 0.8 μm. If it exceeds 0.8 μm, the solubility of silicon nitride in the composite oxide caused by the reaction of sintering aids such as yttrium oxide, aluminum oxide, magnesium oxide, etc. with oxygen contained in the silicon nitride powder composition will decrease, and this will be sufficient. Will not be dense. On the other hand, 0.
If the thickness is less than 3 μm, the solubility of silicon nitride in the grain boundary phase formed by the sintering aid increases, and as a result, the number of β nuclei increases and a sufficiently grown β columnar crystal with a high aspect ratio can be obtained. Can not be done.

一般に、窒化ケイ素中の酸素量が少なくなると、一般
的な焼結助剤Y2O3,Al2O3系では、S.H.ハンプシヤ及びK.
H.ジヤツク〔S.H.Hampshire,K.H.Jack、プロシーデイン
グス オブ ブリテイツシユ セラミツク ソサイエテ
イ(Proc.Brit.Ceram.Soc.)第31巻、第37〜49頁(198
1)〕らが述べているように、液相量が十分に得られな
いため、焼結しずらくなる。すなわち、相境界反応律速
となり、一般には拡散を速める効果のある焼結助剤例え
ばMgOを添加して焼結する。その場合、焼結性は改善さ
れるが、前述したようなアスペクト比の高いβ柱状晶に
問題が残る。
In general, the amount of oxygen in the silicon nitride is reduced, in a typical sintering aid Y 2 O 3, Al 2 O 3 system, SH Hanpushiya and K.
H. Jacques, SHHampshire, KHJack, Proc. Of Brit. Ceram. Soc., Vol. 31, pp. 37-49 (198
1)] As described above, sintering becomes difficult because a sufficient amount of liquid phase cannot be obtained. In other words, sintering is performed by adding a sintering aid such as MgO, which has a phase boundary reaction rate-determining effect and generally has an effect of accelerating diffusion. In this case, the sinterability is improved, but the β columnar crystal having a high aspect ratio as described above still has a problem.

これに対し、本発明では、窒化ケイ素とCr3C2,Cr2N,T
iB2,TiN,NbB2及びTaNの中から選ばれた1種又は2種以
上の成分(以下副成分という)を合成時に複合させるこ
とにより、前述の低酸素量の組成物であるにもかかわら
ず、一般的な焼結助剤Y2O3,Al2O3系においても充分に緻
密化させることができるものである。すなわち、窒化ケ
イ素粉末組成物中の副成分が、焼結時に、添加した焼結
助剤が形成する粒界相に溶解し、粒界相の組成を変化さ
せ窒化ケイ素の粒界相への溶解度を大きくし、緻密化を
促進するものである。また、このような粒界相は、同時
に窒化ケイ素の焼結にともなうα→β転移を高温側に遅
らせるので、その結果、焼結体中に発達したアスペクト
比の大きいβ柱状晶が生成され、焼結体特性における高
温強度及び靭性を向上させることができる。なお、窒化
ケイ素100重量部に対する副成分の割合は、1〜10重量
部が好ましい。
In contrast, in the present invention, silicon nitride and Cr 3 C 2 , Cr 2 N, T
By combining at the time of synthesis one or more components selected from iB 2 , TiN, NbB 2 and TaN (hereinafter referred to as “subcomponents”), the composition has a low oxygen content. Instead, it can be sufficiently densified even in a general sintering aid Y 2 O 3 or Al 2 O 3 system. That is, the auxiliary component in the silicon nitride powder composition dissolves in the grain boundary phase formed by the added sintering aid during sintering, changes the composition of the grain boundary phase, and dissolves the silicon nitride in the grain boundary phase. And promotes densification. In addition, such a grain boundary phase simultaneously delays the α → β transition accompanying sintering of silicon nitride to a high temperature side, and as a result, β columnar crystals having a large aspect ratio developed in the sintered body are generated, High temperature strength and toughness in the properties of the sintered body can be improved. The proportion of the subcomponent with respect to 100 parts by weight of silicon nitride is preferably 1 to 10 parts by weight.

本発明の窒化ケイ素粉末組成物を製造するには、金属
ケイ素粉末と副成分の粉末をボールミル、V型混合器等
で混合し、0.8g/cm3程度のカサ密度に成形した後、窒
素、アンモニア、水素等の雰囲気中1300〜1450℃程度の
温度で窒化を行いインゴツトを合成する。得られたイン
ゴツトは、常法により、例えば、粗砕・中砕後、ボール
ミル、振動ミル、ジエツトミル、アトライターミル等で
湿式又は乾式粉砕し窒化ケイ素粉末組成物を得る。粉末
の粒度としては前述した少なくとも平均粒径を十分に留
意し、粉砕機を含め、適切な条件で処理する。
To manufacture the silicon nitride powder composition of the present invention, after the powder of the metallic silicon powder and subcomponents were mixed ball mill, a V-type mixer or the like, and formed into bulk density of about 0.8 g / cm 3, a nitrogen, Nitriding is performed in an atmosphere of ammonia, hydrogen, or the like at a temperature of about 1300 to 1450 ° C. to synthesize an ingot. The obtained ingot is subjected to a conventional method, for example, coarse or medium crushing, and then wet or dry crushed with a ball mill, a vibration mill, a jet mill, an attritor mill or the like to obtain a silicon nitride powder composition. As for the particle size of the powder, the above-mentioned average particle size should be taken into consideration, and the powder should be treated under appropriate conditions including a pulverizer.

本発明の窒化ケイ素粉末組成物を用いる大きな特徴
は、α→β転移で生成するアスペクト比の大きいβ柱状
晶が数多く見られることである。すなわち、β柱状晶の
大きさは不均質であるが、その不均質が例えば数十μm
単位の領域で均質であり、且つ、その組織が高温強度発
現に重要な役割をなしていることである。
A major feature of the use of the silicon nitride powder composition of the present invention is that a large number of β columnar crystals having a large aspect ratio generated by the α → β transition are observed. That is, the size of the β columnar crystal is heterogeneous, but the heterogeneity is, for example, several tens μm.
It is homogeneous in the unit area, and its structure plays an important role in the development of high-temperature strength.

一般に、高温強度発見は粒界相の強化、例えば高融点
粒界相を合成できるような焼結助剤の選択や、ガラス質
の結晶化等が主に研究され、その大半が焼結側からのア
プローチであつた。そこで、本発明者らは、粉体側のア
プローチ、例えば、酸素の異つた粉体、比表面積の異な
つた粉体、結晶化度の異つた粉体等から焼結助剤一定下
で種々実験した結果、金属ケイ素直接窒化法において、
金属ケイ素粉末に副成分を添加して窒化することにより
粒界相の組成を変化させ、焼結体中のβ柱状晶の太さ、
アスペクト比を制御すると共にβ柱状晶における稜線の
はつきりしたβ柱状晶、言い換えれば、結晶性の高いβ
柱状晶を析出させ且つ、粒界相自体を強化することによ
り焼結体の高靭性化を達成したものである。さらに述べ
れば、(30μm)×(25μm)焼結体の視野中におい
て、アスペクト比が大きいと思われる5本のβ柱状晶の
平均アスペクト比が10以上あれば高温強度が単位密度当
り250MPa以上発現できることを本発明により見出したも
のであり、これは理論密度に近い値に焼結できれば、温
度1200℃の強度において、700MPa以上の発現は十分に可
能となるものである。
In general, the discovery of high-temperature strength mainly focuses on strengthening the grain boundary phase, for example, selecting a sintering aid capable of synthesizing a high-melting grain boundary phase, crystallization of vitreous, etc. Was the approach. Therefore, the present inventors have conducted various experiments on powder side approaches, for example, from powders having different oxygen, powders having different specific surface areas, powders having different crystallinity, etc. under a constant sintering aid. As a result, in the metal silicon direct nitriding method,
The composition of the grain boundary phase is changed by adding a secondary component to the metal silicon powder and nitriding, and the thickness of the β columnar crystal in the sintered body,
The aspect ratio is controlled and the ridgeline of the β columnar crystal is sharp β columnar crystal, in other words, β crystal with high crystallinity
The toughness of the sintered body is achieved by precipitating columnar crystals and strengthening the grain boundary phase itself. More specifically, in the field of view of the (30 μm) × (25 μm) sintered body, if the average aspect ratio of the five β columnar crystals, which are considered to have a large aspect ratio, is 10 or more, the high-temperature strength develops 250 MPa or more per unit density. The present invention has been found to be possible, and if it can be sintered to a value close to the theoretical density, expression of 700 MPa or more at a temperature of 1200 ° C. is sufficiently possible.

〔実施例〕〔Example〕

以下、実施例と比較例をあげて更に具体的に本発明を
説明するが、本発明は、これに限定されない。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例1〜10、比較例1〜5 金属ケイ素粉末(純度99.98重量%)100重量部に対し
第1表に示すような副成分(市販品)を添加混合し、そ
の混合粉末0.5kgを、150×150×20t(mm)形状に成形し
た後、窒素及びアンモニアからなる混合雰囲気中1300〜
1450℃で窒化を行つた。得られたインゴツトを粗砕、中
砕、湿式粉砕及び酸処理を行つて、窒化ケイ素粉末組成
物とした。その粉体特性を第1表に示す。
Examples 1 to 10 and Comparative Examples 1 to 5 100 parts by weight of metal silicon powder (purity: 99.98% by weight) were mixed with an auxiliary component (commercially available) as shown in Table 1, and 0.5 kg of the mixed powder was added to the mixture. After molding into a 150 x 150 x 20t (mm) shape, the mixed atmosphere consisting of nitrogen and ammonia
Nitriding was performed at 1450 ° C. The obtained ingot was subjected to coarse pulverization, medium pulverization, wet pulverization and acid treatment to obtain a silicon nitride powder composition. The powder properties are shown in Table 1.

次に、この窒化ケイ素粉末組成物に焼結助剤として平
均粒径1.5μmのY2O35重量部と平均粒径0.8μmのAl2O3
2重量部を添加し、1,1,1−トリクロロエタンを加え4時
間ボールミルで湿式混合し、乾燥後100kg/cm2の成形圧
で6×10×60mm形状に金型成形し、、それを2700kg/cm2
の成形圧でCIP成形した。これらの成形体をカーボンル
ツボにセツトし、N2ガス雰囲気中1800℃の温度で4時間
焼成した焼結体を得た。得られた焼結体は、研削後、相
対密度、破壊靭性値(KIC)、室温(σRT)及び1200℃
(σ1200)における3点曲げ強度を測定した。その結果
を第1表に示す。
Next, 5 parts by weight of Y 2 O 3 having an average particle size of 1.5 μm and Al 2 O 3 having an average particle size of 0.8 μm were added to the silicon nitride powder composition as a sintering aid.
Was added 2 parts by weight, 1,1,1-trichloroethane was wet-mixed in a 4-hour ball mill added, at a molding pressure of dried 100kg / cm 2 6 × 10 × 60mm shape and molding ,, 2700 kg it / cm 2
CIP molding at a molding pressure of These compacts were set in a carbon crucible and fired at 1800 ° C. for 4 hours in an N 2 gas atmosphere to obtain a sintered body. After grinding, the obtained sintered body was subjected to relative density, fracture toughness (K IC ), room temperature (σ RT ) and 1200 ° C.
The three-point bending strength at (σ1200) was measured. Table 1 shows the results.

得られた焼結体をSEM観察したところ、実施例1〜10
については、成長したアスペクト比の大きいβ柱状晶を
呈する組織であつた。その1例として実施例1、比較例
1のSEM写真をそれぞれ第1図及び第2図に示した。
When the obtained sintered body was observed by SEM, Examples 1 to 10
Was a structure showing a grown β columnar crystal having a large aspect ratio. FIG. 1 and FIG. 2 show SEM photographs of Example 1 and Comparative Example 1 as one example.

なお、第1表に示した測定値は次の方法によつた。 The measured values shown in Table 1 were obtained by the following method.

(1) 酸素(重量%):LECO社製TC−136型O/N同時分
析計による。
(1) Oxygen (% by weight): Using a TC-136 O / N simultaneous analyzer manufactured by LECO.

(2) 比表面積(m2/g):湯浅アイオニクス社製カン
ターソーブJr.BET1点法による。
(2) Specific surface area (m 2 / g): determined by a one-point method of Cantersorb Jr. BET manufactured by Yuasa Ionics.

(3) 平均粒径(μm):掘場製作所社製CAPA−700
による。
(3) Average particle size (μm): CAPA-700 manufactured by Dig Seisakusho
by.

(4) 相対密度(%):アルキメデス法による。(4) Relative density (%): by Archimedes' method.

(5) 3点曲げ強度(MPa):島津製作所社製オート
グラフAG−2000Aによる。
(5) Three-point flexural strength (MPa): Autograph AG-2000A manufactured by Shimadzu Corporation.

(6) 破壊靭性値(MPa・m1/2):IM法による。(6) Fracture toughness (MPa · m 1/2 ): According to IM method.

〔発明の効果〕〔The invention's effect〕

本発明の窒化ケイ素粉末組成物は、低酸素で且つ焼結
性に優れており、高温強度及び靭性の優れた焼結体を得
ることができる。
The silicon nitride powder composition of the present invention is low in oxygen and excellent in sinterability, and can obtain a sintered body excellent in high-temperature strength and toughness.

これは、窒化ケイ素粉末組成物中のCr3C2,Cr2N,TiB2,
TiN,NbB2及びTaNの副成分が粒界相に作用し、窒化ケイ
素のβ柱状晶の発生とその成長を制御した結果によるも
のである。
This is because Cr 3 C 2 , Cr 2 N, TiB 2 ,
TiN, acts subcomponents NbB 2 and TaN are in the grain boundary phase is a result of controlling the generation and Growth of β columnar crystals of silicon nitride.

【図面の簡単な説明】[Brief description of the drawings]

第1図と第2図は、それぞれ実施例1と比較例1で得ら
れた窒化ケイ素焼結体の粒子構造の組織を示す5000倍の
SEM写真である。
FIGS. 1 and 2 show the structures of the particle structures of the silicon nitride sintered bodies obtained in Example 1 and Comparative Example 1, respectively.
It is a SEM photograph.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−185865(JP,A) 特開 昭62−235260(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/584 - 35/587 C01B 21/068────────────────────────────────────────────────── (5) References JP-A-63-185865 (JP, A) JP-A-62-235260 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 35/584-35/587 C01B 21/068

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属ケイ素粉末を原料として得られた酸素
含有量0.6重量%以下、平均粒径0.3〜0.8μmの粉末で
あつて、主成分窒化ケイ素と、Cr3C2,Cr2N,TiB2,TiN,Nb
B2及びTaNの中から選ばれた1種又は2種以上の成分と
からなることを特徴とする窒化ケイ素粉末組成物。
1. A powder having an oxygen content of 0.6% by weight or less and an average particle diameter of 0.3 to 0.8 μm obtained from a metal silicon powder as a raw material, comprising silicon nitride as a main component, Cr 3 C 2 , Cr 2 N, TiB 2 , TiN, Nb
B 2 and one or more silicon nitride powder composition characterized by comprising a component selected from among TaN.
JP1132259A 1989-05-25 1989-05-25 Silicon nitride powder composition Expired - Fee Related JP2793635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1132259A JP2793635B2 (en) 1989-05-25 1989-05-25 Silicon nitride powder composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1132259A JP2793635B2 (en) 1989-05-25 1989-05-25 Silicon nitride powder composition

Publications (2)

Publication Number Publication Date
JPH02311366A JPH02311366A (en) 1990-12-26
JP2793635B2 true JP2793635B2 (en) 1998-09-03

Family

ID=15077095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1132259A Expired - Fee Related JP2793635B2 (en) 1989-05-25 1989-05-25 Silicon nitride powder composition

Country Status (1)

Country Link
JP (1) JP2793635B2 (en)

Also Published As

Publication number Publication date
JPH02311366A (en) 1990-12-26

Similar Documents

Publication Publication Date Title
JPH06100370A (en) Silicon nitride sintered compact and its production
JPS6256104B2 (en)
US5312788A (en) High toughness, high strength sintered silicon nitride
US5352641A (en) Silicon nitride composite sintered body and process for producing same
JP2615437B2 (en) High strength and high toughness silicon nitride sintered body and method for producing the same
JP4325824B2 (en) Method for producing high thermal conductivity silicon nitride sintered body
JPH06219840A (en) Silicon nitride sintered compact and its production
JP2793635B2 (en) Silicon nitride powder composition
JPH09208328A (en) Porous silicon nitride-based ceramics having high strength and low thermal conductivity and its production
JPH0797266A (en) Silicon nitride-based sintered material and its production
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
JP2766445B2 (en) Sialon composite sintered body and method for producing the same
Akarsu et al. Comparative Study of Reactive and Non-reactive Spark Plasma Sintering Routes for The Production of TaB2-TaC Composites
JP3297740B2 (en) Low temperature sintering method of silicon carbide powder.
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
Cheng et al. Boron nitride–aluminum nitride ceramic composites fabricated by transient plastic phase processing
JP3979680B2 (en) Silicon nitride powder for silicon nitride sintered body, silicon nitride sintered body and method for producing the same
JP3653533B2 (en) Silicon nitride composite material and method for producing the same
JP2661743B2 (en) Method for producing silicon nitride ingot and silicon nitride powder
JPH01145380A (en) Production of silicon nitride sintered form
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPS6344713B2 (en)
Cruse Controlled densification of mullite for composite applications.
JP2506519B2 (en) Low-temperature low-pressure sintered silicon nitride sintered body manufacturing method
JP2695070B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees