JPH08225311A - Silicon nitride/silicon carbide complex powder, complex molding, their production and production of sintered compact of silicon nitride/silicon carbide complex - Google Patents

Silicon nitride/silicon carbide complex powder, complex molding, their production and production of sintered compact of silicon nitride/silicon carbide complex

Info

Publication number
JPH08225311A
JPH08225311A JP7319737A JP31973795A JPH08225311A JP H08225311 A JPH08225311 A JP H08225311A JP 7319737 A JP7319737 A JP 7319737A JP 31973795 A JP31973795 A JP 31973795A JP H08225311 A JPH08225311 A JP H08225311A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
silicon
silicon carbide
carbide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7319737A
Other languages
Japanese (ja)
Other versions
JP2649220B2 (en
Inventor
Kazumi Miyake
一實 三宅
Yoshikatsu Higuchi
義勝 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP7319737A priority Critical patent/JP2649220B2/en
Priority to US08/625,043 priority patent/US5767025A/en
Publication of JPH08225311A publication Critical patent/JPH08225311A/en
Application granted granted Critical
Publication of JP2649220B2 publication Critical patent/JP2649220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain silicon nitride/silicon carbide complex powder having excellent sintering properties, capable of forming a high-strength sintered compact. CONSTITUTION: This silicon nitride/silicon carbide complex powder is obtained by blending silicon powder with carbonaceous powder and a sintering auxiliary, heat-treating the prepared mixed powder under a nitrogen gas-containing atmosphere and causing nitrogenation and carbonization of silicon and has >=30% αtype silicon nitride content based on the whole silicon nitride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は窒化珪素/炭化珪素
複合粉末及び複合成形体並びにそれらの製造方法及び窒
化珪素/炭化珪素複合焼結体の製造方法に関し、特に優
れた強度、硬度、靱性、耐熱衝撃性、耐摩耗性等を有す
る窒化珪素/炭化珪素ナノコンポジットを製造するのに
適する複合粉末、複合成形体並びにそれらの製造方法及
び複合焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride / silicon carbide composite powder and a composite molded body, a method for producing the same, and a method for producing a silicon nitride / silicon carbide composite sintered body. The present invention relates to a composite powder suitable for producing a silicon nitride / silicon carbide nanocomposite having thermal shock resistance, abrasion resistance and the like, a composite molded body, a method for producing them, and a method for producing a composite sintered body.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】窒化珪
素系セラミックス焼結体は、高強度、高耐熱性、高耐熱
衝撃性、高耐摩耗性などの点から、高温での使用条件が
苛酷な構造用セラミックスとしての利用が期待されてい
る。また、その物性を向上する目的で、種々の成分が添
加されている。中でも、炭化珪素は良好な耐酸化性、高
温強度及び機械的強度を発揮し得るセラミックス成分で
あり、窒化珪素に炭化珪素を配合したセラミックス焼結
体が提案されている。しかし、単に窒化珪素粉末と炭化
珪素粉末とを混合して得た焼結体では、ナノコンポジッ
ト構造を有することがなく、炭化珪素粉末(ミクロンオ
ーダの大きさ)は窒化珪素の粒界に存在するにとどま
る。そのため、窒化珪素中に炭化珪素が微細に分散した
ナノコンポジット構造を有する焼結体を得るために、種
々の方法が提案されている。
2. Description of the Related Art Silicon nitride ceramics sintered bodies have severe operating conditions at high temperatures because of their high strength, high heat resistance, high thermal shock resistance, and high wear resistance. It is expected to be used as various structural ceramics. Also, various components are added for the purpose of improving the physical properties. Among them, silicon carbide is a ceramic component capable of exhibiting good oxidation resistance, high-temperature strength, and mechanical strength, and a ceramic sintered body in which silicon nitride is mixed with silicon carbide has been proposed. However, a sintered body obtained by simply mixing a silicon nitride powder and a silicon carbide powder does not have a nanocomposite structure, and the silicon carbide powder (on the order of microns) exists at a grain boundary of silicon nitride. Stay in. Therefore, various methods have been proposed in order to obtain a sintered body having a nanocomposite structure in which silicon carbide is finely dispersed in silicon nitride.

【0003】特開平2-160669号は、平均粒径1μm以下
の炭化珪素が粒界に分散し、かつ数ナノメータから数百
ナノメータの大きさの炭化珪素の微細粒子が窒化珪素粒
子内に分散した微細構造を有する窒化珪素−炭化珪素複
合焼結体を開示している。この複合焼結体は、液相焼結
系において平均粒径が0.5 μm以下の微細な炭化珪素を
生成する非晶質窒化珪素−炭化珪素複合粉末又は窒化珪
素−炭化珪素混合粉末を使用し、焼結助剤の存在下で15
00〜2300℃の温度で焼結することにより製造される。し
かし、非晶質窒化珪素−炭化珪素複合粉末は、有機珪素
化合物の気相反応法により得られるもので、非常にコス
ト高であり、かつ量産性に劣る。また、非晶質粉末は成
形性に劣るという問題がある。また、窒化珪素−炭化珪
素混合粉末として具体的に開示されているものは、上記
と同様な処方により得られた非晶質窒化珪素粉末と炭化
珪素粉末との混合粉末であり、やはり同じ問題がある。
さらに、開示されているものはすべて成形の必要がない
ホットプレスによる焼成である。
In Japanese Patent Laid-Open No. 2-160669, silicon carbide having an average particle size of 1 μm or less is dispersed in grain boundaries, and fine particles of silicon carbide having a size of several nanometers to several hundreds of nanometers are dispersed in silicon nitride particles. Disclosed is a silicon nitride-silicon carbide composite sintered body having a fine structure. This composite sintered body uses amorphous silicon nitride-silicon carbide composite powder or silicon nitride-silicon carbide mixed powder that produces fine silicon carbide having an average particle size of 0.5 μm or less in a liquid phase sintering system. 15 in the presence of sintering aid
It is manufactured by sintering at a temperature of 00-2300 ° C. However, the amorphous silicon nitride-silicon carbide composite powder is obtained by a vapor phase reaction method of an organic silicon compound, is very expensive, and is inferior in mass productivity. Further, there is a problem that the amorphous powder is inferior in moldability. Further, what is specifically disclosed as a silicon nitride-silicon carbide mixed powder is a mixed powder of an amorphous silicon nitride powder and a silicon carbide powder obtained by the same formulation as above, and the same problem still occurs. is there.
In addition, all that is disclosed is firing by hot pressing which does not require molding.

【0004】また特開平3-261611号は、窒化珪素/炭化
珪素複合焼結体を製造するための窒化珪素複合粉末を製
造する方法であって、金属珪素粉末と炭素質粉末とを混
合し、得られた混合物を窒素含有不活性ガス雰囲気中、
1400℃以下の温度で加熱して、金属珪素粉末の炭化反応
と窒化反応とを同時に行うことを特徴とする方法を開示
している。しかし、この複合粉末は出発材料中に焼結助
剤を含まないため、熱処理により生成する窒化珪素はβ
型になりやすく、複合粉末中のα型窒化珪素含有率を高
めるのが困難であった。また、β型の窒化珪素は針状に
粒成長するので、得られる粉末は粒径が大きく、粉砕も
困難であった。窒化珪素原料粉末には焼結性向上の観点
から、α型窒化珪素含有率が高く微粒子であることが求
められるが、開示されている方法ではこれらの条件を満
たすことができず、焼結性に劣るという問題がある。
Japanese Patent Application Laid-Open No. Hei 3-261611 discloses a method for producing a silicon nitride composite powder for producing a silicon nitride / silicon carbide composite sintered body, comprising mixing a metal silicon powder and a carbonaceous powder, The resulting mixture in a nitrogen-containing inert gas atmosphere,
Disclosed is a method characterized in that the carbonization reaction and the nitridation reaction of the metal silicon powder are simultaneously performed by heating at a temperature of 1400 ° C. or lower. However, since this composite powder does not contain a sintering aid in the starting material, the silicon nitride generated by the heat treatment has β
It was difficult to form a mold, and it was difficult to increase the α-type silicon nitride content in the composite powder. In addition, since the β-type silicon nitride grows in a needle-like shape, the resulting powder has a large particle size and is difficult to pulverize. From the viewpoint of improving the sinterability, the silicon nitride raw material powder is required to have a high α-type silicon nitride content and to be fine particles. However, the disclosed method cannot satisfy these conditions, and the sinterability is There is a problem that it is inferior to.

【0005】なお、β型窒化珪素原料粉末を焼成して高
い特性を持つ焼結体を得る方法が報告されているが(F
Cレポート、1994(5) 、pp.130〜133 )、この方法では
β型窒化珪素粉末の粒度分布の制御を行い、微細粉末化
かつ均一な粒径とすることが必要であり、またガス圧焼
結法による高温焼成が必要であることから、工程が複雑
になることが予想される。またこの報告からβ型窒化珪
素粉末が焼結性の低い粉末であることが確認された。
A method for firing a β-type silicon nitride raw material powder to obtain a sintered body having high characteristics has been reported (F
C report, 1994 (5), pp. 130-133), in this method, it is necessary to control the particle size distribution of the β-type silicon nitride powder, to make the powder finer and to have a uniform particle size, Since high-temperature sintering by a sintering method is required, the process is expected to be complicated. It was also confirmed from this report that the β-type silicon nitride powder was a powder having low sinterability.

【0006】したがって本発明の目的は、良好な焼結性
を有し、高強度の焼結体を形成できる窒化珪素/炭化珪
素複合粉末及び複合成形体並びにそれらの製造方法及び
窒化珪素/炭化珪素複合焼結体の製造方法を提供するこ
とである。
Accordingly, an object of the present invention is to provide a silicon nitride / silicon carbide composite powder and a composite compact having good sinterability and capable of forming a high-strength sintered body, a method for producing the same, and silicon nitride / silicon carbide. An object of the present invention is to provide a method for manufacturing a composite sintered body.

【0007】[0007]

【課題を解決するための手段】以上の目的に鑑み鋭意研
究の結果、本発明者等は、出発材料として珪素粉末と炭
素質粉末及び焼結助剤を使用し、特定の条件で熱処理す
れば、α型窒化珪素含有率の高い窒化珪素/炭化珪素複
合粉末又は複合成形体が得られ、それによって高い焼結
性を有する複合粉末又は複合成形体となることを発見
し、本発明を完成した。
Means for Solving the Problems As a result of intensive studies in view of the above objects, the present inventors have found that using silicon powder, carbonaceous powder and a sintering aid as starting materials and subjecting them to heat treatment under specific conditions. To obtain a silicon nitride / silicon carbide composite powder or composite molded body having a high α-type silicon nitride content, and thereby to obtain a composite powder or composite molded body having high sinterability, and completed the present invention. .

【0008】すなわち、本発明の窒化珪素/炭化珪素複
合粉末は、珪素粉末に炭素質粉末と焼結助剤とを混合
し、得られた混合粉末を窒素ガス含有雰囲気下において
熱処理して、珪素の窒化と炭化とを起こして得られるも
ので、前記複合粉末中のα型窒化珪素の含有量が全窒化
珪素の30%以上であることを特徴とする。
That is, in the silicon nitride / silicon carbide composite powder of the present invention, carbon powder and a sintering aid are mixed with silicon powder, and the obtained mixed powder is heat treated in an atmosphere containing nitrogen gas to obtain silicon. Is obtained by nitriding and carburizing, and the content of α-type silicon nitride in the composite powder is 30% or more of the total silicon nitride.

【0009】また、本発明の窒化珪素/炭化珪素複合成
形体は、珪素粉末に炭素質粉末と焼結助剤とを混合し、
得られた混合粉末から形成した成形体を窒素ガス含有雰
囲気下において熱処理して、珪素の窒化と炭化とを起こ
して得られるもので、前記複合成形体中のα型窒化珪素
の含有量が全窒化珪素の30%以上であることを特徴と
する。
Further, the silicon nitride / silicon carbide composite molded article of the present invention is obtained by mixing a carbonaceous powder and a sintering aid with a silicon powder,
A molded body formed from the obtained mixed powder is heat-treated in a nitrogen gas-containing atmosphere to cause silicon nitriding and carbonization, and the content of α-type silicon nitride in the composite molded body is entirely It is characterized by being 30% or more of silicon nitride.

【0010】本発明のα型窒化珪素の含有量が全窒化珪
素の30%以上である窒化珪素/炭化珪素複合粉末を製
造する方法は、珪素粉末に炭素質粉末と焼結助剤とを混
合し、得られた混合粉末を窒素ガス含有雰囲気下におい
て熱処理して、珪素の窒化と炭化とを起こし、その際窒
化炭化反応を1000℃〜1450℃の温度で行い、かつ少なく
とも反応開始前の温度から保持温度に到達するまでの昇
温速度を2℃/分未満にすることを特徴とする。
The method for producing a silicon nitride / silicon carbide composite powder in which the content of α-type silicon nitride of the present invention is 30% or more of the total silicon nitride is the mixing of carbonaceous powder and sintering aid with silicon powder. Then, the obtained mixed powder is heat-treated under a nitrogen gas-containing atmosphere to cause nitriding and carbonization of silicon, in which case the nitriding carbonization reaction is performed at a temperature of 1000 ° C to 1450 ° C, and at least the temperature before the start of the reaction. It is characterized in that the rate of temperature rise from when the temperature reaches the holding temperature to less than 2 ° C./min.

【0011】本発明のα型窒化珪素の含有量が全窒化珪
素の30%以上である窒化珪素/炭化珪素複合成形体を
製造する方法は、珪素粉末に炭素質粉末と焼結助剤とを
混合し、得られた混合粉末から成形体を形成し、前記成
形体を窒素ガス含有雰囲気下において熱処理して、珪素
の窒化と炭化とを起こし、その際窒化炭化反応を1000℃
〜1450℃の温度で行い、かつ少なくとも反応開始前の温
度から保持温度に到達するまでの昇温速度を2℃/分未
満にすることを特徴とする。
[0011] The method of the present invention for producing a silicon nitride / silicon carbide composite molded article in which the content of α-type silicon nitride is 30% or more of the total silicon nitride is as follows. After mixing, a compact is formed from the obtained mixed powder, and the compact is heat-treated in an atmosphere containing nitrogen gas to cause nitridation and carbonization of silicon.
The process is carried out at a temperature of 11450 ° C., and the rate of temperature rise from at least the temperature before the start of the reaction to the holding temperature is set to less than 2 ° C./min.

【0012】窒化珪素/炭化珪素複合焼結体を製造する
本発明の第一の方法は、上記窒化珪素/炭化珪素複合粉
末から成形体を形成し、前記成形体を窒素ガス含有雰囲
気中において1600℃〜2200℃で焼結することを特徴とす
る。
A first method of the present invention for producing a silicon nitride / silicon carbide composite sintered body is to form a molded body from the above silicon nitride / silicon carbide composite powder, and the molded body is subjected to 1600 in an atmosphere containing nitrogen gas. It is characterized by being sintered at ℃ ~ 2200 ℃.

【0013】窒化珪素/炭化珪素複合焼結体を製造する
本発明の第二の方法は、上記窒化珪素/炭化珪素複合成
形体を窒素ガス含有雰囲気中において1600℃〜2200℃で
焼結することを特徴とする。
The second method of the present invention for producing a silicon nitride / silicon carbide composite sintered body is to sinter the above silicon nitride / silicon carbide composite compact at 1600 ° C. to 2200 ° C. in an atmosphere containing nitrogen gas. Is characterized by.

【0014】[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。 〔1〕出発原料 (a) 珪素粉末 本発明に使用する珪素粉末は、平均粒径が0.2 〜20μ
m、特に0.3 〜10μmであるのが好ましい。平均粒径が
0.2 μmより小さいと、粉末表面の酸化が大であり、ま
た20μmより大きいと均一な分散が困難となるとともに
反応性に乏しくなる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. [1] Starting Material (a) Silicon Powder The silicon powder used in the present invention has an average particle size of 0.2 to 20 μm.
It is preferably m, particularly 0.3 to 10 μm. Average particle size is
If it is less than 0.2 μm, the powder surface is highly oxidized, and if it is more than 20 μm, uniform dispersion becomes difficult and the reactivity becomes poor.

【0015】なお、珪素粉末としては、JIS G 2312 に
規定されているような比較的低純度で安価なものから、
半導体のシリコンウェーハの破材を粉砕したような高純
度のものまで、広い範囲のものを使用することができ
る。また高純度の珪素粉末を使用した場合、Fe、Cr、Co
等の化合物あるいは単体を添加し、反応を促進すること
もできる。
As the silicon powder, relatively low purity and inexpensive powder as defined in JIS G 2312,
A wide range of materials can be used, such as a high-purity material obtained by crushing a crushed material of a semiconductor silicon wafer. When high-purity silicon powder is used, Fe, Cr, Co
It is also possible to accelerate the reaction by adding a compound such as

【0016】出発原料中の珪素粉末と炭素質粉末の合計
量を100 重量%としたとき、珪素粉末の含有量は、81.2
〜97.6重量%が好ましく、84.2〜93.2重量%がより好ま
しい。珪素粉末が81.2重量%より少ないと焼結体が緻密
化しずらくなり、所望の複合焼結体が得られない。また
97.6重量%より多いと炭化珪素の複合効果が十分でなく
なる。
When the total amount of the silicon powder and the carbonaceous powder in the starting material is 100% by weight, the content of the silicon powder is 81.2%.
9 to 97.6% by weight is preferable, and 84.2 to 93.2% by weight is more preferable. If the amount of silicon powder is less than 81.2% by weight, the sintered body becomes difficult to be densified and the desired composite sintered body cannot be obtained. Also
If it exceeds 97.6% by weight, the combined effect of silicon carbide becomes insufficient.

【0017】(b) 炭素質粉末 本発明に使用する炭素質粉末は、微細であれば特に限定
されないが、グラファイト粉末もしくはアセチレンブラ
ック、ケッチェンブラック等のカーボンブラック粉末が
好ましい。炭素質粉末は、平均粒径が20μm以下、特に
10μm以下であるのが好ましい。平均粒径が20μmより
大きいと均一な分散が困難となる。
(B) Carbonaceous powder The carbonaceous powder used in the present invention is not particularly limited as long as it is fine, but graphite powder or carbon black powder such as acetylene black or Ketjen black is preferable. Carbonaceous powder has an average particle size of 20 μm or less, especially
It is preferably 10 μm or less. If the average particle size is larger than 20 μm, uniform dispersion becomes difficult.

【0018】出発原料中の珪素粉末と炭素質粉末の合計
量を100 重量%としたとき、炭素質粉末の含有量は、2.
4 〜18.8重量%が好ましく、6.8 〜15.8重量%がより好
ましい。炭素質粉末が2.4 重量%より少ないと複合効果
が得られず、また18.8重量%より多いと焼結体が緻密化
しない。
When the total amount of the silicon powder and the carbonaceous powder in the starting material is 100% by weight, the content of the carbonaceous powder is 2.
4 to 18.8% by weight is preferable, and 6.8 to 15.8% by weight is more preferable. If the carbonaceous powder is less than 2.4% by weight, the composite effect cannot be obtained, and if it is more than 18.8% by weight, the sintered body is not densified.

【0019】(c) 窒化珪素粉末 混合粉末の成形性を良くするとともに、窒化珪素生成の
核とするために、0.1〜5μm、好ましくは0.1 〜3μ
mの平均粒径を有する窒化珪素粉末を添加してもよい。
窒化珪素粉末の添加量は、熱処理により生成する窒化珪
素と添加する窒化珪素の合計を100 重量%として、0〜
10重量%とするのが好ましく、より好ましくは0〜5重
量%とする。窒化珪素粉末の添加量が多すぎると(珪素
粉末に対する窒化珪素粉末の割合が高すぎると)、Si
の反応焼結が不十分であり、複合効果が得られない。
(C) Silicon nitride powder In order to improve the moldability of the mixed powder and to use it as a nucleus for silicon nitride formation, 0.1 to 5 μm, preferably 0.1 to 3 μm.
Silicon nitride powder having an average particle size of m may be added.
The addition amount of the silicon nitride powder is 0 to 100% by weight of the total of the silicon nitride formed by the heat treatment and the added silicon nitride.
The content is preferably 10% by weight, more preferably 0 to 5% by weight. If the amount of silicon nitride powder added is too large (the ratio of silicon nitride powder to silicon powder is too high), Si
The reaction sintering is insufficient and the combined effect cannot be obtained.

【0020】(d) 炭化珪素粉末 炭化珪素粉末は、窒化珪素粉末と同様の目的、つまり珪
素粉末混合粉末の成形性を良くするとともにして炭化珪
素生成の核とするために少量添加してもよい。好ましい
炭化珪素粉末の添加量は、熱処理により生成する炭化珪
素と添加する炭化珪素との合計量を100 重量%として、
0〜10重量%であり、より好ましくは0〜5重量%であ
る。炭化珪素の添加量が多すぎると珪素の反応焼結が不
十分となり、複合効果が得られない。
(D) Silicon Carbide Powder Silicon carbide powder may be added in a small amount for the same purpose as silicon nitride powder, that is, to improve the moldability of the silicon powder mixed powder and to serve as a nucleus for silicon carbide formation. Good. The preferable addition amount of silicon carbide powder is as follows: the total amount of silicon carbide formed by heat treatment and silicon carbide to be added is 100% by weight.
It is 0 to 10% by weight, more preferably 0 to 5% by weight. If the addition amount of silicon carbide is too large, the reaction sintering of silicon becomes insufficient, and a combined effect cannot be obtained.

【0021】(e) 焼結助剤粉末 複合粉末製造時の焼結助剤粉末が(a)周期律表3A族
元素及び4A族元素の酸化物からなる群より選ばれた1
種以上の化合物、又は前記(a)と、(b)窒化アルミ
ニウムとからなる。中でも、(a)Y2 3 、Lu2
3 、Yb2 3、HfO2 からなる群より選ばれた少な
くとも1種の化合物が好ましく、Y2 3 単独が特に好
ましい。
(E) Sintering aid powder The sintering aid powder at the time of producing the composite powder is selected from the group consisting of (a) oxides of elements of Group 3A and 4A of the periodic table.
At least one kind of compound, or (a) and (b) aluminum nitride. Among them, (a) Y 2 O 3 and Lu 2 O
3, Yb 2 O 3, at least one compound selected from the group consisting of HfO 2 are preferred, Y 2 O 3 alone is particularly preferred.

【0022】複合成形体製造時の焼結助剤粉末が(a)
周期律表3A族元素及び4A族元素の酸化物からなる群
より選ばれた1種以上の化合物、又は(b)窒化アルミ
ニウム及び/又は酸化珪素と、前記(a)とからなる。
中でも、(a)Y2 3 、Lu2 3 、Yb2 3 、H
fO2 からなる群より選ばれた少なくとも1種の化合
物、又は前記(a)と酸化珪素とが好ましく、Y2 3
単独、又はY2 3 と酸化珪素とが特に好ましい。
The sintering aid powder used in the production of the composite compact is (a)
It comprises at least one compound selected from the group consisting of oxides of Group 3A elements and Group 4A elements of the Periodic Table, or (b) aluminum nitride and / or silicon oxide, and (a) above.
Among them, (a) Y 2 O 3 , Lu 2 O 3 , Yb 2 O 3 , H
At least one compound selected from the group consisting of fO 2 , or (a) and silicon oxide are preferable, and Y 2 O 3
Alone or Y 2 O 3 and silicon oxide are particularly preferable.

【0023】焼結助剤粉末の含有量は、熱処理により生
成した複合粉末又は複合成形体の全量を100 重量%とし
て、5〜20重量%とするのが好ましく、より好ましくは
7〜15重量%とする。焼結助剤粉末が5重量%より少な
いと得られる複合粉末の焼結性が不十分であり、また20
重量%より多いと焼結体の高温強度が低くなる。
The content of the sintering aid powder is preferably from 5 to 20% by weight, more preferably from 7 to 15% by weight, based on 100% by weight of the total amount of the composite powder or composite compact produced by the heat treatment. And If the amount of the sintering aid powder is less than 5% by weight, the sinterability of the obtained composite powder is insufficient, and
If it is more than 10% by weight, the high-temperature strength of the sintered body decreases.

【0024】焼結助剤は、珪素粉末、炭素質粉末と一緒
に混合して窒化/炭化処理を行う。最初から焼結助剤を
添加することにより、複合粉末又は複合成形体中におけ
るα型窒化珪素の含有量が大きくなるとともに、焼結助
剤の分散状態が良くなり、焼結体特性が向上する。
The sintering aid is mixed with silicon powder and carbonaceous powder for nitriding / carbonization treatment. By adding the sintering aid from the beginning, the content of α-type silicon nitride in the composite powder or composite molded body increases, the dispersion state of the sintering aid improves, and the characteristics of the sintered body improve. .

【0025】〔2〕複合粉末の製造方法 (1) 混合粉末の作製 まず、各成分を上記配合比となるように配合し、ボール
ミル、ニーダー等で十分に混合する。混合は乾式でも湿
式でも良い。湿式混合の場合には、粉末混合物に水、エ
タノール、ブタノール等の分散媒体を加える。また、適
当な有機又は無機バインダーを添加することができる。
有機バインダーとしては、例えばエチルシリケート、ポ
リエチレングリコール、ポリビニルアルコール(PV
A)、アクリルエマルジョン、ポリウレタンエマルジョ
ン等が挙げられる。また、無機バインダーも添加するこ
とができる。
[2] Method for producing composite powder (1) Preparation of mixed powder First, the respective components are blended so as to have the above blending ratio and thoroughly mixed with a ball mill, a kneader or the like. The mixing may be dry or wet. In the case of wet mixing, a dispersion medium such as water, ethanol or butanol is added to the powder mixture. Also, a suitable organic or inorganic binder can be added.
Examples of the organic binder include ethyl silicate, polyethylene glycol, polyvinyl alcohol (PV
A), acrylic emulsion, polyurethane emulsion and the like. Also, an inorganic binder can be added.

【0026】(2) 窒化/炭化処理 次に、混合粉末を窒素含有雰囲気下で加熱し、混合粉末
中の珪素粉末を窒化すると同時に炭化する。窒化率と炭
化率は出発原料中のCの添加量により決まる。すなわ
ち、実質的に全てのCは珪素と結合して炭化珪素となる
ので、未反応の珪素が実質的に全て窒化珪素に転化する
ことになる。例えば、SiとCとが100 :7のモル比で
混合されているとすると、窒化珪素と炭化珪素とのモル
比は31:7となる。
(2) Nitriding / Carburizing Treatment Next, the mixed powder is heated in a nitrogen-containing atmosphere to nitride and carbonize the silicon powder in the mixed powder. The nitridation rate and carbonization rate are determined by the amount of C in the starting material. That is, since substantially all of C is combined with silicon to form silicon carbide, substantially all unreacted silicon is converted to silicon nitride. For example, if Si and C are mixed at a molar ratio of 100: 7, the molar ratio of silicon nitride to silicon carbide is 31: 7.

【0027】窒化/炭化処理の諸条件は、混合粉末の組
成等により多少変更する必要があるが、温度は1450℃以
下とする。1450℃を超える温度に加熱すると、珪素が溶
出したり、珪素の気化が起こったりするので好ましくな
い。窒化/炭化処理温度の下限は1000℃とするのが好ま
しい。1000℃未満であると、窒化/炭化反応が起こらな
いか、起こっても反応速度が低すぎる。より好ましい反
応温度は1100〜1380℃である。
The conditions of the nitriding / carbonizing treatment need to be slightly changed depending on the composition of the mixed powder, but the temperature is set to 1450 ° C. or less. Heating to a temperature exceeding 1450 ° C. is not preferable because silicon elutes or silicon evaporates. The lower limit of the nitriding / carbonizing treatment temperature is preferably set to 1000 ° C. If it is less than 1000 ° C, nitriding / carbonization reaction does not occur or the reaction rate is too low even if it occurs. A more preferred reaction temperature is 1100-1380 ° C.

【0028】本発明では、窒化反応の反応温度(保持温
度)付近での昇温速度を小さくする。具体的には、雰囲
気温度が900 〜1300℃以上になると、昇温速度を2℃/
分未満とし、好ましくは 0.5℃/分以下とする。昇温速
度が2℃/分以上になると、窒化反応が激しくなり、生
成される複合粉末内におけるα型窒化珪素の含有率が減
少し、複合粉末の焼結性が低下するので好ましくない。
好ましいα型窒化珪素の含有率は、複合粉末中の全窒化
珪素に対して30%以上、特に好ましくは40%以上とす
る。
In the present invention, the rate of temperature rise near the reaction temperature (holding temperature) of the nitriding reaction is reduced. Specifically, when the atmospheric temperature is 900 to 1300 ° C or higher, the heating rate is 2 ° C /
Min, preferably 0.5 ° C / min or less. If the rate of temperature rise is 2 ° C./minute or more, the nitriding reaction becomes vigorous, the content of α-type silicon nitride in the produced composite powder decreases, and the sinterability of the composite powder decreases, which is not preferable.
The preferred content of α-type silicon nitride is at least 30%, particularly preferably at least 40%, based on the total silicon nitride in the composite powder.

【0029】窒素含有雰囲気の圧力は1kgf /cm2 以上
とするのが好ましく、より好ましくは5〜2000kgf /cm
2 とする。窒素含有雰囲気の圧力が1kgf /cm2 未満で
あると窒化が良好に進まない。窒化/炭化処理の反応時
間は、処理温度等により多少変化するが、一般に1〜10
時間程度とするのが好ましい。なお、窒素含有雰囲気と
は窒素含有ガスの雰囲気で、窒素含有ガスとしては窒素
ガス、窒素と水素の混合ガスあるいは窒素とアンモニア
の混合ガス等が挙げられる。
The pressure of the nitrogen-containing atmosphere is preferably 1 kgf / cm 2 or more, more preferably 5 to 2000 kgf / cm 2.
Assume 2 . If the pressure of the nitrogen-containing atmosphere is less than 1 kgf / cm 2 , nitriding does not proceed well. The reaction time of the nitriding / carbonizing treatment varies slightly depending on the treatment temperature and the like, but is generally 1 to 10
It is preferable to set it to about an hour. The nitrogen-containing atmosphere is a nitrogen-containing gas atmosphere, and examples of the nitrogen-containing gas include nitrogen gas, a mixed gas of nitrogen and hydrogen, a mixed gas of nitrogen and ammonia, and the like.

【0030】(3) 粉末の粉砕 得られた窒化珪素/炭化珪素複合物を粉砕して、複合粉
末とする。粉砕はボールミル、ジェットミル、アトリシ
ョンミル等を用いて行うことができる。粉砕によって得
られる複合粉末の平均粒径は0.1 〜5μmであるのが好
ましく、0.3 〜3μmであるのがより好ましい。
(3) Pulverization of powder The obtained silicon nitride / silicon carbide composite is pulverized into a composite powder. The pulverization can be performed by using a ball mill, a jet mill, an attrition mill or the like. The average particle size of the composite powder obtained by pulverization is preferably from 0.1 to 5 μm, more preferably from 0.3 to 3 μm.

【0031】以上の条件で窒化/炭化処理を行うと、混
合粉末中の珪素粒子は炭素と反応して出発原料の珪素粒
子及び炭素粒子よりも微細な炭化珪素の微細粒子を生成
するとともに、窒化されて出発原料の珪素粒子よりも微
細なα−窒化珪素を高割合で含む窒化珪素が生成され
る。
When the nitriding / carburizing treatment is carried out under the above conditions, the silicon particles in the mixed powder react with carbon to produce silicon particles as a starting material and fine particles of silicon carbide finer than the carbon particles, and at the same time, nitride Thus, silicon nitride containing a high proportion of α-silicon nitride finer than the starting material silicon particles is generated.

【0032】〔3〕複合成形体の製造方法 (1) 成形体の作製 まず、各成分を上記〔2〕(1) の欄に記載したのと同じ
方法で配合し、混合する。得られた混合粉末を所望の形
状に成形するが、成形方法としてはプレス成形、スリッ
プキャスティング成形、射出成形等を使用することがで
きる。
[3] Manufacturing Method of Composite Molded Product (1) Preparation of Molded Product First, the respective components are blended and mixed by the same method as described in the above section [2] (1). The obtained mixed powder is molded into a desired shape. As a molding method, press molding, slip casting molding, injection molding or the like can be used.

【0033】プレス成形の場合には、分散媒体を除去後
に所望のプレス型を用いて成形を行う。スリップキャス
ティング成形の場合には、分散媒体とともに吸湿性の型
に流し込む。射出成形の場合には適当な有機又は無機バ
インダーを添加して、型内に射出する。有機バインダー
としては、例えばエチルシリケート、ポリエチレングリ
コール、ポリビニルアルコール(PVA)、アクリルエ
マルジョン、ポリウレタンエマルジョン等が挙げられ
る。また無機バインダーも添加することができる。複雑
な形状の成形体を作製するにはスリップキャスティング
成形や射出成形が好ましい。
In the case of press molding, molding is performed using a desired press mold after removing the dispersion medium. In the case of slip casting, it is poured into a hygroscopic mold together with the dispersion medium. In the case of injection molding, a suitable organic or inorganic binder is added and injection is performed in a mold. Examples of the organic binder include ethyl silicate, polyethylene glycol, polyvinyl alcohol (PVA), acrylic emulsion, polyurethane emulsion and the like. Inorganic binders can also be added. Slip casting molding or injection molding is preferable for producing a molded body having a complicated shape.

【0034】(2) 窒化/炭化処理 窒化/炭化処理の条件は上記[2] (2) の欄に記載したの
とほぼ同じでよいが、成形体の厚さ、出発原料粉末の粒
径等により多少変更する必要があり、温度は1450℃以下
とする。1450℃を超える温度に加熱すると、珪素が溶出
するので好ましくない。窒化/炭化処理温度の下限は10
00℃とするのが好ましい。1000℃未満であると、窒化/
炭化反応が起こらないか、起こっても反応速度が低すぎ
る。より好ましい反応温度は1200〜1400℃である。
(2) Nitriding / Carburizing Treatment The conditions of nitriding / carburizing treatment may be almost the same as those described in the section [2] (2) above, but the thickness of the compact, the particle size of the starting raw material powder, etc. Therefore, the temperature should be 1450 ° C or lower. Heating above 1450 ° C. is not preferable because silicon is eluted. The lower limit of nitriding / carbonization temperature is 10
It is preferably set to 00 ° C. If the temperature is lower than 1000 ° C, nitriding /
The carbonization reaction does not occur, or if it does, the reaction rate is too low. A more preferred reaction temperature is 1200-1400 ° C.

【0035】本発明では、窒化反応の反応温度(保持温
度)付近での昇温速度を小さくする。具体的には、雰囲
気温度が900 〜1300℃以上になると、昇温速度を2℃/
分未満とし、好ましくは 0.5℃/分以下とする。昇温速
度が2℃/分以上になると、窒化反応が激しくなり、生
成される複合成形体内におけるα型窒化珪素の含有率が
減少し、複合成形体の焼結性が低下するので好ましくな
い。好ましいα型窒化珪素の含有率は、複合成形体中の
全窒化珪素に対して30%以上、特に好ましくは40%以上
とする。
In the present invention, the rate of temperature rise near the reaction temperature (holding temperature) of the nitriding reaction is reduced. Specifically, when the atmospheric temperature is 900 to 1300 ° C or higher, the heating rate is 2 ° C /
Min, preferably 0.5 ° C / min or less. If the rate of temperature rise is 2 ° C./min or more, the nitridation reaction becomes violent, the content of α-type silicon nitride in the formed composite decreases, and the sinterability of the composite decreases. The preferred content of α-type silicon nitride is at least 30%, particularly preferably at least 40%, based on the total silicon nitride in the composite molded body.

【0036】以上の条件で窒化/炭化処理を行うと、成
形体中の珪素粒子は炭素と反応して出発原料の珪素粒子
及び炭素粒子よりも微細な炭化珪素粒子を生成するとと
もに、窒化されて出発原料の珪素粒子よりも微細なα−
窒化珪素を含む窒化珪素が生成される。
When the nitriding / carburizing treatment is performed under the above conditions, the silicon particles in the molded body react with carbon to form silicon carbide particles that are finer than the starting material silicon particles and carbon particles, and are also nitrided. Α- finer than the starting silicon particles
Silicon nitride containing silicon nitride is generated.

【0037】〔4〕複合焼結体の製造方法 (1) 窒化珪素/炭化珪素複合焼結体を製造する本発明の
第一の方法は、まず上記〔2〕の欄に記載した窒化珪素
/炭化珪素複合粉末を上記〔3〕(1) の欄に記載したも
のと同じ方法で成形する。成形体を1600〜2200℃の温度
で、好ましくは1800〜2000℃の温度で焼結する。焼結温
度が1600℃未満であると、焼結体の緻密化が不十分にな
り、所望の特性が得られない。また焼結温度が2200℃を
超えると窒化珪素の分解が始まるので好ましくない。焼
結は非酸化性雰囲気下、好ましくは窒素ガス雰囲気下で
行う。このとき、雰囲気ガス圧は5〜2000kgf /cm2
度とするのが好ましい。また、焼結温度保持時間は1〜
5時間程度とするのが好ましい。良好な焼結体密度を達
成するためにはホットプレス又はHIPが好ましい。特
にHIPで焼成する場合は、複雑な形状の焼結体も製造
できる。
[4] Method for producing composite sintered body (1) The first method of the present invention for producing a silicon nitride / silicon carbide composite sintered body is as follows. The silicon carbide composite powder is molded by the same method as described in the section [3] (1) above. The shaped body is sintered at a temperature of 1600 to 2200 ° C, preferably at a temperature of 1800 to 2000 ° C. If the sintering temperature is less than 1600 ° C., the densification of the sintered body will be insufficient and desired characteristics cannot be obtained. Further, if the sintering temperature exceeds 2200 ° C, decomposition of silicon nitride begins, which is not preferable. Sintering is performed in a non-oxidizing atmosphere, preferably a nitrogen gas atmosphere. At this time, the atmospheric gas pressure is preferably about 5 to 2000 kgf / cm 2 . Also, the sintering temperature holding time is 1 to
It is preferably about 5 hours. Hot pressing or HIP is preferred to achieve good sintered compact density. Particularly when firing with HIP, a sintered body having a complicated shape can be manufactured.

【0038】(2) 窒化珪素/炭化珪素複合焼結体を製造
する本発明の第二の方法は、上記〔3〕の欄に記載した
窒化珪素/炭化珪素複合成形体を上記〔4〕(1) の欄に
記載したものと同じ方法で焼結する。なお、焼結する前
に、窒化珪素/炭化珪素複合成形体を酸化性雰囲気中に
おいて熱処理してもよい。この熱処理により窒化珪素/
炭化珪素複合成形体を構成する窒化珪素及び炭化珪素の
表面が酸化され、酸化珪素の皮膜が形成される。この皮
膜により酸化珪素を焼結助剤として添加した場合と同様
に、酸化珪素と焼結助剤が反応して焼結が促進される。
熱処理の温度は1300℃未満が好ましい。
(2) The second method of the present invention for producing a silicon nitride / silicon carbide composite sintered body is the same as the above-mentioned [4] ( Sinter in the same way as described in column 1). Before sintering, the silicon nitride / silicon carbide composite molded body may be heat-treated in an oxidizing atmosphere. The silicon nitride /
The surfaces of silicon nitride and silicon carbide constituting the silicon carbide composite molded body are oxidized to form a silicon oxide film. As with the case where silicon oxide is added as a sintering aid, this film reacts with silicon oxide and the sintering aid to promote sintering.
The temperature of the heat treatment is preferably less than 1300 ° C.

【0039】(3) 窒化珪素/炭化珪素複合焼結体 上記方法で得られた窒化珪素/炭化珪素複合焼結体は、
窒化珪素粒子内に微細な炭化珪素粒子が分散したいわゆ
るナノコンポジット構造を有する。炭化珪素粒子は窒化
珪素粒子より熱膨張率が大きいため、窒化珪素粒子に残
留応力が働くと考えられる。また窒化珪素の粒界に分散
した微細な炭化珪素粒子は、窒化珪素の粒界すべりを抑
制するくさびのような作用をすると考えられる。
(3) Silicon Nitride / Silicon Carbide Composite Sintered Body The silicon nitride / silicon carbide composite sintered body obtained by the above method is
It has a so-called nanocomposite structure in which fine silicon carbide particles are dispersed in silicon nitride particles. Since silicon carbide particles have a higher coefficient of thermal expansion than silicon nitride particles, it is considered that residual stress acts on the silicon nitride particles. Further, it is considered that the fine silicon carbide particles dispersed in the grain boundaries of silicon nitride act like a wedge to suppress the grain boundary sliding of silicon nitride.

【0040】従って、炭化珪素/窒化珪素の比が小さい
場合、上記効果が十分に得られない。一方、炭化珪素/
窒化珪素の比が大きすぎると、分散する炭化珪素粒子が
多すぎて窒化珪素の粒成長が抑制されてしまい、焼結体
密度が十分に増大しない。以上の点から炭化珪素/窒化
珪素の重量比は5/95〜50/50が好ましく、15/85〜40
/60がより好ましい。
Therefore, when the silicon carbide / silicon nitride ratio is small, the above effect cannot be sufficiently obtained. On the other hand, silicon carbide /
If the ratio of silicon nitride is too large, too many silicon carbide particles are dispersed and the grain growth of silicon nitride is suppressed, and the sintered body density does not increase sufficiently. From the above points, the weight ratio of silicon carbide / silicon nitride is preferably 5/95 to 50/50, and 15/85 to 40
/ 60 is more preferable.

【0041】[0041]

【実施例】以下、本発明を具体的実施例によりさらに詳
細に説明するが、本発明はこれに限定されるものではな
い。
EXAMPLES The present invention will now be described in more detail with reference to specific examples, but the present invention is not limited thereto.

【0042】実施例1 (1) 複合粉末の作製 平均粒径が0.5 μmの珪素粉末(JIS MSi 1 )と、炭素
質として粒径が5μm以下のカーボン粉末と、平均粒径
が0.1 μmの窒化珪素粉末と、平均粒径が0.2μmの炭
化珪素粉末と、平均粒径が1.4 μmのY2 3 粉末と、
平均粒径が2μmのAlN粉末とを、表1に示す割合で
(ただし、珪素粉末及び炭素質であるカーボン粉末の配
合比は、生成した複合粉末における窒化珪素、炭化珪素
及び焼結助剤の割合が表10に示した目的配合比となる
ように、窒化珪素及び炭化珪素が生成する反応式に従っ
て計算した値である。)秤量し、ボールミルにより200
重量部のエタノールを溶媒として80重量部のボールと
ともに18時間混合し、乾燥した。
Example 1 (1) Preparation of Composite Powder A silicon powder (JIS MSi 1) having an average particle size of 0.5 μm, a carbon powder having a particle size of 5 μm or less as carbonaceous material, and a nitride having an average particle size of 0.1 μm Silicon powder, silicon carbide powder having an average particle size of 0.2 μm, Y 2 O 3 powder having an average particle size of 1.4 μm,
An AlN powder having an average particle diameter of 2 μm was mixed at a ratio shown in Table 1 (however, the mixing ratio of the silicon powder and the carbonaceous carbon powder was determined based on the proportion of silicon nitride, silicon carbide, and sintering aid in the produced composite powder). It is a value calculated according to a reaction formula for producing silicon nitride and silicon carbide so that the ratio becomes the target compounding ratio shown in Table 10.)
The mixture was mixed with 80 parts by weight of balls using 18 parts by weight of ethanol as a solvent for 18 hours and dried.

【0043】得られた原料粉末を反応容器に入れ、1300
℃からの昇温速度を0.5 ℃/分として1380℃まで昇温し
た後、60分間保持した。雰囲気は窒素ガス雰囲気として
9kgf /cm2 のガス圧下で窒化/炭化反応を起こさせた
後、200 重量部のアルコール及び200 重量部の窒化珪素
ボールとともに2リットルのポリエチレンポットに入れ
て、ボールミルで7日間粉砕し、複合粉末を調製した。
The obtained raw material powder was placed in a reaction vessel, and 1300
The temperature was raised from 1 ° C to 1380 ° C at a heating rate of 0.5 ° C / minute, and then the temperature was maintained for 60 minutes. Nitrogen gas atmosphere was used as a nitrogen gas atmosphere to cause nitriding / carburizing reaction under a gas pressure of 9 kgf / cm 2 , then put it in a 2 liter polyethylene pot together with 200 parts by weight of alcohol and 200 parts by weight of silicon nitride balls, and use a ball mill for 7 Milling was carried out for a day to prepare a composite powder.

【0044】得られた複合粉末のX線回折を測定し、α
型窒化珪素とβ型窒化珪素の結晶相を同定し、全窒化珪
素中のα型窒化珪素の含有率を下式で求めた。 α型窒化珪素の含有率(%)=100 ×(102) 面と(210)
面の合計回折強度(α型窒化珪素)/((102) 面と(21
0) 面の合計回折強度(α型窒化珪素)+(101) 面と(21
0) 面の合計回折強度(β型窒化珪素))結果はまとめ
て表7に示す。
X-ray diffraction of the obtained composite powder was measured, and α
The crystal phases of type silicon nitride and β type silicon nitride were identified, and the content rate of α type silicon nitride in the total silicon nitride was determined by the following equation. Content of α-type silicon nitride (%) = 100 x (102) plane and (210)
Total diffraction intensity of plane (α-type silicon nitride) / ((102) plane and (21)
0) plane total diffraction intensity (α-type silicon nitride) + (101) plane and (21) plane
Table 7 summarizes the results of the (0) plane total diffraction intensity (β-type silicon nitride).

【0045】 表1 原料粉末組成 重量(g) 配合比(重量%) 珪素粉末 270.7 69.9 カーボン粉末 43.7 11.3 窒化珪素粉末 14.9 3.9 炭化珪素粉末 7.7 2.0 Y2 3 粉末 35.0 9.0 AlN粉末 15.0 3.9 Table 1 Raw material powder composition Weight (g) Blending ratio (wt%) Silicon powder 270.7 69.9 Carbon powder 43.7 11.3 Silicon nitride powder 14.9 3.9 Silicon carbide powder 7.7 2.0 Y 2 O 3 powder 35.0 9.0 AlN powder 15.0 3.9

【0046】(2) 複合焼結体の作製 (1) で得た複合粉末を55×35×6mmの形状に圧力200k
gf/cm2 の金型プレスで予備成形した後、CIPで4ト
ン/平方センチの等方圧を加えた。次いで最高保持温度
1850℃、最高窒素ガス圧力1000kgf /cm2 の条件でHI
P焼結を行い、窒化珪素/炭化珪素複合焼結体を得た。
得られた焼結体の組織を電子顕微鏡で観察したところ、
ナノコンポジット構造を有することが分かった。
(2) Preparation of composite sintered body The composite powder obtained in (1) was formed into a shape of 55 × 35 × 6 mm under a pressure of 200 k.
After preforming with a gf / cm 2 mold press, an isotropic pressure of 4 ton / square cm was applied by CIP. Then the maximum holding temperature
HI at 1850 ° C, maximum nitrogen gas pressure 1000kgf / cm 2
P sintering was performed to obtain a silicon nitride / silicon carbide composite sintered body.
When the structure of the obtained sintered body was observed with an electron microscope,
It was found to have a nanocomposite structure.

【0047】(3) 複合焼結体の物性 得られた焼結体の密度をアルキメデス法で測定した。JI
S R-1601に従って、焼結体を3mm×4mm×40mmの
大きさに切断して試験片とし、3点曲げ強度試験(室温
及び1400℃)、及び破壊靭性値K1 c の測定を以下の条
件で行った結果を表7に示す。 (i) 3点曲げ強度試験:室温の場合にはスパン30mm及
びクロスヘッドスピード0.5 mm/分の条件で行い、ま
た。1400℃の場合には1400℃に昇温し1時間保持した後
上記条件で行った。 (ii)破壊靭性値:SENB法(Single Edge Notched Be
am Method )に従って求めた。
(3) Physical Properties of Composite Sintered Body The density of the obtained sintered body was measured by the Archimedes method. JI
According to S R-1601, the sintered body was cut into a size of 3 mm × 4 mm × 40 mm to obtain a test piece, and a three-point bending strength test (room temperature and 1400 ° C.) and a fracture toughness value K 1 c were measured as follows. The results obtained under the conditions are shown in Table 7. (i) Three-point bending strength test: At room temperature, a span of 30 mm and a crosshead speed of 0.5 mm / min were used. In the case of 1400 ° C., the temperature was raised to 1400 ° C. and the temperature was maintained for 1 hour, and then the above conditions were used. (ii) Fracture toughness: SENB method (Single Edge Notched Be
am Method).

【0048】実施例2 実施例1で得た窒化珪素/炭化珪素複合粉末を用いて、
実施例1と同条件で成形し、実施例1と同条件でHIP
処理を経た後さらに窒素ガス雰囲気下、1500℃で2時間
保持する常圧焼結を行い、焼結体を得た。実施例1と同
様に焼結体の強度試験を行い、結果を表7に示す。
Example 2 Using the silicon nitride / silicon carbide composite powder obtained in Example 1,
Molded under the same conditions as in Example 1, and HIP under the same conditions as in Example 1.
After the treatment, normal pressure sintering was performed at 1500 ° C. for 2 hours under a nitrogen gas atmosphere to obtain a sintered body. A strength test was performed on the sintered body in the same manner as in Example 1, and the results are shown in Table 7.

【0049】実施例3 (1) 複合粉末の作製 平均粒径が0.5 μmの珪素粉末(JIS MSi 1 )と、炭素
質として平均粒径が500 オングストロームのアセチレン
ブラック粉末と、平均粒径が0.1 μmの窒化珪素粉末
と、平均粒径が0.2 μmの炭化珪素粉末と、平均粒径が
1.4 μmのY2 3 粉末とを、表2に示す割合で(ただ
し、実施例1と同様に表10に示した目的配合比より計
算した値である。)秤量し、ボールミルにより200 重量
部のエタノールを溶媒として80重量部のボールとともに
18時間混合し、乾燥した。
Example 3 (1) Preparation of Composite Powder A silicon powder (JIS MSi 1) having an average particle size of 0.5 μm, an acetylene black powder having an average particle size of 500 Å as carbonaceous material, and an average particle size of 0.1 μm Silicon nitride powder, silicon carbide powder having an average particle size of 0.2 μm,
1.4 μm of Y 2 O 3 powder was weighed in the ratio shown in Table 2 (however, calculated from the target compounding ratio shown in Table 10 in the same manner as in Example 1), and 200 parts by weight by a ball mill. With 80 parts by weight of ethanol as solvent
Mix for 18 hours and dry.

【0050】 表2 原料粉末組成 重量(g) 配合比(重量%) 珪素粉末 274.9 72.9 アセチレンブラック粉末 39.4 10.4 窒化珪素粉末 16.1 4.3 炭化珪素粉末 6.9 1.8 2 3 粉末 40.0 10.6 Table 2 Raw material powder composition Weight (g) Blending ratio (wt%) Silicon powder 274.9 72.9 Acetylene black powder 39.4 10.4 Silicon nitride powder 16.1 4.3 Silicon carbide powder 6.9 1.8 Y 2 O 3 powder 40.0 10.6

【0051】得られた原料粉末を反応容器に入れ、1300
℃からの昇温速度を0.5 ℃/分として1380℃まで昇温し
た後、1380℃で保持せず処理を終了した。雰囲気は窒素
ガス雰囲気として9kgf /cm2 のガス圧下で窒化/炭化
反応を起こさせた後、200 重量部のアルコール及び200
重量部の窒化珪素ボールとともに2リットルのポリエチ
レンポットに入れて、ボールミルで7日間粉砕し、複合
粉末を調製した。得られた複合粉末のα型窒化珪素の含
有率を実施例1と同様に求めた。結果を表7に示す。
The obtained raw material powder was placed in a reaction vessel, and 1300
After the temperature was raised to 1380 ° C. at a rate of 0.5 ° C./min from the temperature, the treatment was terminated without maintaining the temperature at 1380 ° C. The nitriding / carbonization reaction was performed under a gas pressure of 9 kgf / cm 2 in a nitrogen gas atmosphere, and then 200 parts by weight of alcohol and 200 parts by weight
The mixture was placed in a 2 liter polyethylene pot together with parts by weight of silicon nitride balls and pulverized by a ball mill for 7 days to prepare a composite powder. The α-type silicon nitride content of the obtained composite powder was determined in the same manner as in Example 1. The results are shown in Table 7.

【0052】(2) 複合焼結体の作製 (1) で得た複合粉末を直径42mmの黒鉛ダイスに充填
し、9kgf /cm2 の窒素ガス雰囲気中で、4.8 トンの荷
重で最高1850℃まで昇温して、ホットプレス焼結を行
い、窒化珪素/炭化珪素複合焼結体を得た。得られた焼
結体の組織を電子顕微鏡で観察したところ、ナノコンポ
ジット構造を有することが分かった。得られた複合焼結
体の物性を実施例1と同様に求めた。結果を表7に示
す。
(2) Preparation of Composite Sintered Body The composite powder obtained in (1) was filled in a graphite die having a diameter of 42 mm and heated to a maximum of 1850 ° C. under a nitrogen gas atmosphere of 9 kgf / cm 2 at a load of 4.8 tons and a load of 4.8 tons. The temperature was raised and hot press sintering was performed to obtain a silicon nitride / silicon carbide composite sintered body. Observation of the structure of the obtained sintered body with an electron microscope revealed that the structure had a nanocomposite structure. The physical properties of the obtained composite sintered body were determined in the same manner as in Example 1. The results are shown in Table 7.

【0053】実施例4 平均粒径が3.4 μmである珪素粉末(JIS MSi 1 )を使
用した以外は実施例3と同様にして、窒化珪素/炭化珪
素複合粉末及び焼結体を得た。得られた粉末のα型窒化
珪素の含有率を実施例1と同様に求め、結果を表7に示
す。得られた複合焼結体の物性を実施例1と同様に求め
た。結果を表7に示す。
Example 4 A silicon nitride / silicon carbide composite powder and a sintered body were obtained in the same manner as in Example 3 except that silicon powder (JIS MSi 1) having an average particle size of 3.4 μm was used. The content of α-type silicon nitride in the obtained powder was determined in the same manner as in Example 1, and the results are shown in Table 7. The physical properties of the obtained composite sintered body were determined in the same manner as in Example 1. The results are shown in Table 7.

【0054】比較例1 実施例1と同じ原料粉末を用い、1300℃からの昇温速度
を2℃/分とした以外は実施例1と同様の熱処理条件及
び窒素雰囲気下で窒化/炭化反応を起こさせた。熱処理
した後実施例1と同様にボールミルで7日間粉砕した。
Comparative Example 1 The same raw material powder as in Example 1 was used, and the nitriding / carbonization reaction was carried out under the same heat treatment conditions and nitrogen atmosphere as in Example 1 except that the heating rate from 1300 ° C. was changed to 2 ° C./min. Awakened. After the heat treatment, the mixture was ground in a ball mill for 7 days in the same manner as in Example 1.

【0055】得られた窒化珪素/炭化珪素複合粉末を用
いて、実施例1と同条件で成形し、実施例1と同条件で
HIP焼結を行い、焼結体を得た。実施例1と同様に焼
結体の強度試験及びK1 c の測定を行った。結果を表7
に示す。
Using the obtained silicon nitride / silicon carbide composite powder, molding was performed under the same conditions as in Example 1, and HIP sintering was performed under the same conditions as in Example 1 to obtain a sintered body. A strength test of the sintered body and measurement of K 1 c were performed in the same manner as in Example 1. The results are shown in Table 7.
Shown in

【0056】比較例2 炭素質粉末としてアセチレンブラック粉末を用いた以外
は、実施例1と同じ原料粉末を用い、比較例1と同様の
熱処理条件で窒化/炭化反応を起こさせた。熱処理した
後実施例1と同様にボールミルで7日間粉砕し、複合粉
末を調製した。
Comparative Example 2 The same raw material powder as in Example 1 was used except that acetylene black powder was used as the carbonaceous powder, and the nitriding / carbonization reaction was caused under the same heat treatment conditions as in Comparative Example 1. After the heat treatment, the mixture was pulverized in a ball mill for 7 days in the same manner as in Example 1 to prepare a composite powder.

【0057】得られた窒化珪素/炭化珪素複合粉末を用
いて、実施例1と同条件で成形し、実施例1と同条件で
HIP焼結を行い、焼結体を得た。実施例1と同様に焼
結体の強度試験を行い、結果を表7に示す。
Using the obtained silicon nitride / silicon carbide composite powder, molding was performed under the same conditions as in Example 1, and HIP sintering was performed under the same conditions as in Example 1 to obtain a sintered body. A strength test was performed on the sintered body in the same manner as in Example 1, and the results are shown in Table 7.

【0058】比較例3 比較例2で得た窒化珪素/炭化珪素複合粉末を用いて、
実施例1と同条件で成形し、実施例1と同条件でHIP
処理を経た後さらに実施例2と同条件で常圧焼結を行
い、焼結体を得た。実施例1と同様に焼結体の強度試験
及び破壊靭性値K1 c の測定を行い、結果を表7に示
す。
Comparative Example 3 Using the silicon nitride / silicon carbide composite powder obtained in Comparative Example 2,
Molded under the same conditions as in Example 1, and HIP under the same conditions as in Example 1.
After the treatment, pressureless sintering was performed under the same conditions as in Example 2 to obtain a sintered body. The strength test and the fracture toughness value K 1 c of the sintered body were measured in the same manner as in Example 1, and the results are shown in Table 7.

【0059】比較例42 3 粉末とAlN粉末を添加しない以外は、実施例
1と同様の粉末を表3に示す割合で秤量し、ボールミル
により実施例1と同じ条件で混合し、乾燥した。
Comparative Example 4 The same powder as in Example 1 was weighed at the ratio shown in Table 3 except that the Y 2 O 3 powder and the AlN powder were not added, mixed by a ball mill under the same conditions as in Example 1, and dried. did.

【0060】 表3 原料粉末組成 重量(g) 配合比(重量%) 珪素粉末 300.6 80.4 カーボン粉末 48.5 13.0 窒化珪素粉末 16.5 4.4 炭化珪素粉末 8.5 2.3 Table 3 Raw material powder composition Weight (g) Blending ratio (wt%) Silicon powder 300.6 80.4 Carbon powder 48.5 13.0 Silicon nitride powder 16.5 4.4 Silicon carbide powder 8.5 2.3

【0061】得られた原料粉末を反応容器に入れ、実施
例1と同じ条件で窒化/炭化反応を起こさせた。熱処理
した後の複合粉末を90重量%として、平均粒径が1.4 μ
mのY2 3 粉末7重量%と、平均粒径が2μmのAl
N粉末3重量%とを、200 重量%のアルコール及び200
重量%の窒化珪素ボールとともに、2リットルのポリエ
チレンポットに入れて、ボールミルで7日間混合粉砕
し、実施例1と同組成となる複合粉末を調製した。得ら
れた複合粉末のα型窒化珪素の含有率を実施例1と同様
にして求めた。結果はまとめて表7に示す。
The obtained raw material powder was placed in a reaction vessel, and a nitriding / carbonization reaction was caused under the same conditions as in Example 1. Assuming that the composite powder after heat treatment is 90% by weight, the average particle size is 1.4μ
7% by weight of Y 2 O 3 powder and Al having an average particle size of 2 μm
3% by weight of N powder and 200% by weight of alcohol and 200% by weight.
The resulting mixture was placed in a 2 liter polyethylene pot together with the silicon nitride ball at a weight ratio of 7% and mixed and ground by a ball mill for 7 days to prepare a composite powder having the same composition as in Example 1. The α-type silicon nitride content of the obtained composite powder was determined in the same manner as in Example 1. The results are summarized in Table 7.

【0062】得られた窒化珪素/炭化珪素複合粉末を用
い、実施例1と同条件で成形し、実施例1と同条件でH
IP焼結を行い、窒化珪素/炭化珪素複合焼結体を得
た。得られた焼結体の強度試験を行い、結果を表7に示
す。
Using the obtained silicon nitride / silicon carbide composite powder, molding was performed under the same conditions as in Example 1, and H was formed under the same conditions as in Example 1.
IP sintering was performed to obtain a silicon nitride / silicon carbide composite sintered body. A strength test was performed on the obtained sintered body, and the results are shown in Table 7.

【0063】実施例5 (1) 複合粉末の作製 平均粒径が0.7 μmの珪素粉末(JIS MSi 1 )と、炭素
質として粒径が5μm以下のカーボン粉末と、平均粒径
が1μmのLu2 3 粉末とを、表4に示す割合で(た
だし、実施例1と同様に表10に示した目的配合比より
計算した値である。)秤量し、ボールミルにより200 重
量部のエタノールを溶媒として100 重量部のボールとと
もに18時間混合し、乾燥した。
Example 5 (1) Preparation of composite powder Silicon powder (JIS MSi 1) having an average particle size of 0.7 μm, carbon powder having a particle size of 5 μm or less as carbonaceous material, and Lu 2 having an average particle size of 1 μm O 3 powder was weighed at a ratio shown in Table 4 (however, the value was calculated from the target compounding ratio shown in Table 10 as in Example 1), and 200 parts by weight of ethanol was used as a solvent by a ball mill. It was mixed with 100 parts by weight of balls for 18 hours and dried.

【0064】 表4 原料粉末組成 重量(g) 配合比(重量%) 珪素粉末 270.1 71.2 カーボン粉末 38.7 10.2 Lu2 3 粉末 70.5 18.6 Table 4 Raw material powder composition Weight (g) Mixing ratio (% by weight) Silicon powder 270.1 71.2 Carbon powder 38.7 10.2 Lu 2 O 3 powder 70.5 18.6

【0065】得られた原料粉末を反応容器に入れ、1150
℃からの昇温速度を0.5 ℃/分として1230℃まで昇温し
た後、60分間保持した。雰囲気は窒素ガス雰囲気として
9kgf /cm2 のガス圧下で窒化/炭化反応を起こさせた
後、200 重量部のアルコール及び200 重量部の窒化珪素
ボールとともに2リットルのポリエチレンポットに入れ
て、ボールミルで7日間粉砕し、複合粉末を調製した。
得られた複合粉末のα型窒化珪素の含有率を実施例1と
同様に求めた。結果を表7に示す。
The obtained raw material powder was placed in a reaction vessel, and 1150
After the temperature was raised to 1230 ° C. at a rate of 0.5 ° C./min from the temperature, the temperature was maintained for 60 minutes. Nitrogen gas atmosphere was used as a nitrogen gas atmosphere to cause nitriding / carburizing reaction under a gas pressure of 9 kgf / cm 2 , then put it in a 2 liter polyethylene pot together with 200 parts by weight of alcohol and 200 parts by weight of silicon nitride balls, and use a ball mill for 7 Milling was carried out for a day to prepare a composite powder.
The α-type silicon nitride content of the obtained composite powder was determined in the same manner as in Example 1. The results are shown in Table 7.

【0066】(2) 複合焼結体の作製 (1) で得た複合粉末を用いて、実施例1と同じ条件で成
形した。この成形体を9kgf /cm2 の窒素ガス雰囲気
中、2000℃で4時間常圧焼結し、ついで1000kgf/cm2
の窒素ガス雰囲気中、1850℃て1時間HIP焼結した。
実施例1と同様に得られた複合焼結体の強度試験を行
い、結果を表7に示す。
(2) Preparation of Composite Sintered Body Using the composite powder obtained in (1), it was molded under the same conditions as in Example 1. This compact was sintered in a nitrogen gas atmosphere of 9 kgf / cm 2 at 2000 ° C. for 4 hours under normal pressure, and then 1000 kgf / cm 2
HIP sintering was performed at 1850 ° C. for 1 hour in a nitrogen gas atmosphere.
A strength test was performed on the composite sintered body obtained in the same manner as in Example 1, and the results are shown in Table 7.

【0067】実施例6 (1) 複合粉末の作製 平均粒径が0.7 μmの珪素粉末(JIS MSi 1 )と、炭素
質として粒径が5μm以下のカーボン粉末と、平均粒径
が1μmのLu2 3 粉末と、平均粒径が2μmのAl
N粉末とを、表5に示す割合で(ただし、実施例1と同
様に表10に示した目的配合比より計算した値であ
る。)秤量し、ボールミルにより200 重量部のエタノー
ルを溶媒として100 重量部のボールとともに18時間混合
し、乾燥した。
Example 6 (1) Preparation of Composite Powder A silicon powder (JIS MSi 1) having an average particle size of 0.7 μm, a carbon powder having a particle size of 5 μm or less as carbonaceous material, and Lu 2 having an average particle size of 1 μm O 3 powder and Al with an average particle size of 2 μm
N powder was weighed at a ratio shown in Table 5 (however, the value was calculated from the target compounding ratio shown in Table 10 as in Example 1), and 200 parts by weight of ethanol was used as a solvent to make 100 It was mixed with 18 parts by weight of balls for 18 hours and dried.

【0068】 表5 原料粉末組成 重量(g) 配合比(重量%) 珪素粉末 266.3 69.9 カーボン粉末 38.1 10.0 Lu2 3 粉末 61.7 16.2 AlN粉末 15.0 3.9 Table 5 Raw material powder composition Weight (g) Mixing ratio (% by weight) Silicon powder 266.3 69.9 Carbon powder 38.1 10.0 Lu 2 O 3 powder 61.7 16.2 AlN powder 15.0 3.9

【0069】得られた原料粉末を実施例5と同じ方法で
窒化/炭化反応を起こさせた後、200 重量部のアルコー
ル及び200 重量部の窒化珪素ボールとともに2リットル
のポリエチレンポットに入れて、ボールミルで7日間粉
砕し、複合粉末を調製した。得られた複合粉末のα型窒
化珪素の含有率を実施例1と同様に求めた。結果を表7
に示す。
The obtained raw material powder was subjected to a nitriding / carbonization reaction in the same manner as in Example 5, and then put into a 2-liter polyethylene pot together with 200 parts by weight of alcohol and 200 parts by weight of silicon nitride balls. For 7 days to prepare a composite powder. The α-type silicon nitride content of the obtained composite powder was determined in the same manner as in Example 1. The results are shown in Table 7.
Shown in

【0070】(2) 複合焼結体の作製 (1) で得た複合粉末を用いて、実施例1と同じ条件で成
形した後、実施例5と同じ方法で常圧焼結及びHIP焼
結を行った。実施例1と同様に得られた複合焼結体の強
度試験を行い、結果を表7に示す。
(2) Preparation of Composite Sintered Body The composite powder obtained in (1) was molded under the same conditions as in Example 1 and then subjected to normal pressure sintering and HIP sintering in the same manner as in Example 5. Was done. A strength test was performed on the composite sintered body obtained in the same manner as in Example 1, and the results are shown in Table 7.

【0071】比較例5 焼結助剤としてLu2 3 粉末に替えて平均粒径1μm
のIn2 3 粉末を用いた以外は、実施例6と同じ原料
粉末を表6に示す割合で(ただし、実施例1と同様に表
10に示した目的配合比より計算した値である。)秤量
し、ボールミルにより200 重量部のエタノールを溶媒と
して100 重量部のボールとともに18時間混合し、乾燥し
た。
Comparative Example 5 An average particle size of 1 μm was used instead of Lu 2 O 3 powder as a sintering aid.
Except for using In 2 O 3 powder, the same raw material powders as in Example 6 in the proportions indicated in Table 6 (provided that the value calculated from the object compounding ratio shown in the same manner as Table 10 in Example 1. ) Weighed and mixed with 200 parts by weight of ethanol as a solvent together with 100 parts by weight of a ball by a ball mill for 18 hours and dried.

【0072】 表6 原料粉末組成 重量(g) 配合比(重量%) 珪素粉末 278.0 74.0 カーボン粉末 39.8 10.6 In2 3 粉末 43.0 11.4 AlN粉末 15.0 4.0 Table 6 Raw material powder composition Weight (g) Mixing ratio (% by weight) Silicon powder 278.0 74.0 Carbon powder 39.8 10.6 In 2 O 3 powder 43.0 11.4 AlN powder 15.0 4.0

【0073】得られた原料粉末を実施例5と同じ方法で
窒化/炭化反応を起こさせた後、200 重量部のアルコー
ル及び200 重量部の窒化珪素ボールとともに2リットル
のポリエチレンポットに入れて、ボールミルで7日間粉
砕し、複合粉末を調製した。得られた複合粉末のα型窒
化珪素の含有率を実施例1と同様に求めた。結果を表7
に示す。
The obtained raw material powder was subjected to a nitriding / carbonization reaction in the same manner as in Example 5, then put into a 2 liter polyethylene pot together with 200 parts by weight of alcohol and 200 parts by weight of silicon nitride balls, and then ball milled. For 7 days to prepare a composite powder. The α-type silicon nitride content of the obtained composite powder was determined in the same manner as in Example 1. The results are shown in Table 7.
Shown in

【0074】得られた複合粉末を用いて、実施例1と同
じ条件で成形した後、実施例5と同じ方法で常圧焼結及
びHIP焼結を行った。実施例1と同様に得られた複合
焼結体の強度試験を行い、結果を表7に示す。
The obtained composite powder was molded under the same conditions as in Example 1, and then pressureless sintering and HIP sintering were performed in the same manner as in Example 5. A strength test was performed on the composite sintered body obtained in the same manner as in Example 1, and the results are shown in Table 7.

【0075】[0075]

【表7】 [Table 7]

【0076】表7から分かるように、窒化/炭化反応時
の昇温速度を2℃/分にした比較例1〜3の複合粉末で
は、昇温速度を0.5 ℃/分にした実施例1〜4に比べα
型窒化珪素の含有率が大きく低下した。また、焼結助剤
を含んでいない比較例4及び焼結助剤としてIn2 3
粉末を用いた比較例5では、実施例1及び実施例5、6
に比べてα型窒化珪素の含有率が大きく低下した。
As can be seen from Table 7, in the composite powders of Comparative Examples 1 to 3 in which the heating rate during the nitriding / carbonization reaction was 2 ° C./min, Examples 1 to 3 in which the heating rate was 0.5 ° C./min. Α compared to 4
The content of type silicon nitride was greatly reduced. Further, Comparative Example 4 containing no sintering aid and In 2 O 3
In Comparative Example 5 using powder, Examples 1 and 5 and 6 were used.
, The content of α-type silicon nitride was greatly reduced.

【0077】実施例7 (1) 複合成形体の作製 平均粒径が0.5 μmの珪素粉末(JIS MSi 1 )と、炭素
質として粒径が5μm以下のカーボン粉末と、平均粒径
が0.1 μmの窒化珪素粉末と、平均粒径が0.2μmの炭
化珪素粉末と、平均粒径が1.4 μmのY2 3 粉末と
を、表8に示す割合で(ただし、実施例1と同様に表1
0に示した目的配合比より計算した値である。)秤量
し、ボールミルにより200 重量部のエタノールを溶媒と
して100 重量部のボールとともに18時間混合し、乾燥し
た。
Example 7 (1) Preparation of Composite Molded Product A silicon powder (JIS MSi 1) having an average particle size of 0.5 μm, a carbon powder having a particle size of 5 μm or less as carbonaceous material, and a carbon powder having an average particle size of 0.1 μm A silicon nitride powder, a silicon carbide powder having an average particle diameter of 0.2 μm, and a Y 2 O 3 powder having an average particle diameter of 1.4 μm were mixed at the ratio shown in Table 8 (however, Table 1 was used in the same manner as in Example 1).
It is a value calculated from the target compounding ratio shown in 0. ) Weighed, mixed with a ball mill for 100 hours using 200 parts by weight of ethanol as a solvent together with 100 parts by weight of balls, and dried.

【0078】 表8 原料粉末組成 重量(g) 配合比(重量%) 珪素粉末 274.9 72.9 カーボン粉末 39.4 10.4 窒化珪素粉末 16.1 4.3 炭化珪素粉末 6.9 1.8 2 3 粉末 40.0 10.6 Table 8 Raw material powder composition Weight (g) Blending ratio (wt%) Silicon powder 274.9 72.9 Carbon powder 39.4 10.4 Silicon nitride powder 16.1 4.3 Silicon carbide powder 6.9 1.8 Y 2 O 3 powder 40.0 10.6

【0079】得られた原料粉末を55×35×6mmの形状に
予備成形した後、CIP装置で4トン/平方センチメー
トルの等方圧を加えた。得られた成形体を反応容器に入
れ、1200℃からの昇温速度を0.5 ℃/分として1450℃ま
で昇温した後、30分間保持した。雰囲気は20容量%の水
素ガスと80容量%の窒素ガスとの混合ガス雰囲気とし
て、9kgf /cm2 のガス圧下で窒化/炭化反応を起こさ
せ、複合成形体を調製した。得られた複合成形体のα型
窒化珪素の含有率を実施例1と同様に求めた。結果を表
11に示す。
After the obtained raw material powder was preformed into a shape of 55 × 35 × 6 mm, an isotropic pressure of 4 tons / cm 2 was applied by a CIP device. The obtained molded body was placed in a reaction vessel, heated to 1450 ° C. at a rate of 0.5 ° C./min from 1200 ° C., and held for 30 minutes. The atmosphere was a mixed gas atmosphere of 20% by volume of hydrogen gas and 80% by volume of nitrogen gas, and a nitriding / carbonization reaction was caused under a gas pressure of 9 kgf / cm 2 to prepare a composite molded body. The content rate of α-type silicon nitride of the obtained composite molded body was determined in the same manner as in Example 1. The results are shown in Table 11.

【0080】(2) 複合焼結体の作製 (1) で得た複合成形体を、9kgf /cm2 の窒素ガス雰囲
気中、2050℃で4時間常圧焼結し、ついで1000kgf /cm
2 の窒素ガス雰囲気中、1900℃て1時間HIP焼結し
た。得られた焼結体の組織を電子顕微鏡で観察したとこ
ろ、ナノコンポジット構造を有することが分かった。実
施例1と同様に得られた複合焼結体の強度試験を行い、
結果を表11に示す。
(2) Production of Composite Sintered Body The composite molded body obtained in (1) was sintered at 2050 ° C. for 4 hours under a nitrogen gas atmosphere of 9 kgf / cm 2 at normal pressure, and then 1000 kgf / cm 2
HIP sintering was performed at 1900 ° C. for 1 hour in a nitrogen gas atmosphere of No. 2 . Observation of the structure of the obtained sintered body with an electron microscope revealed that the structure had a nanocomposite structure. A strength test was performed on the composite sintered body obtained in the same manner as in Example 1,
The results are shown in Table 11.

【0081】実施例8 (1) 複合成形体の作製 実施例7で得た原料粉末を用いて、実施例7と同じ条件
で成形し、実施例7と同じ条件で窒化/炭化反応を起こ
させ、複合成形体を調製した。得られた複合成形体のα
型窒化珪素の含有率を実施例1と同様に求めた。結果を
表11に示す。
Example 8 (1) Preparation of Composite Molded Article The raw material powder obtained in Example 7 was molded under the same conditions as in Example 7, and a nitriding / carbonization reaction was caused under the same conditions as in Example 7. A composite molded article was prepared. Α of the obtained composite molded body
The content of type silicon nitride was determined in the same manner as in Example 1. The results are shown in Table 11.

【0082】(2) 複合焼結体の作製 (1) で得た複合成形体を700 ℃の酸化雰囲気下で24時間
処理した後、実施例7と同じ条件で常圧焼結及びHIP
焼結を行った。実施例1と同様に得られた複合焼結体の
強度試験を行い、結果を表11に示す。
(2) Preparation of Composite Sintered Body After the composite molded body obtained in (1) was treated in an oxidizing atmosphere at 700 ° C. for 24 hours, normal pressure sintering and HIP were performed under the same conditions as in Example 7.
Sintering was performed. The composite sintered body obtained in the same manner as in Example 1 was subjected to a strength test, and the results are shown in Table 11.

【0083】実施例9 (1) 複合成形体の作製 実施例7で使用した原料粉末と、平均粒径が1μmのS
iO2 粉末とを、表9に示す割合で(ただし、実施例1
と同様に表10に示した目的配合比より計算した値であ
る。)秤量し、実施例7と同じ条件で混合、乾燥した。
得られた原料粉末を実施例7と同じように成形体とし、
実施例7と同じ条件で窒化/炭化反応を起こさせ、複合
成形体を調製した。得られた複合成形体のα型窒化珪素
の含有率を実施例1と同様に求めた。結果を表11に示
す。
Example 9 (1) Production of Composite Molded Product The raw material powder used in Example 7 was mixed with S having an average particle size of 1 μm.
iO 2 powder at a ratio shown in Table 9 (however,
It is a value calculated from the target compounding ratio shown in Table 10 in the same manner as in. ) Weighed, mixed and dried under the same conditions as in Example 7.
The obtained raw material powder was formed into a compact in the same manner as in Example 7,
Under the same conditions as in Example 7, a nitriding / carbonization reaction was caused to prepare a composite molded body. The content rate of α-type silicon nitride of the obtained composite molded body was determined in the same manner as in Example 1. The results are shown in Table 11.

【0084】 表9 原料粉末組成 重量(g) 配合比(重量%) 珪素粉末 164.6 72.7 カーボン粉末 23.6 10.4 窒化珪素粉末 9.7 4.3 炭化珪素粉末 4.1 1.8 Y2 3 粉末 24.0 10.6 SiO2 粉末 0.4 0.2 Table 9 Raw material powder composition Weight (g) Blend ratio (wt%) Silicon powder 164.6 72.7 Carbon powder 23.6 10.4 Silicon nitride powder 9.7 4.3 Silicon carbide powder 4.1 1.8 Y 2 O 3 powder 24.0 10.6 SiO 2 powder 0.4 0.2

【0085】(2) 複合焼結体の作製 (1) で得た複合成形体を実施例7と同じ条件で常圧焼結
及びHIP焼結を行った。実施例1と同様に得られた複
合焼結体の強度試験を行い、結果を表11に示す。
(2) Production of composite sintered body The composite molded body obtained in (1) was subjected to normal pressure sintering and HIP sintering under the same conditions as in Example 7. The composite sintered body obtained in the same manner as in Example 1 was subjected to a strength test, and the results are shown in Table 11.

【0086】比較例6 (1) 複合成形体の作製 実施例7で得た原料粉末を用いて、実施例7と同じ条件
で成形し、実施例7と同じ条件で窒化/炭化反応を起こ
させ、複合成形体を調製した。得られた複合成形体のα
型窒化珪素の含有率を実施例1と同様に求めた。結果を
表11に示す。
Comparative Example 6 (1) Preparation of Composite Molded Body The raw material powder obtained in Example 7 was used for molding under the same conditions as in Example 7, and a nitriding / carbonization reaction was caused under the same conditions as in Example 7. , A composite molded body was prepared. Α of the obtained composite molded body
The content of type silicon nitride was determined in the same manner as in Example 1. The results are shown in Table 11.

【0087】(2) 複合焼結体の作製 (1) で得た複合成形体を1300℃の酸化雰囲気下で24時間
処理した後、実施例7と同じ条件で常圧焼結を行った
が、焼結体は分解して密度測定も困難な状態になったた
め、実験は中止した。
(2) Preparation of Composite Sintered Body The composite molded body obtained in (1) was treated in an oxidizing atmosphere at 1300 ° C. for 24 hours, and then pressureless sintering was carried out under the same conditions as in Example 7. Since the sintered body was decomposed and the density measurement became difficult, the experiment was stopped.

【0088】 表10 生成した複合粉末又は複合成形体の目的配合比 焼結助剤 : 母材(SiCN) 窒化珪素:炭化珪素 実施例1 7重量%Y2 3 90重量% 66重量% 34重量%(1) 3重量%AlN 実施例2 7重量%Y2 3 90重量% 66重量% 34重量%(1) 3重量%AlN 実施例3 8重量%Y2 3 92重量% 70重量% 30重量%(1) 実施例4 8重量%Y2 3 92重量% 70重量% 30重量%(1) 実施例5 14.1重量%Lu2 3 85.9重量% 70重量% 30重量% 実施例6 12.34 重量%Lu2 3 84.66 重量% 70重量% 30重量% 3重量%AlN 実施例7 8重量%Y2 3 92重量% 70重量% 30重量%(1) 実施例8 8重量%Y2 3 92重量% 70重量% 30重量%(1) 実施例9 8重量%Y2 3 91.86 重量% 70重量% 30重量%(1) 0.14重量%SiO2 比較例1 7重量%Y2 3 90重量% 66重量% 34重量%(1) 3重量%AlN 比較例2 7重量%Y2 3 90重量% 66重量% 34重量%(1) 3重量%AlN 比較例3 7重量%Y2 3 90重量% 66重量% 34重量%(1) 3重量%AlN 比較例4 − 100 重量% 66重量% 34重量%(1) 比較例5 8.61重量%In2 3 88.39 重量% 70重量% 30重量% 3重量%AlN比較例6 8重量%Y2 3 92重量% 70重量% 30重量%(1) 注(1):原料粉末に種晶として5重量%づつ加えた窒化珪素及び炭化珪素を 含む。Table 10 Objective mixing ratio of the produced composite powder or composite molded body Sintering aid: Base material (SiCN) Silicon nitride: Silicon carbide Example 1 7% by weight Y 2 O 3 90% by weight 66% by weight 34% by weight % (1) 3 wt% AlN Example 2 7 wt% Y 2 O 3 90 wt% 66 wt% 34 wt% (1) 3 wt% AlN Example 3 8 wt% Y 2 O 3 92 wt% 70 wt% 30 wt% (1) Example 4 8 wt% Y 2 O 3 92 wt% 70 wt% 30 wt% (1) Example 5 14.1 wt% Lu 2 O 3 85.9 wt% 70 wt% 30 wt% Example 6 12.34 wt% Lu 2 O 3 84.66 wt% 70 wt% 30 wt% 3 wt% AlN Example 7 8 wt% Y 2 O 3 92 wt% 70 wt% 30 wt% (1) Example 8 8 wt% Y 2 O 3 92% by weight 70% by weight 30% by weight (1) Example 9 8% by weight Y 2 O 3 91.86% by weight 70% by weight 30% by weight (1) 0.14% by weight SiO 2 Comparative example 1 7% by weight Y 2 O 3 90% by weight 66% by weight 34% by weight (1) 3% by weight AlN Comparative Example 2 7% by weight Y 2 O 3 90% by weight 66% by weight 34% by weight (1) 3% by weight AlN Comparative Example 3 7% by weight Y 2 O 3 90% by weight 66 wt% 34 wt% (1) 3% by weight AlN Comparative example 4 - 100 wt% 66 wt% 34 wt% (1) Comparative example 5 8.61 wt% an In 2 O 3 88.39 wt% 70 wt% 30 wt% 3 wt% AlN Comparative example 6 8 wt% Y 2 O 3 92 wt% 70 wt% 30 wt% (1) Note (1): containing 5 wt% increments added silicon nitride and silicon carbide as seed crystals to the raw material powder.

【0089】 表11 実施例7 実施例8 実施例9 比較例6 複合成形体のα型窒化珪素 含有率(%)(1) 100 100 100 100 3点曲げ強度(MPa) 室温曲げ強度 575.1 730.3 563.6 − 1400℃曲げ強度 491.2 606.6 629.8 − 焼結体密度(g/cm3 ) 3.27 3.29 3.30 (未測定) 注(1): α型窒化珪素の含有率(%)=100 ×(102) 面と(210) 面の合計 回折強度(α型窒化珪素)/((102) 面と(210) 面の合計回折強度(α型窒化珪 素)+(101) 面と(210) 面の合計回折強度(β型窒化珪素))Table 11 Example 7 Example 8 Example 9 Comparative Example 6 α-type silicon nitride content of composite molded body (%) (1) 100 100 100 100 Three-point bending strength (MPa) Room temperature bending strength 575.1 730.3 563.6 − 1400 ° C bending strength 491.2 606.6 629.8 − Sintered body density (g / cm 3 ) 3.27 3.29 3.30 (not measured) Note (1): α-type silicon nitride content (%) = 100 × (102) Total diffraction intensity of (210) plane (α-type silicon nitride) / total diffraction intensity of ((102) plane and (210) plane (α-type silicon nitride) + total diffraction intensity of (101) plane and (210) plane ( β-type silicon nitride))

【0090】以上の通り、実施例7〜9の複合成形体が
高いα型窒化珪素含有率を示し、またそれからなる複合
焼結体が高い曲げ強度と焼結密度を示した。
As described above, the composite compacts of Examples 7 to 9 exhibited a high α-type silicon nitride content, and the composite sintered compacts thereof exhibited high bending strength and sintered density.

【0091】[0091]

【発明の効果】以上詳述したように、本発明によれば、
珪素粉末と炭素質粉末と焼結助剤とを含有する混合粉末
を出発材料として用い、窒素ガス含有雰囲気中及び特定
の昇温速度で熱処理により珪素の窒化と炭化とを起こさ
せることにより、高いα型窒化珪素含有率を有する複合
粉末及び複合成形体が得られる。このため、本発明の方
法により得られた複合粉末又は複合成形体からなる複合
焼結体は優れた高温強度、耐静疲労特性、耐摩耗性及び
硬度を有する。このような特性を有する窒化珪素/炭化
珪素複合焼結体は、高温下で使用される構造部材等に好
適である。
As described in detail above, according to the present invention,
Using a mixed powder containing a silicon powder, a carbonaceous powder, and a sintering aid as a starting material, and causing nitridation and carbonization of silicon by heat treatment in a nitrogen gas-containing atmosphere and at a specific temperature increasing rate, A composite powder and a composite compact having an α-type silicon nitride content are obtained. Therefore, the composite sintered body composed of the composite powder or composite molded body obtained by the method of the present invention has excellent high-temperature strength, static fatigue resistance, wear resistance, and hardness. The silicon nitride / silicon carbide composite sintered body having such characteristics is suitable for a structural member or the like used at a high temperature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/584 C04B 35/58 102F 35/591 102Q 102V ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C04B 35/584 C04B 35/58 102F 35/591 102Q 102V

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 珪素粉末に炭素質粉末と焼結助剤とを混
合し、得られた混合粉末を窒素ガス含有雰囲気下におい
て熱処理して、珪素の窒化と炭化とを起こして得られる
窒化珪素と炭化珪素との複合粉末において、前記複合粉
末中のα型窒化珪素の含有量が全窒化珪素の30%以上
であることを特徴とする窒化珪素/炭化珪素複合粉末。
1. A silicon nitride obtained by mixing silicon powder with carbonaceous powder and a sintering aid, and heat-treating the obtained mixed powder in an atmosphere containing nitrogen gas to cause nitriding and carbonization of silicon. And a silicon carbide composite powder, wherein the content of α-type silicon nitride in the composite powder is 30% or more of the total silicon nitride, the silicon nitride / silicon carbide composite powder.
【請求項2】 請求項1に記載の窒化珪素/炭化珪素複
合粉末において、前記焼結助剤が(a)周期律表3A族
元素及び4A族元素の酸化物からなる群より選ばれた一
種以上の化合物、又は(b)窒化アルミニウムと、前記
(a)とからなることを特徴とする窒化珪素/炭化珪素
複合粉末。
2. The silicon nitride / silicon carbide composite powder according to claim 1, wherein the sintering aid is selected from the group consisting of (a) oxides of Group 3A elements and Group 4A elements of the Periodic Table. A silicon nitride / silicon carbide composite powder comprising the above compound or (b) aluminum nitride and the above (a).
【請求項3】 請求項1又は2に記載の窒化珪素/炭化
珪素複合粉末において、前記焼結助剤の含有量は、熱処
理により生成した複合粉末の全量を100 重量%として、
5〜20重量%であることを特徴とする窒化珪素/炭化珪
素複合粉末。
3. The silicon nitride / silicon carbide composite powder according to claim 1, wherein the content of the sintering aid is 100% by weight based on the total amount of the composite powder produced by the heat treatment.
A silicon nitride / silicon carbide composite powder characterized by being 5 to 20% by weight.
【請求項4】 請求項1〜3のいずれかに記載の窒化珪
素/炭化珪素複合粉末において、前記混合粉末は、珪素
粉末と、炭素質粉末と、焼結助剤と、窒化珪素及び/又
は炭化珪素とを混合してなることを特徴とする窒化珪素
/炭化珪素複合粉末。
4. The silicon nitride / silicon carbide composite powder according to claim 1, wherein the mixed powder is silicon powder, carbonaceous powder, a sintering aid, silicon nitride and / or silicon nitride. A silicon nitride / silicon carbide composite powder characterized by being mixed with silicon carbide.
【請求項5】 請求項1〜4のいずれかに記載の窒化珪
素/炭化珪素複合粉末において、炭化珪素/窒化珪素の
重量比は5/95〜50/50であることを特徴とする窒化珪
素/炭化珪素複合粉末。
5. The silicon nitride / silicon carbide composite powder according to any one of claims 1 to 4, wherein the weight ratio of silicon carbide / silicon nitride is 5/95 to 50/50. / Silicon carbide composite powder.
【請求項6】 珪素粉末に炭素質粉末と焼結助剤とを混
合し、得られた混合粉末から形成した成形体を窒素ガス
含有雰囲気下において熱処理して、珪素の窒化と炭化と
を起こして得られる窒化珪素と炭化珪素との複合成形体
において、前記複合成形体中のα型窒化珪素の含有量が
全窒化珪素の30%以上であることを特徴とする窒化珪
素/炭化珪素複合成形体。
6. A silicon powder is mixed with a carbonaceous powder and a sintering aid, and a compact formed from the resulting mixed powder is heat treated in an atmosphere containing nitrogen gas to cause nitriding and carbonization of silicon. In the composite molded body of silicon nitride and silicon carbide obtained as described above, the content of α-type silicon nitride in the composite molded body is 30% or more of the total silicon nitride. body.
【請求項7】 請求項6に記載の窒化珪素/炭化珪素複
合成形体において、前記焼結助剤が(a)周期律表3A
族元素及び4A族元素の酸化物からなる群より選ばれた
一種以上の化合物、又は(b)窒化アルミニウム及び/
又は酸化珪素と、前記(a)とからなることを特徴とす
る窒化珪素/炭化珪素複合成形体。
7. The silicon nitride / silicon carbide composite molded body according to claim 6, wherein the sintering aid is (a) Periodic Table 3A.
One or more compounds selected from the group consisting of oxides of Group 4 elements and Group 4A elements, or (b) aluminum nitride and / or
Alternatively, a silicon nitride / silicon carbide composite molded body comprising silicon oxide and the above (a).
【請求項8】 請求項6又は7に記載の窒化珪素/炭化
珪素複合成形体において、前記焼結助剤の含有量は、熱
処理により生成した複合成形体の全量を100 重量%とし
て、5〜20重量%であることを特徴とする窒化珪素/炭
化珪素複合成形体。
8. The silicon nitride / silicon carbide composite molded body according to claim 6 or 7, wherein the content of the sintering aid is 5 to 100% by weight of the total amount of the composite molded body produced by the heat treatment. 20% by weight of a silicon nitride / silicon carbide composite molded body.
【請求項9】 請求項6〜8のいずれかに記載の窒化珪
素/炭化珪素複合成形体において、前記混合粉末は、珪
素粉末と、炭素質粉末と、焼結助剤と、窒化珪素及び/
又は炭化珪素とを混合してなることを特徴とする窒化珪
素/炭化珪素複合成形体。
9. The silicon nitride / silicon carbide composite molded body according to claim 6, wherein the mixed powder is silicon powder, carbonaceous powder, a sintering aid, silicon nitride and / or
Alternatively, a silicon nitride / silicon carbide composite molded body characterized by being mixed with silicon carbide.
【請求項10】 請求項6〜9のいずれかに記載の窒化
珪素/炭化珪素複合成形体において、炭化珪素/窒化珪
素の重量比は5/95〜50/50であることを特徴とする窒
化珪素/炭化珪素複合成形体。
10. The silicon nitride / silicon carbide composite molded body according to claim 6, wherein the weight ratio of silicon carbide / silicon nitride is 5/95 to 50/50. Silicon / silicon carbide composite molded body.
【請求項11】 α型窒化珪素の含有量が全窒化珪素の
30%以上である窒化珪素/炭化珪素複合粉末の製造方
法において、珪素粉末に炭素質粉末と焼結助剤とを混合
し、得られた混合粉末を窒素ガス含有雰囲気下において
熱処理して、珪素の窒化と炭化とを起こし、その際窒化
炭化反応を1000℃〜1450℃の温度で行い、かつ少なくと
も反応開始前の温度から保持温度に到達するまでの昇温
速度を2℃/分未満にすることを特徴とする方法。
11. In a method for producing a silicon nitride / silicon carbide composite powder, wherein the content of α-type silicon nitride is 30% or more of the total silicon nitride, a carbonaceous powder and a sintering aid are mixed with silicon powder, The obtained mixed powder is heat-treated in a nitrogen gas-containing atmosphere to cause nitriding and carbonization of silicon, in which case the nitriding carbonization reaction is performed at a temperature of 1000 ° C to 1450 ° C, and at least maintained from the temperature before the start of the reaction. A method characterized in that the rate of temperature increase until the temperature is reached is less than 2 ° C / min.
【請求項12】 α型窒化珪素の含有量が全窒化珪素の
30%以上である窒化珪素/炭化珪素複合成形体の製造
方法において、珪素粉末に炭素質粉末と焼結助剤とを混
合し、得られた混合粉末から成形体を形成し、前記成形
体を窒素ガス含有雰囲気下において熱処理して、珪素の
窒化と炭化とを起こし、その際窒化炭化反応を1000℃〜
1450℃の温度で行い、かつ少なくとも反応開始前の温度
から保持温度に到達するまでの昇温速度を2℃/分未満
にすることを特徴とする方法。
12. A method for producing a silicon nitride / silicon carbide composite compact having an α-type silicon nitride content of 30% or more of the total silicon nitride, wherein carbon powder and a sintering aid are mixed with silicon powder. A molded body is formed from the obtained mixed powder, and the molded body is heat-treated in an atmosphere containing nitrogen gas to cause nitriding and carbonization of silicon, at which the nitriding carbonization reaction is performed at 1000 ° C to
A method which is carried out at a temperature of 1450 ° C., and at least the temperature rising rate from the temperature before the start of the reaction until the temperature reaches the holding temperature is less than 2 ° C./minute.
【請求項13】 窒化珪素/炭化珪素複合焼結体を製造
する方法において、請求項1〜5に記載の窒化珪素/炭
化珪素複合粉末から成形体を形成し、前記成形体を窒素
ガス含有雰囲気中において1600℃〜2200℃で焼結するこ
とを特徴とする方法。
13. A method for producing a silicon nitride / silicon carbide composite sintered body, wherein a molded body is formed from the silicon nitride / silicon carbide composite powder according to claim 1, and the molded body is subjected to a nitrogen gas-containing atmosphere. A method characterized by sintering at 1600 ° C to 2200 ° C in a medium.
【請求項14】 窒化珪素/炭化珪素複合焼結体を製造
する方法において、請求項6〜10に記載の窒化珪素/
炭化珪素複合成形体を窒素ガス含有雰囲気中において16
00℃〜2200℃で焼結することを特徴とする方法。
14. A method for producing a silicon nitride / silicon carbide composite sintered body, wherein the silicon nitride / silicon nitride according to claim 6 is used.
The silicon carbide composite compact was placed in an atmosphere containing nitrogen gas.
A method comprising sintering at 00 ° C to 2200 ° C.
【請求項15】 請求項14に記載の窒化珪素/炭化珪
素複合焼結体を製造する方法において、前記窒化珪素/
炭化珪素複合成形体を酸化性雰囲気中において1300℃未
満で熱処理した後、窒素ガス含有雰囲気中において1600
℃〜2200℃で焼結することを特徴とする方法。
15. The method for producing a silicon nitride / silicon carbide composite sintered body according to claim 14, wherein
After heat-treating a silicon carbide composite compact at a temperature of less than 1300 ° C. in an oxidizing atmosphere, then perform 1600 in an atmosphere containing nitrogen gas.
A method characterized by sintering at ℃ ~ 2200 ℃.
JP7319737A 1994-03-30 1995-11-14 Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body Expired - Fee Related JP2649220B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7319737A JP2649220B2 (en) 1994-11-29 1995-11-14 Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
US08/625,043 US5767025A (en) 1994-03-30 1996-03-29 Composite powder comprising silicon nitride and silicon carbide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-319037 1994-11-29
JP31903794 1994-11-29
JP7319737A JP2649220B2 (en) 1994-11-29 1995-11-14 Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body

Publications (2)

Publication Number Publication Date
JPH08225311A true JPH08225311A (en) 1996-09-03
JP2649220B2 JP2649220B2 (en) 1997-09-03

Family

ID=26569580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7319737A Expired - Fee Related JP2649220B2 (en) 1994-03-30 1995-11-14 Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body

Country Status (1)

Country Link
JP (1) JP2649220B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024531A (en) * 2006-07-18 2008-02-07 National Institute Of Advanced Industrial & Technology Ceramic structure and method of manufacturing the same
JP2011051856A (en) * 2009-09-03 2011-03-17 Denki Kagaku Kogyo Kk Method for producing high-purity silicon nitride fine powder
JP2017532792A (en) * 2014-09-05 2017-11-02 モッセイ クリーク テクノロジーズ インコーポレイテッド Nanostructured porous thermoelectric generator
CN114262230A (en) * 2021-12-17 2022-04-01 中国科学院上海硅酸盐研究所 Silicon nitride-silicon carbide porous ceramic wave-absorbing material and preparation method thereof
CN114956829A (en) * 2022-06-18 2022-08-30 江苏诺明高温材料股份有限公司 Silicon nitride and silicon carbide combined brick for dry quenching chute and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246965A (en) * 1985-08-23 1987-02-28 黒崎窯業株式会社 Sic-si3n4 base composite ceramics and manufacture
JPH03261611A (en) * 1990-03-09 1991-11-21 Nippon Cement Co Ltd Production of silicon nitride composite powder
JPH05509074A (en) * 1990-07-24 1993-12-16 イートン コーポレーション Method for manufacturing silicon nitride articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246965A (en) * 1985-08-23 1987-02-28 黒崎窯業株式会社 Sic-si3n4 base composite ceramics and manufacture
JPH03261611A (en) * 1990-03-09 1991-11-21 Nippon Cement Co Ltd Production of silicon nitride composite powder
JPH05509074A (en) * 1990-07-24 1993-12-16 イートン コーポレーション Method for manufacturing silicon nitride articles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024531A (en) * 2006-07-18 2008-02-07 National Institute Of Advanced Industrial & Technology Ceramic structure and method of manufacturing the same
JP4714816B2 (en) * 2006-07-18 2011-06-29 独立行政法人産業技術総合研究所 Ceramic structure and manufacturing method thereof
JP2011051856A (en) * 2009-09-03 2011-03-17 Denki Kagaku Kogyo Kk Method for producing high-purity silicon nitride fine powder
JP2017532792A (en) * 2014-09-05 2017-11-02 モッセイ クリーク テクノロジーズ インコーポレイテッド Nanostructured porous thermoelectric generator
CN114262230A (en) * 2021-12-17 2022-04-01 中国科学院上海硅酸盐研究所 Silicon nitride-silicon carbide porous ceramic wave-absorbing material and preparation method thereof
CN114956829A (en) * 2022-06-18 2022-08-30 江苏诺明高温材料股份有限公司 Silicon nitride and silicon carbide combined brick for dry quenching chute and preparation method thereof

Also Published As

Publication number Publication date
JP2649220B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
JPS6256104B2 (en)
JPH0925166A (en) Aluminum nitride sintered compact and its production
US6261511B1 (en) Method for producing ceramic composite particle
US4716133A (en) Method for production of silicon nitride sintered body
US5767025A (en) Composite powder comprising silicon nitride and silicon carbide
JPH05201768A (en) Silicon nitride-silicon carbide combined sintered compact and its production
US5648028A (en) Method of manufacturing a sintered composite body of silicon nitride and silicon carbide
US5912200A (en) Composite powder and method of manufacturing sintered body therefrom
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
KR102555662B1 (en) Method for Preparing Silicon Nitride Sintered Body and The Silicon Nitride Sintered Body Prepared by The Same
JPH03261611A (en) Production of silicon nitride composite powder
JP3979680B2 (en) Silicon nitride powder for silicon nitride sintered body, silicon nitride sintered body and method for producing the same
JP2826080B2 (en) Silicon nitride / silicon carbide composite sintered body and method for producing composite powder
JPH06116045A (en) Silicon nitride sintered compact and its production
JP2855460B2 (en) Method for producing silicon nitride-based composite powder
JPH08319168A (en) Production of sialon ceramic
JPH06279124A (en) Production of silicon nitride sintered compact
JPH01145380A (en) Production of silicon nitride sintered form
JPH0559073B2 (en)
JPH1129361A (en) Silicon nitride sintered product and its production
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH08157262A (en) Aluminum nitride sintered compact and its production
JPH10182237A (en) Silicon nitride-base composite sintered compact and its production
JPH01172276A (en) Production of compound ceramic comprising beta-sialon
JP2002293638A (en) Silicon nitride sintered compact

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees