JPH03261611A - Production of silicon nitride composite powder - Google Patents

Production of silicon nitride composite powder

Info

Publication number
JPH03261611A
JPH03261611A JP2056690A JP5669090A JPH03261611A JP H03261611 A JPH03261611 A JP H03261611A JP 2056690 A JP2056690 A JP 2056690A JP 5669090 A JP5669090 A JP 5669090A JP H03261611 A JPH03261611 A JP H03261611A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
composite powder
silicon
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2056690A
Other languages
Japanese (ja)
Inventor
Jiyunichirou Hakoshima
箱島 順一郎
Yutaka Akiyama
豊 秋山
Keizo Tsukamoto
塚本 惠三
Senjo Yamagishi
山岸 千丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP2056690A priority Critical patent/JPH03261611A/en
Publication of JPH03261611A publication Critical patent/JPH03261611A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a raw material for high-strength silicon nitride composite material by heating a mixture of Si powder and carbonaceous powder in a nitrogen-containing inert gas atmosphere and causing carbonization reaction of Si and nitriding reaction at the same time. CONSTITUTION:Metal Si powder is blended with carbonaceous powder to give a powder mixture. The mixture is heated to <=1,400 deg.C in a nitrogen-containing inert gas atmosphere. Carbonization reaction of the Si powder and nitriding reaction are effected at the same time. The synthesized silicon.carbide silicon.nitride composite powder has uniformly dispersed silicon carbide and composite ceramics produced from the powder has both excellent strength and fracture toughness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化けい素複合粉末の製造方法に関し、詳しく
は高強度を有する窒化けい素糸複合焼結体の原料となる
窒化けい素複合粉末の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing silicon nitride composite powder, and more specifically, silicon nitride composite powder that is a raw material for a silicon nitride yarn composite sintered body having high strength. The present invention relates to a manufacturing method.

[従来の技術] 窒化けい素糸セラミックスは、高温強度、耐摩耗性など
に優れているため、各種耐火物材料、エンジン部材など
構造用セラミックス材料として注目されているが、単体
セラミックスでは破壊靭性値が低いため、炭化けい素と
複合して、破壊靭性値を向上させる試みがなされている
[Conventional technology] Silicon nitride thread ceramics are attracting attention as structural ceramic materials for various refractory materials and engine parts because of their excellent high-temperature strength and wear resistance. Because of its low fracture toughness, attempts have been made to improve its fracture toughness by combining it with silicon carbide.

炭化けい素との複合化方法としては、炭化けい素粉末と
窒化けい素糸粉末とを混合した後、焼結する方法がとら
れている。
As a method for compositing with silicon carbide, a method is used in which silicon carbide powder and silicon nitride thread powder are mixed and then sintered.

[発明が解決しようとする課題1 しかしながら、炭化けい素粉末と窒化けい素粉末とを慣
用の方法であるボールミルなどで混合してち、両粉末が
完全に均一に分散した混合粉末は得難い。そのため、混
合粉末を用いた焼結体の破壊靭性値は、単体の窒化けい
素糸焼結体のそれと比較して僅かな特性向上効果しか得
られず、不均一となっている混合部分が、焼結体とした
場合に欠陥となり、逆に強度低下を招くといった問題点
があった。
[Problem to be Solved by the Invention 1] However, by mixing silicon carbide powder and silicon nitride powder using a conventional method such as a ball mill, it is difficult to obtain a mixed powder in which both powders are completely and uniformly dispersed. Therefore, the fracture toughness value of the sintered body using the mixed powder has only a slight property improvement effect compared to that of the single silicon nitride thread sintered body, and the uneven mixed part When it is made into a sintered body, it causes defects, which causes a decrease in strength.

[問題点を解決するための手段〕 本発明者らは、炭化けい素粉末と窒化けい素粉末の分散
が均一となる方法を種々検討した結果、炭化けい素粉末
と窒化けい素粉末を同時に合成することにより、両者が
均一に分散した複合粉末を得るに至り、本複合粉末を焼
結してなる複合結晶体が、破壊靭性、強度ともに従来の
技術による焼結体よりも優れていることを見出し、本発
明を完成するに至った。
[Means for Solving the Problems] The present inventors investigated various methods for uniformly dispersing silicon carbide powder and silicon nitride powder, and as a result, they synthesized silicon carbide powder and silicon nitride powder simultaneously. By doing this, we were able to obtain a composite powder in which both were uniformly dispersed, and it was confirmed that the composite crystal obtained by sintering this composite powder has superior fracture toughness and strength to sintered bodies produced using conventional techniques. This discovery led to the completion of the present invention.

すなわち、本発明は、金属Si粉末と炭素質粉末とを混
合し、該混合物を窒素含有不活性ガス雰囲気中、 14
00℃以下の温度で加熱し、金属Si粉宋の炭化反応と
窒化反応とを同時に行なうことを特徴とする窒化けい素
複合粉末の製造方法である。
That is, in the present invention, a metal Si powder and a carbonaceous powder are mixed, and the mixture is heated in a nitrogen-containing inert gas atmosphere.
This is a method for producing a silicon nitride composite powder, which is characterized in that it is heated at a temperature of 00° C. or lower to simultaneously perform a carbonization reaction and a nitridation reaction of metal Si powder.

[作用] 本発明の方法によれば、金属Si粉末と炭素質粉末とが
反応して炭化けい素を生成すると同時に。
[Operation] According to the method of the present invention, metal Si powder and carbonaceous powder react to generate silicon carbide at the same time.

金属Si粉末と窒素ガスが窒化けい素粉末を生成し、炭
化けい素粉末と窒化けい素粉末とが反応段階で均一に分
散した複合粉末が合成され、no+オーダーの分散相を
有する、いわゆるナノコンポジットに複合された混合粉
末が得られる。
Metallic Si powder and nitrogen gas produce silicon nitride powder, and a composite powder in which silicon carbide powder and silicon nitride powder are uniformly dispersed in the reaction stage is synthesized, resulting in a so-called nanocomposite having a dispersed phase of no+ order. A mixed powder is obtained.

また、炭素質粉末は反応時における金属Siの凝固を抑
える働きがあり、より均一に上記反応が進行する。
Furthermore, the carbonaceous powder has a function of suppressing the solidification of metal Si during the reaction, so that the reaction proceeds more uniformly.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

(出発原料) 本発明に使用する出発原料である金属Si扮末及び炭素
質粉末は、慣用のものが使用できる。
(Starting Materials) As the starting materials used in the present invention, such as metal Si powder and carbonaceous powder, commonly used ones can be used.

金属Si粉末は通常の金属けい素であり、その純度は9
5%以上5、望ましくは98%以上である。
The metal Si powder is ordinary metal silicon, and its purity is 9
It is 5% or more5, preferably 98% or more.

炭素質粉末は炭化けい素の炭素源として配合するもので
あり、カーボンブラックなどの無定形炭素のほか、加熱
により炭素を分解生成するフェノール樹脂、ユリャ樹脂
などカーボン前駆物質も含まれる。
Carbonaceous powder is blended as a carbon source for silicon carbide, and includes amorphous carbon such as carbon black, as well as carbon precursors such as phenol resin and Yuria resin, which are produced by decomposing carbon when heated.

上記各原料粉末の細かさは特に限定するものではないが
、金属Si粉末については平均粒径10um以下、炭素
質粉末については、平均粒径5um以下のものを使用す
ることが好ましい。
Although the fineness of each of the above-mentioned raw material powders is not particularly limited, it is preferable to use metal Si powder with an average particle size of 10 um or less, and carbonaceous powder with an average particle size of 5 um or less.

(配合比) 上記出発原料を用いて、本発明の窒化けい素複合粉末を
合成するための原料配合は、所望する炭化けい素置に応
して炭素質粉末の配合量を制御すればよい。
(Blending Ratio) In the raw material blending for synthesizing the silicon nitride composite powder of the present invention using the above starting materials, the blending amount of the carbonaceous powder may be controlled depending on the desired silicon carbide composition.

例えば、炭化けい素置IO容量%の複合粉末を製造する
場合、金属けい素1モルに対して炭素換算量で0.03
6モル(1/28モル)の炭素質粉末を配合する。また
、焼結体として高密度、高強度の材料を必要とする場合
には、 C/Siの配合モル比を0.5以下とするのが
好ましい。0.5を超えると、常圧焼結した場合、焼結
体の密度が上がらず、ポーラスな焼結体となり、強度が
落ちる。しかしながら、ホットプレスなどを用いる加圧
焼結の場合には、焼結に際して緻密化が進むので上記配
合範囲にこだわらなくても良好な焼結体が得られる。
For example, when manufacturing a composite powder containing silicon carbide at IO% by volume, the carbon equivalent amount is 0.03 per mole of silicon metal.
6 mol (1/28 mol) of carbonaceous powder is blended. Further, when a material with high density and high strength is required as a sintered body, it is preferable that the molar ratio of C/Si is 0.5 or less. If it exceeds 0.5, the density of the sintered body will not increase when pressureless sintered, resulting in a porous sintered body and its strength will decrease. However, in the case of pressure sintering using a hot press or the like, densification progresses during sintering, so a good sintered body can be obtained without being particular about the above blending range.

(混合) 上記いずれの配合においても、各原料を慣用の装置を用
いて混合し、配合原料とする。
(Mixing) In any of the above formulations, each raw material is mixed using a conventional device to obtain a blended raw material.

この場合、各原料の反応を促進し、より均一な複合粉末
とするため、セラミックス製のボール又はビーズとミル
(ポットミル、ビーズミルなど)を用いて、原料の混合
と同時に粉砕を行った粉末を用いることが極めて有効で
ある。このようなセラミックス製のボール、ビーズ、ミ
ルの材質としては、アルミナ、ジルコニア、窒化けい素
、炭化けい素、サイアロンなどが挙げられ、特に本発明
の場合、窒化けい素、炭化けい素、サイアロンが好まし
い。
In this case, in order to accelerate the reaction of each raw material and make a more uniform composite powder, use ceramic balls or beads and a mill (pot mill, bead mill, etc.) to mix and grind the raw materials. This is extremely effective. Examples of materials for such ceramic balls, beads, and mills include alumina, zirconia, silicon nitride, silicon carbide, and sialon. In particular, in the case of the present invention, silicon nitride, silicon carbide, and sialon are used. preferable.

粉砕後の粒径としては特に限定されないが、平均粒径が
511!1以下であることが望ましく、特に平均粒径3
μm以下の原料粉末とすることが好ましい。
The particle size after pulverization is not particularly limited, but it is desirable that the average particle size is 511!1 or less, especially an average particle size of 3.
It is preferable to use raw material powder with a particle size of μm or less.

(焼成) 次に配合原料を反応させて、複合粉末を合成する工程に
ついて説明する。
(Calcination) Next, the process of reacting the blended raw materials and synthesizing the composite powder will be described.

本発明において配合原料を反応させるために使用する装
置は、慣用の各雰囲気炉(例えば回転キルン、流動層式
焼成炉、プッシャー炉等)でよいが、粉末の混合及び反
応の促進のし易さの点で。
The apparatus used for reacting the raw materials in the present invention may be any conventional atmosphere furnace (e.g., rotary kiln, fluidized bed calcining furnace, pusher furnace, etc.), but the apparatus may be any one of the following: In terms of.

流動層式焼成炉が好ましい。A fluidized bed kiln is preferred.

本発明においては、配合原料を窒素含有不活性ガス雰囲
気下で反応させ、金[Siの炭化及び窒化を同時に進行
させる必要があり、その合成温度の制御が重要である。
In the present invention, it is necessary to react the blended raw materials in a nitrogen-containing inert gas atmosphere to simultaneously advance the carbonization and nitridation of gold[Si, and it is important to control the synthesis temperature.

このような温度としては、1250〜1420℃であり
、この範囲を超える温度では金属S1が溶融してしまい
、目的の複合粉末が得られず、また、上記範囲未満の温
度では金属Siの炭化及び窒化が進まない。上記温度範
囲のうち、反応が進み易く、がっ、温度制御がし易い好
ましい温度は1300−1400℃である。
Such a temperature is 1250 to 1420°C; at a temperature exceeding this range, the metal S1 will melt and the desired composite powder will not be obtained, and at a temperature below the above range, the metal Si will be carbonized and Nitriding does not progress. Among the above-mentioned temperature ranges, the preferred temperature is 1300-1400°C because the reaction can easily proceed and the temperature can be easily controlled.

反応時間としては、焼成温度により異なるが。The reaction time varies depending on the firing temperature.

2〜10時間程度がその目安となり、これより短い時間
では未反応の金属Siが残存しやすく、また、この範囲
以上長時間保持してち、既に反応は完結しており、経済
的に不利となる。
The standard time is about 2 to 10 hours; if the time is shorter than this, unreacted metal Si tends to remain, and if it is held for longer than this range, the reaction has already been completed, which is economically disadvantageous. Become.

(複合粉末) 上記のようにして得られる本発明の複合粉末は、炭化物
と窒化物とが極めて均一に分散し、nmオーダーの分散
相を有するいわゆるナノコンボッシトとなり、焼結体と
したときの強度、破壊靭性が大幅に改善される。
(Composite Powder) The composite powder of the present invention obtained as described above becomes a so-called nanocomposite in which carbides and nitrides are extremely uniformly dispersed and has a dispersed phase on the order of nanometers, and when made into a sintered body, the strength is Fracture toughness is significantly improved.

[実施例1 以下、実施例によって本発明を説明する。[Example 1 The present invention will be explained below with reference to Examples.

実施例1 金属シリコン粉末(山石金属■製rHisi−600S
J 。
Example 1 Metallic silicon powder (rHisi-600S manufactured by Yamaishi Metal)
J.

平均粒径: 5.5 IIm)  100重量部に対し
、カーボン粉末(三菱化成■製rMA200RBJ )
 1.5重量部を配合し、樹脂製ボール及びボットミル
で混合後、第1表に示す条件で焼成し、炭化けい素・窒
化けい素複合粉末を得た。
Average particle size: 5.5 IIm) For 100 parts by weight, carbon powder (rMA200RBJ manufactured by Mitsubishi Kasei ■)
1.5 parts by weight was blended, mixed using a resin ball and a bot mill, and then fired under the conditions shown in Table 1 to obtain a silicon carbide/silicon nitride composite powder.

得られた複合粉末のxI!回折結果の回折ピーク比率よ
り求めたSiC:5iJ4生成割合を第1表に示す。
xI of the obtained composite powder! Table 1 shows the SiC:5iJ4 production ratio determined from the diffraction peak ratio of the diffraction results.

また、得られた複合粉末に焼結助剤としてYJ3とAl
2O2をそれぞれ5重置%づつ添加し、窒化けい素製ビ
ーズ及びボットミルを用い、水を加えて混合粉砕し、乾
燥し、プレス成形した後、窒素中1780℃で3時間常
圧焼結した焼結体について、JIS R1601に従っ
て測定した曲げ試験強度及びインデンテーション法によ
り測定した破壊靭性値の結果を第1表に示す。
In addition, YJ3 and Al were added to the obtained composite powder as sintering aids.
2O2 was added at 5% each, mixed with water using silicon nitride beads and a bot mill, dried, press-molded, and sintered under normal pressure at 1780°C for 3 hours in nitrogen. Table 1 shows the results of the bending test strength measured according to JIS R1601 and the fracture toughness value measured by the indentation method for the compact.

実施例2 実施例1の配合比及び焼成条件を第1表のように変えて
得られた複合粉末についでの結果を第1表に示す。
Example 2 Table 1 shows the results of composite powder obtained by changing the blending ratio and firing conditions of Example 1 as shown in Table 1.

実施例3 実施例1と同様の原料及び配合を行い、窒化けい素製の
ビーズ及びボットミルで混合粉砕し、平均粒径3umの
混合粉末とした。
Example 3 The same raw materials and formulation as in Example 1 were used, mixed and ground using silicon nitride beads and a bot mill to obtain a mixed powder with an average particle size of 3 um.

第1表に示す条件で焼成して得られた複合粉末について
の結果を第1表に示す。
Table 1 shows the results for the composite powder obtained by firing under the conditions shown in Table 1.

実施例4 実施例3において、混合粉砕をサイアロン製のビーズ及
びビーズミルを用いて行い、平均粒径2μmの混合粉末
とした。
Example 4 In Example 3, mixed pulverization was performed using Sialon beads and a bead mill to obtain a mixed powder with an average particle size of 2 μm.

第1表に示す条件で焼成して得られた複合粉末について
の結果を第1表に示す。
Table 1 shows the results for the composite powder obtained by firing under the conditions shown in Table 1.

実施例5 実施例3において、混合粉砕をジルコニア製ビーズと樹
脂ミルを用いて行い、平均粒径4μmの混合粉末とした
Example 5 In Example 3, mixed pulverization was performed using zirconia beads and a resin mill to obtain a mixed powder with an average particle size of 4 μm.

第1表に示す条件で焼成して得られた複合粉末について
の結果を第1表に示す。
Table 1 shows the results for the composite powder obtained by firing under the conditions shown in Table 1.

比較例1.2 炭化けい素(イビデン■製「ベータランダムウルトラフ
ァイン」)と窒化けい素扮宋(信越化学工業■製rKs
s−10MJ )とをその配合比率がそれぞれ実施例1
及び2の焼成結果と同し割合に配合し、同様にポットミ
ルで混合後、実施例1と同様に焼結助剤を配合して成形
、焼結した。焼結体についての結果を第1表に示す。
Comparative Example 1.2 Silicon carbide (“Beta Random Ultra Fine” manufactured by Ibiden) and silicon nitride (rKs manufactured by Shin-Etsu Chemical)
s-10MJ) and their blending ratios are as in Example 1.
and 2 were mixed in the same proportions as in the firing results, and mixed in a pot mill in the same manner as in Example 1. After blending with a sintering aid, molding and sintering were carried out in the same manner as in Example 1. The results for the sintered body are shown in Table 1.

【発明の効果] 本発明の方法により合成された炭化けい素・窒化けい素
複合体粉末は、炭化けい素が極めて均一に分散した粉末
であるため、本複合粉末から製造される複合セラミック
スは、従来の混合粉末から製造される複合セラミックス
に比較して、強度、破壊靭性ともに格段に改善された、
優れたエンジニアリングセラミックス材料である。
[Effects of the Invention] The silicon carbide/silicon nitride composite powder synthesized by the method of the present invention is a powder in which silicon carbide is extremely uniformly dispersed. Compared to composite ceramics manufactured from conventional mixed powders, both strength and fracture toughness are significantly improved.
It is an excellent engineering ceramic material.

Claims (1)

【特許請求の範囲】[Claims] (1)金属Si粉末と炭素質粉末とを混合し、該混合物
を窒素含有不活性ガス雰囲気中、1400℃以下の温度
で加熱して、金属Si粉末の炭化反応と窒化反応とを同
時に行なうことを特徴とする窒化けい素複合粉末の製造
方法。
(1) Mixing metal Si powder and carbonaceous powder and heating the mixture at a temperature of 1400°C or less in a nitrogen-containing inert gas atmosphere to simultaneously perform a carbonization reaction and a nitridation reaction of the metal Si powder. A method for producing silicon nitride composite powder characterized by:
JP2056690A 1990-03-09 1990-03-09 Production of silicon nitride composite powder Pending JPH03261611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2056690A JPH03261611A (en) 1990-03-09 1990-03-09 Production of silicon nitride composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2056690A JPH03261611A (en) 1990-03-09 1990-03-09 Production of silicon nitride composite powder

Publications (1)

Publication Number Publication Date
JPH03261611A true JPH03261611A (en) 1991-11-21

Family

ID=13034446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2056690A Pending JPH03261611A (en) 1990-03-09 1990-03-09 Production of silicon nitride composite powder

Country Status (1)

Country Link
JP (1) JPH03261611A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0676380A1 (en) * 1994-03-30 1995-10-11 Honda Giken Kogyo Kabushiki Kaisha Composite powders of silicon nitride and silicon carbide
JPH07315939A (en) * 1994-03-30 1995-12-05 Honda Motor Co Ltd Silicon nitride/silicon carbide composite sintered compact, composite powder and their production
JPH08225311A (en) * 1994-11-29 1996-09-03 Honda Motor Co Ltd Silicon nitride/silicon carbide complex powder, complex molding, their production and production of sintered compact of silicon nitride/silicon carbide complex
US5767025A (en) * 1994-03-30 1998-06-16 Honda Giken Kogyo Kabushiki Kaisha Composite powder comprising silicon nitride and silicon carbide
US6133180A (en) * 1997-08-01 2000-10-17 Honda Giken Kogyo Kabushiki Kaisha Ceramic composite particle and production method thereof
JP2011195395A (en) * 2010-03-19 2011-10-06 Kubota Corp Method for producing silicon nitride-based ceramic

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0676380A1 (en) * 1994-03-30 1995-10-11 Honda Giken Kogyo Kabushiki Kaisha Composite powders of silicon nitride and silicon carbide
JPH07315939A (en) * 1994-03-30 1995-12-05 Honda Motor Co Ltd Silicon nitride/silicon carbide composite sintered compact, composite powder and their production
US5648028A (en) * 1994-03-30 1997-07-15 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing a sintered composite body of silicon nitride and silicon carbide
US5767025A (en) * 1994-03-30 1998-06-16 Honda Giken Kogyo Kabushiki Kaisha Composite powder comprising silicon nitride and silicon carbide
JPH08225311A (en) * 1994-11-29 1996-09-03 Honda Motor Co Ltd Silicon nitride/silicon carbide complex powder, complex molding, their production and production of sintered compact of silicon nitride/silicon carbide complex
US6133180A (en) * 1997-08-01 2000-10-17 Honda Giken Kogyo Kabushiki Kaisha Ceramic composite particle and production method thereof
US6261511B1 (en) 1997-08-01 2001-07-17 Honda Giken Kogyo Kabushiki Kaisha Method for producing ceramic composite particle
JP2011195395A (en) * 2010-03-19 2011-10-06 Kubota Corp Method for producing silicon nitride-based ceramic

Similar Documents

Publication Publication Date Title
CA1226303A (en) Silicon carbide refractories having modified silicon nitride bond
JPS6125677B2 (en)
JPH1149572A (en) Ceramic composite particles and their production
KR100386364B1 (en) Reaction-bonded silicon carbide refractory product
JPH0460051B2 (en)
JPH03261611A (en) Production of silicon nitride composite powder
JPS59107976A (en) Manufacture of readily sinterable silicon nitride powder
JPS60131866A (en) Preparation of sialon grain and powder and composition thereof
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JP2855460B2 (en) Method for producing silicon nitride-based composite powder
JPS62875B2 (en)
JP2976076B2 (en) Method for producing sialon-silicon carbide composite powder
JPH0283265A (en) Production of silicon nitride
JPH06116045A (en) Silicon nitride sintered compact and its production
JPH01145380A (en) Production of silicon nitride sintered form
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPS62275067A (en) Manufacture of silicon nitride sintered body
JPH08319168A (en) Production of sialon ceramic
JPH03290370A (en) Production of sintered silicon nitride having high toughness
JP2584252B2 (en) Method for producing β-sialon / silicon carbide composite powder
JPH03153507A (en) Production of multicomponent powder
JPH02233560A (en) High-strength calcined sialon-based compact
JPS61155209A (en) Preparation of easily sinterable aluminum nitride powder
JPH0324430B2 (en)
JPH07277835A (en) Production of combined sintered compact